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Abstract
Scientific methods are heuristic in nature. Heuristics are simplifying, incomplete,
underdetermined and fallible problem-solving rules that can nevertheless serve cer-
tain goals in certain contexts better than truth-preserving algorithms. Because of their
goal- and context-dependence, a framework is needed for systematic choosing between
them. This is the domain of scientific methodology. Such a methodology, I argue,
relies on a form of instrumental rationality. Three challenges to such an instrumental-
ist account are addressed. First, some authors have argued that the rational choice of at
least some methods, namely those supporting belief formation, is not goal-dependent.
Second, some authors have observed that some method choices seem intuitively ratio-
nal, even though relevant goals are lacking. Thirdly, some authors have argued that
instrumental rationality itself depends on a goal-independent form of rationality. It is
the heuristic nature of scientific methods that affords me the arguments against these
challenges. This heuristic-instrumentalist account provides the means-ends analysis
needed to evaluate heuristic method choice. The paper thus offers the conceptual basis
for a scientific methodology that is both compatible with the heuristic nature of actual
scientific practice and also normatively relevant for assessing method choice.

Keywords Methodology · Heuristics · Instrumental rationality · Epistemology

1 Introduction

Scientific methods are those techniques, approaches and strategies that scientists
employ to perform their research. These methods can serve different epistemic goals,
for example different versions of explanation, prediction or design. An instrumentalist
methodology describes, compares and evaluates these methods with respect to their
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ability to further relevant epistemic goals. Through that it supports rational method
choice. Specifically, such an instrumentalist positionmakes two claims. First, it claims
that the sources of normativity for prescribing the choice of certainmethods are located
in the instrumentality of these methods for certain epistemic goals. Second, it claims
that a systematic prescription of method choice can be derived from these instrumen-
talist considerations. An instrumentalist account of scientificmethodology is desirable
because it relies on a normatively unproblematic notion of rationality that nevertheless
offers a powerful tool for evaluating and performing method choice.

Yet this instrumentalist perspective is contested in at least three ways. First, cer-
tain authors claim that the rational choice of at least some methods, namely those
supporting belief formation, is not goal-dependent. Second, others have observed
that some method choices seem intuitively rational, even though relevant goals are
lacking. Thirdly, some have argued that instrumental rationality itself depends on
a goal-independent form of rationality. Each of the challenges point to some non-
instrumental, not goal-dependent form of rationality that underlies the normativity of
methodology and drives systematic prescription of method choice. The challenges, if
successful, would thus undermine the instrumental account.

In this paper, I defend the instrumentalist methodology account against these crit-
icisms. Following Wimsatt, I argue that scientific methods are heuristics: they are
incomplete in that they might not identify all the best solutions; they are underdeter-
mined in that they require further judgments and decisions to be applicable; they are
fallible in that they produce a correct answer with less than certainty; and they are
biased in that they systematically produce error in certain contexts. Discussing recent
work by Hey (2016), I then argue that an instrumental perspective offers a systematic
account how to rationally choose between these scientific heuristics. Based on this
account, I argue against the three challenges. First, I show that choice between all
heuristics, including inferential ones, require a goal-dependent justification. Second,
I demonstrate how the instrumental account can explain goal-less choices of methods
without normatively vindicating them. Third, I argue that evidential justification of
instrumental claims itself is purpose-dependent and instrumentally justified. Each of
these arguments takes recourse to the notion of heuristics. My argument shows how
the heuristic nature of methods strengthens the instrumentalist case, which I therefore
call the heuristic-instrumentalist perspective on scientific methodology.

The paper begins by presenting the heuristic nature of scientific methods in Sect. 2.
Section 3 discusses the need for a systematic framework of choosing between these
heuristics and argues that such a framework is governed by instrumental rationality.
Sections 4–6 address the three challenges to the instrumentalist account. Section 7
concludes.

2 Scientific methods as heuristic procedures

Every scientific discipline has its stock of procedures for performing research. These
methods are employed for the recognition and formulation of a problem, the production
and collection of evidence, and the formulation and epistemic appraisal of hypotheses.
Some of these methods are employed across many disciplines. For example, all sci-
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ences use similar strategies to operationalize not directly observable properties in order
to make themmeasurable. All sciences that handle quantitative data employ statistical
techniques, and many of them use a simple p value testing procedure. Other methods
are particular to specific disciplines. Astronomers, for example, do not experiment.
Chromatography methods (for separating a mixture) are ubiquitous in chemistry, but
rarely found elsewhere. And only those scientists who investigate human attitudes—-
like social scientists, health researchers and engineers—ever collect data with the
help of questionnaires. Often, a method developed in one discipline then spreads to
others. Random assignment to treatment and control groups in an experiment first
was developed in 19th century parapsychological research (Hacking 1988), and from
there entered other disciplines like biology, medicine and sociology. Inversely, obso-
lete and outdated methods—like certain software used for genomic analysis (Wadi
et al. 2016)—often continue to be used even though more powerful alternative are
available. And some methods that were once widely used, like armchair speculation,
today enjoy only a marginal existence in specific sub-disciplines.

Scientific methods take a prominent place in science. Descriptions of methods are
the most highly cited papers in all of science.1 Most disciplines have a canon of
methods, typically connected to its main discoveries. This canon is taught to students,
and because the competent use of many methods often involves tacit knowledge,
this teaching often takes the form of labs and tutorials. Yet this canon is not rigid:
development of new methods is a highly rewarded part of science, and older methods
are regularly phased out as obsolete.

Despite this disciplinary regimentation of the method canon, the ultimate arbiters
are the scientists doing the research: they choose which method to employ when
pursuing a particular research project. In their presentations and publications they
are also expected to defend this choice. Authors’ choice of method—its consistency
with the canon, its appropriateness for the research goal, its innovativeness and the
competence in handling it—is for example one of the main considerations in the peer
review process (Thrower 2012; Zwaaf 2013). Quite obviously, scientists are not just
choosing their methods, but they are also held responsible for the legitimacy of this
choice: they are expected to justify it.

That scientists have a choice of methods, and that their research is evaluated by this
choice of methods, implies that there are alternative methods to choose from, which
at least prima facie offer themselves as equally appropriate for doing the research.
The examples are legions. The choice might be formulated between alternative kinds–
for example, ‘Experiment or observational study?”, “Field or lab experiment?”, “Ex-
periment or simulation?”; or it might concern alternative specifications of the same
kind—for example, “What factors to eliminate in an experiment?”; “Which ones to
hold constant?”; “Which idealizations to accept in your model?”; “Which parame-
terization of p-value test?”. Finally, it might concern the concrete implementation

1 The vast majority of the Thomson Reuter’sWeb of Science top 100 papers, published until 2014, describe
experimental methods, software packages, statistical technics, and psychological inventories (van Noorden
et al. 2014). This is explained by the fact that scientists reference the methods they use in their study reports.
The high citation rates show that many methods are highly canonical: standardized in publicly accessible
documents, shared by many scientists, and used over and over again.
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of a specific method—e.g. which software package or which brand of measurement
instrument to use.

Why do substantially different methods prima facie offer themselves as equally
appropriate for a given goal? If methods produced results with certainty, such prima
facie equivalence would rarely arise. Instead, method outcomes typically are uncertain
(and this uncertainty is typically not fully fully specified, e.g. through a probability
distribution) so that two or more methods will often seem to advance a given goal
equally well. Because of this uncertainty and vagueness, some authors have argued
that scientificmethods are heuristic procedures.2 In particular,WilliamWimsatt (2007,
pp. 76–77) proposes four characteristics for heuristics:

1. They don’t guarantees producing the correct solution
2. Their use is motivated by their cost-effectiveness in terms of demands on memory,

computation or other limited resources
3. They are systematically biased, thus allowing at least in principle the identification

of the conditions under which they fail and the direction of the error they produce
4. They transform the original problem into an “non-equivalent but related problem”.

Examples of scientific methods that Wimsatt explicitly identifies as heuristics
include holding environmental variables constant in experiments and simplifying rep-
resentations of environmental factors in modeling (Wimsatt 2007, p. 83). Holding
(known) background variables constant, for example, (1) does not guarantee a valid
inference about effect size from an experiment, due to possible unknown confounders.
Yet (2) such a method is widely seen as reasonable experimental method (in contrast
to e.g. a potentially limitless search attempting to identify all confounders before
making the inference). In principle, (3) the systematic bias of such unknown con-
founders could be identified. “Hold known environmental factors constant” thus (4)
transforms a deductively valid inference scheme (as e.g. laid out in Mill’s Method of
Difference) into a fallible but practicable inference procedure whose quality depends
on the available knowledge of relevant background factors.

Wimsatt contrasts heuristics with what he calls “truth-preserving algorithms”
(Wimsatt 2007, p. 76). Such algorithms, he argues, when correctly applied to true
premises, must produce a correct solution (ibid. 346). But they require a problem
space whose structure is well-defined (ibid. 9)—a property many actual problems do
not exhibit. More specifically, such algorithms are characterized by least three prop-
erties. First, for each such algorithm, a class of problems is specified for which it
is effective. This specification must be exact enough to distinguish this target class
from other classes of problems for which the method is not effective. Second, these
algorithms consist of a finite number of exact, finite instructions. In particular, the
exactness condition requires that each instruction is non-ambiguous, can be followed
rigorously, and demands neither additional judgments nor decisions. Third, the appli-
cation of the algorithm to its target class always produces one and only one solution

2 The notion of heuristic has been widely used in cognitive science and decision theory contexts, starting
with Simon in the 1950 s, and gaining wider recognition with the work of Tversky, Kahneman and Gigeren-
zer, amongst others (for overviews, see Gigerenzer et al. 2011; Chow 2014). But their research focusses
largely on heuristics outside of scientific contexts; in this paper I will instead focus on the more specific
discussion of their use in the sciences.
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after a finite number of steps (cf. Cleland 2002 for an in-depth analysis of algorithms,
which he calls “effective procedures”).

If scientific methods were algorithms in this sense, choosing between them would
be comparatively easy. As long as a given goal were part of its problem class, there
would be at least one algorithm that guaranteed achieving this goal in a finite number of
steps. If the goal were part of more than one method’s problem class, one only needed
to compare their respective economies to choose between them. Such an account is
not, I believe, an accurate description of scientific method choice. Instead, I consider
uncertainty and vagueness central features of scientific methods, and therefore follow
Wimsatt in characterizing them as heuristics.

If methods are heuristic procedures in Wimsatt’s sense, then the method choice
problem that scientists face becomes more complicated. According toWimsatt’s char-
acteristic (iii), heuristics at least under some conditions systematically fail. And more
generally, according to condition (i), they do not guarantee a correct solution. Such
characteristics make it difficult for scientists to justify their method choice. They now
need to argue that for their specific goal and problem, the heuristic biases are not
relevant and the uncertainty of the heuristic result does not pose a problem. In the next
section, I discuss possible ways how one could systematically justify choices between
thus-characterized heuristic methods in science.

3 Meta-heuristics as instrumentalist methodology

Scientists not only have the privilege of choosing between different methods, they
also must make a choice between the available methods in order to pursue their
research—even when no optimal method is available, or not enough information is at
hand to determine what the optimum could be. This justification of method choice is
the domain of methodology. Methodology is distinct from methods: it concerns the
justification of method choice, and thus the evaluation of methods, but it does not
concern the development, description or application of methods themselves.

Albeit it is uncontroversial that methodology concerns the justification of method
choice, it is controversial how such justification should proceed. In this section, I
discuss the recent proposal of a systematic methodology for scientific heuristics in
form of a set of meta-heuristics (Hey 2016). While I am congenial to the basics of
Hey’s account, it leaves open a number of questions. In this section, I discuss these
questions and show how they can be answered by re-casting Hey’s account as an
instance of an instrumental methodology.

Hey followsWimsatt in stressing the importance of heuristics in science. In particu-
lar, he emphasizes the uncertainty and context-dependence of the success of heuristics
in scientific research. For these reasons, he concludes, a systematic framework is
needed for deciding “when and how these heuristics can be applied prudently” (Hey
2016, p. 475). Wimsatt, according to Hey, has not provided such a systematic frame-
work, but only offered non-generalizable recommendations when not to use specific
heuristics. Hey now argues that for every heuristic, there exists a meta-heuristic that
regulates its use.
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If heuristics are the rough-and-ready rules describing scientific activities— such
as, “describe p as type Q”, “simplify X before Y”, “keep variables e1… en
constant”—then meta-heuristics are the rough-and-ready strategies that specify
the conditions under which these activities ought to be used (or not used). (Hey
2016, p. 478)

Hey’s meta-heuristics are methodological rules—rules regulating how to choose
between methods. Examples of such methodological rules include: “avoid ad hoc
modifications to theories”; “prefer double-blind over single- or zero-blind experi-
ments”; “reject unfalsifiable theories”; “postulate the same kind of cause for the same
kind of effect, as far as possible”; and so on.

But what regulates these meta-heuristics in turn? Hey suggests that they are
grounded inwhat he calls a “problem type”,which “describes the context for the heuris-
tics and meta-heuristics, and in so doing, grounds the problem space in the particular
domain of scientific interest” (Hey 2016, p. 480). For example, a physicist engaging in
a modeling project should start by asking “What do we want to explain?” One answer
might be “A universal phenomenon”; another “A particular phenomenon instance”.
These constitute two separate “regions of problem space” (Hey 2016, p. 486), that
each have their necessary meta-heuristics. Explanation of a universal phenomenon
requires a variable reduction strategy that removes irrelevant details of token events;
explanation of a particular phenomenon requires introduction of additional variables
“until the match between model and reality is sufficient to our needs” (Hey 2016,
p. 487). Each of these meta-heuristics then allow a number of possible heuristics to be
applied to these respective problem-types. Hey’s general framework thus consists in a
three-level hierarchy (problem-type; meta-heuristic; heuristic) that “provides a work-
ingmethodological map to ensure (as far as possible) that errors from the inappropriate
use of heuristics can be avoided” (Hey 2016, p. 480).

While Hey’s account correctly stresses the importance of a general framework for
the prudent choice of heuristics in science, at least three features of this framework
remain underdeveloped. First, what is a problem type, and what are its characteristics?
Second, must the meta-heuristics be necessitated by the problem-type? And thirdly,
must one in all cases apply a meta-heuristic in order to justify the choice of a method?
As Hey leaves these questions largely unanswered, I now argue that an instrumentalist
account of methodology can answer all three in a satisfactory way.

An instrumentalistmethodology relies on instrumental rationality as the only source
of normativity in justifying method choice.3 It prescribes what properties a scientific
method ought to have, so that is satisfies best a certain given goal in certain kinds
of context. The reasons for the goal (its normative force) transmit to the prescribed
means, if the efficacy of the means in producing the goal is sufficiently established,
and if the choice criterion (what is meant by “satisfies best”) is determined. While the
latter depends on a proper analysis of the goal, the efficacy issue requires an empirical
inquiry. The methodological issue thus reduces to conceptual analysis of the goal,
and empirical support for the efficacy of the means-end relationship. The advantage
of such an instrumental methodology is that it does have normative content, because
method choices are justified through their instrumental value for scientists’ epistemic

3 It thus is entirely separate from the Instrumentalism-Realism debate about theories.
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goals: certain elements from the set X of all available methods will achieve these
goals best. Methodology identifies these means-ends relations and prescribes them as
hypothetical imperatives of the form: “If one’s goal is y, then one ought to do x∈X”.

With this sketch of instrumentalism in mind, let me now address the three questions
from above. First, what are the core characteristics of a problem type? Hey did not give
a general characterization, but only three illustrating examples: Patient assignment in
a hospital, explaining universal patterns or singular instances, and modeling ecosys-
tems. These cases remain vague; for example, Hey leaves it open whether epistemic
goals—like explaining or predicting—must be part of the problem-type description.
Here is an argument for why it must. In one of his examples, Hey argues that a partic-
ular degree of model-reality match (“sufficient for our needs”, Hey 2016, p. 487) must
be reached for this problem type. But such a degree is dependent on the particular
explanation one aims at, with a particular contrast and a particular precision speci-
fied. If the modeling were to serve another epistemic goal, e.g. prediction, then the
required model-reality match would likely be lower, or at least different. More gen-
erally, heuristics are always only useful for something—they are purpose-dependent
(Wimsatt 2007, p. 3461). Consequently, the problem type must include a description
of the epistemic goal if a systematic meta-heuristic is to be grounded in it.

But that is not the only core characteristic. Goals can be reached in many different
ways, yet somemeans applied in some contexts do not reach a goal. Thus, the problem
type also must specify the relevant context in which these heuristics methods are
applied. Hey implicitly assumes this, when arguing that the meta-heuristics specify
the conditions under which certain heuristics are to be used (or not used). But the
meta-heuristic is just a rule prescribing use of the heuristic given certain conditions.
How does one determine whether these conditions are indeed satisfied? For that one
needs to consult the problem type, which needs to contain the relevant information.

Thus, a problem type must describe both a researcher’s goal, as well as the relevant
context in which the planned research is supposed to reach this goal. And a meta-
heuristic prescribes which heuristics to use, conditional on the information provided
by the problem type. An instrumentalist account therefore answers what the core
characteristics of the problem type are: that information (about the goals and the
context) that allows for a rational choice of the means for satisfying these goals in that
context.

Now to the second question: must the meta-heuristics be necessitated by the
problem-type? Hey is again ambiguous about this: in the physics example, he argues
that the meta-heuristics are indeed necessitated by the problem types, while in the
other two cases, multiple meta-heuristics seems to be compatible with the same prob-
lem type. The instrumentalist account can solve this apparent contradiction. Heuristics
are neither necessary nor sufficient for a goal: they are not sufficient, because many
other conditions must be in place besides the application of the heuristic; and they are
not necessary, because many alternative heuristics, under the right conditions, often
can be means to reaching a goal. Instead, heuristics are necessary parts of a suffi-
cient means of realizing a goal.4 Consider two different heuristics F and H. Both are

4 This is notion is derived from Mackie’s (1974) INUS condition (insufficient but non-redundant parts of
a condition which is itself unnecessary but sufficient for the occurrence of the effect), which he employed
to analyze the notion of “cause”, but which can be easily adapted for my purposes here.
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candidates as means for reaching goal G—hence neither is necessary for reaching
G. Furthermore, neither is sufficient to reach G—they require specific conditions in
place to be effective, CF and CH, respectively. But F&CF are sufficient for G, as are
H&CH. And finally, because CF ��CH, and F is the heuristic specifically adapted to
conditions CF for reaching G, F is a necessary part of the sufficient means F&CF
for reaching G. This holds for both heuristics and meta-heuristics. A heuristic like
“hold known environmental variables in an experiment constant” fails to support valid
inferences about effect size in contexts where relevant confounders are not known.
A meta-heuristic like “avoid ad hoc modifications” (i.e. changes to a falsified theory
that do not increase its falsifiability) fails to secure theoretical progress in contexts
in which no theory change increases falsifiability. Consequently, problem types never
imply a specific meta-heuristic with necessity—there will always be some contexts in
which a meta-heuristic will fail to advance a problem type.

This leaves the final question: is a meta-heuristic required to justify method choice?
Heydiscusses this question as part of his answer to a potential regress counterargument:

… if heuristics need meta-heuristics, then perhaps meta-heuristics also need
meta–meta-heuristics and so on—giving rise to an infinite regress of method-
ological justification. But this worry is resolved by the top-most level of my
hierarchical model being a “problem-type” rather than a heuristic. The problem-
type describes the context for the heuristics and meta-heuristics, and in so doing,
it grounds the problem space in the particular domain of scientific interest—
effectively closing the loop of heuristic justification. (Hey 2016, p. 480)

I have two problems with this line of reasoning. First, I doubt that “heuristics need
meta-heuristics”, if this means that heuristic choice can only be justified through
meta-heuristics. Second, I fail to see how the problem-type “grounding” prevents the
regress.

Hey claims that his problem space concept cuts off the regress by taking the prob-
lem description as its entry point for analysis. Because the problem is a given, the
methodological analysis starts from there. Yet in my understanding of Hey’s account,
the problem type only identifies the conditions under which heuristics are applied,
but does not provide evidence that the application indeed is justified. That’s what the
meta-heuristics are supposed to do, at least in Hey’s account. If, as Hey seems to think,
heuristic choice requires meta-heuristics to be justified, then it seems arbitrary to stop
at this level, instead of also requiring meta–meta-heuristics, etc.

An instrumentalist account of methodology can dispel these two connected issues.
First, there are different ways of justifying method choice. Token justifications pro-
vide instrumental reasons for choosing method M over others, based on localized
knowledge—e.g. immediate experience of working with these method alternatives in
this context. Rules play no role in this justification. Rule justification, in contrast,
refer to generalizing principles about which methods best satisfy which rules in a
variety of contexts. Hey’s proposal of meta-heuristics is one variant of such rule-
justification. Either of these kinds might provide good justification. Sometimes, e.g.
when a researcher choosing between methods has little local knowledge, a rule-based
justification might be preferable. But in no way is referring to rules the only or neces-
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sary mode of justification of method choice—meta-heuristics are not “needed” in this
way.

Second, both justifications are instrumental, depending on goals and contexts. The
normativity of instrumental reasoning is widely seen as unproblematic. No a priori
arguments, pre-analytic intuitions or questionable conventions need be appealed to.
Instead, the instrumental rationality of the hypothetical imperative is well known from
practical reasoning, and widely accepted there. Engineers and economists employ it
in their reasoning. Hence this form of normativity should be acceptable for scientists,
who indeed might well recognize it as the kind of normativity they themselves appeal
to in their own methodological discussions. The fallible part of any such justification
lies in the empirical claim that a certain method furthers most the goal in the given
context.Neither the token nor the rule approach is generally better suited to provide this
justification. Rather, which one is more suitable depends on the form of the available
information (e.g. either as local knowledge or as generalizing rules). Meta-heuristics
are thus not the only way of justifying method choice. One can always ask “what
justifies the justifier?”—that is just the problem of any inductive inference, and not
a special problem of either heuristic or meta-heuristic choice. Irrespective of such
regress concerns, researchers are often pragmatically justified to believe in (fallible)
means-ends claims, and this in turn justifies their method choice. The hierarchy of
Hey’s account thus gives unnecessary weight to such regress concerns. If instead
one sees that meta-heuristics are not required for justification of method choice, but
sometimes pragmatically preferable, the problem disappears.

To conclude, I have offered a re-interpretation of Hey’s meta-heuristic account.
In particular, firstly, I have argued that Hey’s talk of “problem space” should be
made more precise by making explicit the ends and success conditions for a method
choice. Secondly, I have shown that problem types does not necessitate specific meta-
heuristics. And thirdly, I argued that meta-heuristics are just one way out of many to
justify a methodological choice, thus reducing the urgency of regress worries. Thus
re-interpreted, an instrumental account offers a useful way to perform the means-ends
analysis needed to evaluate scientists’ heuristic method choices.

4 First challenge: goal independence of rational belief formation

The heuristic-instrumentalist perspective on scientific methodology presented so far
assumes that the success of different methods depends both on purpose and context,
and that therefore it is (instrumentally) rational to choose that method that one has rea-
son to believe will be most effective for one’s purpose given the context of application.
But this goal-dependence of what is methodological rational has been challenged with
at least three arguments. First, some authors have argued that the rational choice of at
least some methods, namely those supporting belief formation, is not goal-dependent.
Second, some authors have observed that some method choices seem intuitively ratio-
nal, even though relevant goals are lacking. Thirdly, some authors have argued that
instrumental rationality itself depends on a goal-independent form of rationality. For
each of these reasons, the instrumentalist perspective is said to fail. But if it failed,
the heuristic account would need to be rewritten, too. Methods could then not be
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considered the most rational choice for certain purposes in certain contexts. Rather,
there would be a universally rational method, and the only problem would consist in
obtaining the relevant information for its identification.

In the following three sections, I argue against each of these claims in turn. I
begin with the claim that the rational choice of at least some methods, namely those
supporting belief formation, is not goal-dependent (Siegel 1996; Kelly 2003, 2007).

Rational reasons for belief, these authors claim, are constituted by evidence, inde-
pendent of what goals the agent may have. They support this claim by pointing to
the apparent categorical acceptance of evidence. If queried “why do you believe p?”,
people typically answer: “because of evidence e”—rather than “because of evidence
e, given my epistemic goal g”. People seem to treat e as categorical reasons for believ-
ing or not believing p—categorical in the sense that they are independent of what
epistemic goals the epistemic agent might have.

If both of us know that all of the many previously-observed emeralds have been
green, then both of us have a strong reason to believe that the next emerald to be
observed will be green, regardless of any differences which might exist in our
respective goals. Similarly, in arguing for my conclusions in this paper, I think
of myself as attempting to provide strong reasons for believing my conclusions,
and not as attempting to provide strong reasons for believing my conclusions for
those who happen to possess goals of the right sort. (Kelly 2003, p. 621)

Kelly concludes from this that evidential support itself is normative: it determineswhat
a (rational) person ought to believe: “there is no gap between possessing evidence that
some proposition is true and possessing reasons to think that that proposition is true”
(Kelly 2007, p. 468). Where there is no gap, no choice of method needs to or even
can fill in. Instead, the inference from evidence to beliefs is supported by a categorical
and universal epistemic rationality—“the kind of rationality which one displays when
one believes propositions that are strongly supported by one’s evidence, and refrains
from believing propositions that are improbable given one’s evidence” (Kelly 2003,
p. 612). It is rational to believe proposition p if and only if one has strong evidence
for p. Differing epistemic goals play no role for this rationality.

This view of rational belief formation is at odds with scientific practice. I will illus-
trate this at the hand of statistical inference practices in science.5 In practically all
scientific disciplines, multiple inferential methods are employed to form beliefs (or
decide acceptance/rejection of a hypothesis) based on available evidence. Which of
these methods to employ for which purposes under which conditions is often contro-
versial, as recent debates about significance testing, replication or Bayesian inferences
illustrate (see e.g. Open Science Collaboration 2015; Wasserstein and Lazar 2016).
Furthermore, each of these types can cater to a continuum of different epistemic goals.
Fisherian significance testing rejects the hypothesis at different error-rate thresholds;
Neyman–Pearson hypothesis testing favors different hypotheses depending on which
type of error is considered more momentous; Bayesian updating assigns probabili-
ties depending on the prior probability, which includes various features of epistemic

5 I am focusing on inferential methods only, because Kelly (2003, p. 635) separates reasons for evidence
acquisition and for belief formation, admitting that the former (but not the latter) might be instrumental
reasons. Thus, I only disagree with Kelly on the nature of reasons for belief formation.
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goals. Inferential statistics thus exemplifies the goal-dependence of evidence: what is
considered evidence for a hypothesis under a goal with a certain error rate, might not
be considered evidence for this hypothesis under a different error rate, or under some
other prior. I believe this indicates an instrumental dependence of these methods (and
therefore also of the reasons for beliefs) on scientists’ goals, thus posing a problem
for categorical accounts.

In order to support this claim, I draw on the contrast between heuristics and algo-
rithms, as described inSect. 2.Algorithms are characterized by three features: specified
problem class, finite number of non-ambiguous instructions, and assignment of one
and only one solution for each problem. By showing the statistical methods most
widely used in science do not satisfy these characteristics, I show that they are not
algorithms but heuristics.

First, statistical inference methods do not specify a class of problems for which
they are effective. There is no explicit specification: statistical inference methods do
not come with a description of which problems they may or may not be applied to.
Could this instead be implicitly specified? For example, the different methods take
different informational inputs: significance tests for example require the likelihood
of the data given the hypothesis, while Bayesian updating requires also likelihood
of the data given the falsity of the hypothesis as well as the prior probability of the
hypothesis. Perhaps these different input formats identify the problem classes to which
these methods are applicable? Two factors speak against input formats as such an
implicit differentiation. First, this is often not a mutually exclusive differentiation, but
a nesting relationship: Bayesian updating requires all information significance testing
requires, and then some more. Second, not all statistical inference methods are thus
differentiated: Fisherian significance testing and Neyman–Pearson hypothesis testing,
for example, both require the same likelihood information. So, there is no indication
that the inferencemethods carry implicit specification of their application classes. This
corresponds to the observation that in scientific practice, these methods are seen as
competitors for solving the same problems (sometimes yielding different results), not
as complementary methods for distinct kinds of problems (Lehmann 1993; Lenhard
2006).

Second, statistical inference methods consist of a finite number of steps, but many
of these steps are not precise. In particular, their execution often requires making deci-
sions regarding the values of some parameter, which often requires further epistemic
judgments. Take for example significance testing. This seemingly simple method tests
a specific hypothesiswith a particular set of data. Yet in order to arrive at the conclusion
(“reject” or “don’t reject”) a lot of additional decisions and judgments must be made.
When testing a hypothesis H, one needs to choose which statement to reject: either H
or not H. Often, it is not clear from the formulation of the hypothesis, which statement
to choose (in particular, the “no-effect” alternative implied by the (mis-)nomer “null
hypothesis” often is not applicable). Furthermore, the test procedure requires deter-
mining the data generation process. This can be done in multiply different ways—for
example, through experiment or observational studies, at different levels of background
factor control, with different measurement instruments, and at different sample rates.
How this is done affects what possible outcomes can be expected, andwhat probability
distribution one should assume over these possibilities. The description of possible
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outcomes, additionally to this question, also depends on how these possibilities are
partitioned. Again, this is something that cannot be determined from the data or the
hypothesis alone but requires further decisions.Moreover, the distribution over the test
statistic, although influenced by the design of the data generating process, is not fully
determined by it. Instead, it needs to be decided what assumptions to accept for the
purpose of the test. Last, and perhaps most obviously, the threshold (the “significance
level”) to which the calculated p-value is compared and that determines whether the
hypothesis is rejected or not, is set by fiat, thus requiring yet another decision. Thus,
even a seemingly simple method like significance testing consists of many steps for
which no precise instructions are given; instead, they require further decisions and
judgments.

Third, statistical inference methods do not produce one and only one solution for
each problem. As I argued, it is often ambiguous to which problem classes a particular
method is correctly applied. Moreover, there are many ambiguities in the individual
steps that constitute the method. A method therefore might produce many different
results, depending on how these ambiguities are decided. In scientific practice, this
is indeed an often-observed result. For example, there is widespread evidence for “p-
hacking”—i.e. scientists intentionally using themethod’s ambiguities in order tomake
a non-significant result seem significant (Head et al. 2015;Open ScienceCollaboration
2015). Another example is the dependence of results from Bayesian updating on the
subjectively set prior probability of the hypothesis. Agents with sufficiently different
priors cannot possibly sample enough data to converge on a common probability in
their lifetimes (Hesse 1975; Earman 1992, pp. 147–149). Instead, the choice of the
prior poses a substantial influence on the outcome of updating.

Thus, I conclude that statistical inference methods are not algorithms. Instead, they
are heuristics, characterized as incomplete, underdetermined and fallible (Wimsatt
2007). They are incomplete in that they might not identify all the best solutions, or
not even the most optimal ones. They are underdetermined in that they require not
only some input, but further judgments and decisions. They are fallible in that they
might produce an incorrect answer. Scientists thus cannot rely on a universal and
categorical epistemic rationality that leads them from evidence to beliefs. Rather, they
must choose from a multitude of inferential heuristics: each with specific advantages
and disadvantages, to be chosen in order to suit their respective epistemic goals best.

5 Second challenge: missing goals and instrumental errors

Non-instrumentalists have another challenge for the heuristic-instrumentalist perspec-
tive defendedhere. If scientificmethodswere rational to the extent towhich they further
the agent’s epistemic goals, then how come that people often seem to accept evidence
as reasons for beliefs, even though they are lacking the relevant goals for such an
inference? Kelly (2003) distinguishes two cases. In the first, people consider certain
evidence as reasons for believing p, even though believing p is of complete epistemic
indifference to them (e.g. “I don’t care whether Russell was left-handed. But if you
show me a photo of him writing with his left hand, that constitutes a reason for me
to believe it”). In the second, people intentionally avoid the acquisition of evidence
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because they do not want to acquire certain beliefs (e.g. “making a conscious effort
to avoid learning the ending of a movie that one plans to watch in the future”).

Parallels to Kelly’s cases can easily be found in scientific practice. Even for expe-
rienced model users, it is often tempting to draw inferences from the model that go
beyond the inferences required for the modeling purpose at hand. For example, for
predictive purposes it often suffices that a model delivers valid output values from
accurate input values. Yet the model of course employs some computational or causal
process to produce outputs from inputs; and model users—although solely aiming to
predict with the model—often are nevertheless tempted to infer from the model pro-
cess to the underlying causal structure of the target. Independent of whether such an
inference is justified (as it might well be), it goes beyond what is needed for the pur-
pose of prediction. So, they are considering the model as evidence for certain beliefs,
even though they lack the epistemic goals for forming these beliefs.

Furthermore, scientists make systematic efforts to intentionally avoid the acquisi-
tion of evidence, for example when they implement single blinding in experiments. In
a single-blind study, the experimenters does not observe who is receiving a particular
treatment. Thus, the experimenter avoids acquiring evidence because she does not
want to acquire certain beliefs.

Both of these cases challenge the instrumentalist account. In the first, the absence
of an epistemic goal prevents the agent having an instrumental reason; yet the agent
appears to have a normatively valid reason, nevertheless. So, the normative force
must arise from something else than the goal, a conclusion that strongly contradicts
instrumentalism. In the second case, avoiding the acquisition of evidence would be an
unnecessarily cumbersomeway of avoiding beliefs if instrumentalismwere true: under
instrumentalism people could simply view the evidence and determine that, given their
goals, they have no reason to form such a belief. The seeming non-availability of this
option, Kelly argues, makes the instrumental account implausible.

But what would the alternative be? I have already argued that Kelly’s proposal of
a universal and categorical epistemic rationality does not square with scientific infer-
ential practices. Another option is one that Kelly himself considers, namely that there
are universal epistemic goals. If there were such universal epistemic goals, instrumen-
talism could explain both of Kelly’s cases. In case 1, the universal goal would provide
an instrumental reason for forming the belief, after all; and in case 2, the universal
goal would stand in conflict with the goal not to know, thus requiring strategies to deal
with goal conflicts.

Unfortunately, this alternative does not seem promising as an account of scientific
methodology. I agree with Kelly that the relevant epistemic goals are not universal,
in particular not in science. Scientists pursue many different epistemic goals. For
example, they might aim at predicting certain variables, while discounting accuracy of
those variables unnecessary for such prediction. Or they might focus on explanation,
under specific theories of what constitute explanation—for example knowledge of
difference-making causes. Even when the question concerns specific beliefs, scientists
distinguish between different error rates: some accept a hypothesis at a 95%confidence
level, for example, while others will accept hypothesis only at a 99% confidence level.
Consequently, the attempt to salvage an instrumentalist account of Kelly’s cases by
presupposing universal epistemic goals is hopeless.
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Instead, I answer Kelly’s challenge by questioning the normative relevance of his
two cases. I do not deny that the phenomena described in them requires explanation:
people often treat certain evidence as if it gave them categorical reasons for certain
beliefs, irrespective of their epistemic goals. But I deny that such behavior is nor-
matively justified. What seems to be a reason for the person treating it that way in
fact isn’t—rather, it is just a psychologically explainable motivation that lacks norma-
tive substance. Thus, I am providing a non-vindicating explanation of the two cases.6

Such a psychological explanation then amounts to an error theory of the categorical
character of epistemic reasons.

The starting point of such an error theory is again the heuristic character of scien-
tific methods. Such heuristics are rules for evidence-gathering and evidence-analysis.
Epistemic rationality in science is a matter of forming beliefs in accordance with
a system of good enough rules whose consistent application would bring about the
sufficient satisfaction of one’s cognitive goals over time.7 As I argued in Sect. 2,
heuristic method often have vague application targets, inexact execution instructions
and ambiguous solutions. It is therefore plausible that such methods occasionally are
misapplied. One type ofmisapplication occurs when an agent applies a heuristic (good
enough for a certain epistemic goal) to a problem even though this agent actually does
not have this goal. Such misapplications explain in a non-vindicating fashion why it
might seem that the agent has a categorical reason to form certain beliefs.

Take the modeling case again. A model used for explanatory purposes must accu-
rately represent at least some difference-making cause of the explanandum. Modelers
regularly focusing on explanations therefore might adopt a methodological rule like
this: “models must contain highly accurate representations of themodel target’s causal
structure”. Now imagine a scientist not interested in explanation but in prediction of
some phenomenon. Because of the prevalence of the explanatory goal in her disci-
pline, the above accuracy-of-assumptions rule will be ubiquitous, and she might well
feel her reasons for forming predictive beliefs should only be based on models that
satisfy this rule. Yet this is incorrect: the maximal accuracy of model assumption is
not a necessary condition for the predictive success of a model, and in some instances
even degrades predictive success (for an example, see Küppers and Lenhard 2005).
Mindlessly applying a prevalent methodological rulemisleads this scientist into taking
this rule as reasons not to believe certain predictive statements.

Such misapplications of methods in science are common. Scientists often have
acquired expertise in the use of a technically demandingmethod and apply this method
to any problem they encounter. Sometimes scientists are confused about their epis-
temic goal. Sometimes they are blinkered by dominant methodological conventions.
In each of these situations, scientists employ a method whose consistent application
has brought about the sufficient satisfaction of certain epistemic goals. But it isn’t their
goal. Therefore, what seems to provide them with reasons to form certain beliefs (or
with reasons not to form certain beliefs) actually does not do so. The apparent epis-
temic rationality of the thus formed beliefs is a mistake, based on the accordance with

6 For another non-vindicating account, albeit in a non-scientific context, see Sharadin (2018).
7 Leite (2007, p. 460) offers a rule-based account of epistemic rationality in response to Kelly, though
without involving heuristics.
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rules that do not correspond to the actual epistemic goals the agent has. This appear-
ance explains these mistakes, but it does not vindicate them: they lack the normative
force of actual reasons.

This non-vindicating explanation handles scientific versions of Kelly’s first case
well: it makes it understandable—but does not justify—why scientists, based on the
use of certain methods, appear to have reasons to form or not form certain beliefs,
even though they are indifferent about the epistemically relevant goals. It also explains
scientific versions of the second case, like single blinding. Here scientists themselves
have become aware that the application of inferential heuristics can be detrimental
to their overall epistemic goals. They have insight into the erroneous, non-normative
nature of these heuristics, but also understand their causal role in belief formation.
Therefore, instead of trying to inhibit the application of these heuristics directly, they
prevent the acquisition of evidence that would trigger these heuristics.

The proposed error theory of epistemic rationality has important methodological
consequences. Scientists might err in employing heuristics to justify inferences from
evidence to belief in multiple ways. Therefore, an instrumentalist methodology must
help in correcting these errors. In the first place, it should help scientist uncover the
epistemic goal of their respective projects. Such goals are data—they are not to be
prescribed by the methodology, but rather taken as inputs elicited from scientists. Sec-
ondly, the methodology should help the scientist describe the contexts in which these
goals are to be met –including available background knowledge and the kind of data
thatmight function as evidence. Thirdly, based this context, themethodology identifies
the heuristic methods that are sufficient to satisfy the elicited goal. This identification
can have both a prescriptive function—what method the scientist ought to choose,
given her goal and the context of her project—as well as a critical function—what
method the scientists should have chosen for an already concluded project. Heuristic
instrumentalism thus is a powerful prescriptive methodology for scientific research.

6 Third challenge: the foundation of instrumental rationality

The first two challenges directly questioned the goal-dependence of method choice.
The third challenge instead grants that method choice might proceed along instrumen-
talist considerations, but then argues that instrumental rationality itself depends on a
goal-independent (and thus non-instrumental) form of rationality. The instrumental-
ism defended here claims it is rational to choose a method M only if M is sufficiently
efficacious in bringing about the desired goal G in the relevant contexts. The non-
instrumentalist critic then asks: what justifies the instrumentalist to claim that “M is
sufficiently efficacious in bringing about G”? Presumably, there is some evidence that
the instrumentalist can point to in order to support this claim. But this relation between
evidence and claim—and in particular the normative claim that it is rational to belief
this claim given the evidence—is not itself an issue of instrumental rationality, so the
non-instrumentalist insists.

We have lots of empirical evidence that double-blind experimental procedures
control for a source of bias – the placebo effect – that single-blind procedures do
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not control for. That evidence gives us good reason to believe that double-blind
methodology is a better indicator of the actual medicinal properties of drugs
than single-blind methodology. Does this evidence constitute good reason for
that claim only relative to some particular end? What end would that be? …
there is no such end. (Siegel 1996, p. S122).8

Siegel here does not deny that the choice of blinding is based on instrumental
considerations. He even might allow that patient blinding isn’t universally better—i.e.
that for certain goals (e.g. investigating placebo effects), one might prefer to not blind
patients. Instead, what he denies is that the evidence for this instrumental claim is
itself instrumentally justified. One might cite evidence E as justification for whyM1 is
a better means to G than M2. The quality of E, however, is not itself goal-dependent,
neither on G nor some other goal H.

I disagree. In science there are many cases of goal-dependent evaluation of instru-
mental evidence. This is particularly obvious where non-epistemic considerations, e.g.
the ethical concerns regarding animal and human experiments, play a role. Consider the
goal of testing the efficacy of a novel drug, and imagine that in similar previous cases,
it has been observed that tests involving bacterial cultures are better means towards
this end than simulation studies. Typically, such evidence is quite uncertain—there
will be only a handful of studies involving either method, so the reason is not par-
ticularly strong. But for the sake of the argument, let’s assume that this evidence is
deemed sufficient in this case. Now imagine that for the same goal, the method choice
is between a human experiment and a simulation study. If the quality of the evidence
for the instrumentality of human experiments were similarly weak as in the bacte-
rial culture vs. simulation choice, one might well conclude that for this purpose, the
evidence is not strong enough to constitute a reason for choosing the human exper-
iment. Instead, involved researchers might conclude that the evidence for the higher
instrumental value is too weak to outweigh the threat of harm that comes with human
experiments.

This scenario shows that the assessment of evidence for instrumental justification
of method choice is itself goal-dependent. In scientific practice, such differences in
the evaluation of instrumental evidence are deeply institutionalized: while scientists
are free to evaluate reasons for choosing various experimental methods that do not
involve animal or human experiments, what counts as a reason to choose the latter is
more circumscribed.

Thus, scientific methods are heuristics, and so are methodological rules that help
choosing between alternative methods for some goal. Because methodological rules
are heuristics, they are biased and fallible, just as the methods that they help choose
between. But if methodological rules are heuristics in this sense, then one also must
evaluate their justification—i.e. the evidence for the instrumental betterness of some
methods over others—dependent on one’s purpose. The above human experiment
example illustrated such a purpose-dependentmeta–meta-heuristic. But I see no reason

8 The terminology is not entirely settled here—most often, single-blind studies blind patients to their
treatment allocation, while double-blind studies blind both patients and researchers to treatment allocations.
Placebo effect biases are prevented by patient blinding. Siegel here seems to employ the terms single and
double the other way around. However, this does not affect his main argument.
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why the buck would stop here. Instead, it’s purpose-dependent heuristics all the way
up, and on each level they are instrumentally justified.

This “heuristics all the way up” may provoke two responses. First, why bother with
justification at all, if they are always fallible? This question, I believe, is prompted by
confusing “fallible”with “is not performing better than its competitors”. This is too big
an argument to unpack here, so letme simply point to the idea of ecological rationality,
according to which using heuristics—and choosing heuristically between different
heuristics—is not just a second-best strategy but might indeed constitute fully rational
choice. The basic idea, as proposed by Gigerenzer and collaborators, is that ecological
rationality facilitates choosing the right heuristic for the right purpose in the right
environment. Notably, in this view, being purpose-dependent and context-sensitive is
an advantage of heuristics over general purpose, truth-preserving algorithms, not a
flaw.

Heuristics can lead to more accurate judgments than strategies using more
information and computation, including optimization methods, if one takes into
account the relation between a reasoner’s heuristics and his or her environment.
(Gigerenzer and Sturm 2012)

Note the qualified claim “heuristics can lead…”—the justification of heuristic
method choice, just like the heuristics themselves, are fallible: the respective meth-
ods/heuristics work sometimes, under some conditions, and for certain purposes.

The second response again invokes the regress worries that I discussed earlier. If the
justification of method choice is fallible in this sense, then what justifies the method of
justification, etc.? The worry is understandably exacerbated by the environment- and
purpose-dependence of these justifications. Do scientists have to have at their ready a
substantial collection of meta- and meta–meta etc. heuristics that justify their method
choices dependent on which goals they have and in which environments they operate?
That would be cumbersome, to say the least, and put in doubt my contention that a
heuristic-instrumentalist account of scientific methodology is compatible with actual
scientific practice.

I can answer this worry, again with reference to the heuristic nature of methods
and the context-sensitivity of their success. If scientists indeed faced numerous dif-
ferent environments in random sequence, they perhaps would have to make do with
such a cumbersome collection of meta-heuristics. But they don’t. Science is a social
enterprise, replete with institutional structure, including disciplinary divisions. Dis-
ciplines (at least the mature ones) provide relatively stable environments in which to
do research in. They offer modes of problem representation and identify the menu
of standard methods and goals, shared among members of a discipline. They also
offer a shared history of heuristic use in environments that can be systematically
compared to each other and to present contexts. This does not reduce research to the
application of algorithms; environments still change, problems are still ill defined,
methods are imprecise and don’t always yield complete and unique solutions. But
the stability of disciplinary division offers scientists ways of justifying their method
choices—e.g. by relating to similar goals and by pointing to past successes in similar
circumstances—without having to justify the meta-heuristic implicit in such moves.
My argument from disciplinary stability then defangs the regress worries, without
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abandoning my position that on all levels, justification is instrumental, context- and
goal-dependent in nature.

7 Conclusion

I have argued for a heuristic-instrumental account of scientific methodology. I adopted
the heuristic view of scientific methods (in the line of Wimsatt, Hey, etc.), extended
it by grounding its epistemology in an instrumentalist account, then defended this
epistemology against several lines of critique.

The heuristic view of methods afforded new arguments against three anti-
instrumentalist claims. First, I showed the heuristic nature ofmany scientific inferential
methods implies that they are indeed purpose-dependent, thus requiring a goal for their
justification. Second, the heuristic view provided an error-theory of heuristics misap-
plication that explains, but does not vindicate, why some methods employed even
though they do not serve any actual epistemic purpose. Third, I showed how “heuris-
tics all the way up” is a viable alternative to more foundational sentiments, by relying
on arguments from ecological rationality and disciplinary stability. Overall, the non-
instrumentalist accounts of Kelly, Siegel and others fail both as descriptions of how
scientists form beliefs as well as prescriptions of how scientists should choose their
methods.

With these arguments I defended a heuristic-instrumental account of methodology
against claims that parts of scientific methods must rely on non-instrumental, categor-
ical epistemic rationality. This provides the conceptual basis for a powerful normative
and prescriptivemethodology,which justifies and critically assesses scientists’method
choice by linking them to their actual epistemic goals.
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