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Abstract
In this study, we propose a new genetic algorithm that uses a statistical-based chro-
mosome replacement strategy determined by the empirical distribution of the objec-
tive function values. The proposed genetic algorithm is further used in the training 
process of a multiplicative neuron model artificial neural network. The objective 
function value for the genetic algorithm is the root mean square error of the mul-
tiplicative neuron model artificial neural network prediction. This combination of 
methods is proposed for a particular type of problems, that is, time-series prediction. 
We use different subsets of three stock exchange time series to test the performance 
of the proposed method and compare it against similar approaches, and the results 
prove that the proposed genetic algorithm for the multiplicative neuron model of the 
artificial neural network works better than many other artificial intelligence optimi-
zation methods. The ranks of the proposed method are 1.78 for the Nikkei data sets, 
1.55 for the S&P500 data sets and 1.22 for the DOW JONES data sets for data cor-
responding to different years, according to the root mean square error, respectively. 
Moreover, the overall mean rank is 1.50 for the proposed method. Also, the pro-
posed method obtains the best performance overall as well as the best performance 
for all the individual tests. The results certify that our method is robust and efficient 
for the task investigated.
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1  Introduction

Genetic algorithms (GAs), proposed by J. Holland, are one of the most important 
classes of evolutionary computation methods. GA mimics the evolutionary pro-
cess of nature, based on Darwin’s theory of "survival of the fittest." GAs have five 
basic steps: generation of initial population, selection of parents for the next gen-
eration, crossover, mutation and replacement. The initial population consisting 
of chromosomes corresponding to solution set is generated randomly. This is fol-
lowed by selection of parents that are recombined to create offspring for the next 
generation. The popular selection methods in GA are roulette wheel selection, 
stochastic universal sampling, tournament selection, rank selection, etc. Crosso-
ver and mutation are the operators that provide diversity to the solutions in GA. 
The final step in GA is the replacement step. The replacement technique is used to 
decide which individuals (from the parent and offspring sets) will form the popu-
lation of the next generation, selection that influences the algorithm convergence 
[35]. All these steps are important for the GA process. Parameters such as popu-
lation size, crossover rate, mutation rate and the chromosomes to be eliminated 
(replaced) also affect the performance of the GA. In GA literature, although there 
are certain parameter values for the population size, crossover rate, mutation rate, 
there is no indicative parameter value for the chromosomes to be eliminated in 
the replacement step. There are various strategies that try to preserve diversity in 
the population while, at the same time, trying to ensure a very good convergence.

This process is known as exploration/exploitation trade-off and is a challeng-
ing aspect of evolutionary computation, with no best method known so far. In this 
paper, the chromosomes to be eliminated in the replacement step are determined 
by a statistical evaluation based on the empirical distribution of the objective 
function values, which is the root mean square error (RMSE). If the distribution 
of the RMSE values of the chromosomes of a population is the normal distribu-
tion, the mean statistics is determined as a suitable measure of central tendency. 
Thus, the chromosomes with RMSE values greater than the mean statistic are 
eliminated in the replacement step. Otherwise, if the distribution of the RMSE 
values is not normal, the median statistic is determined as a suitable measure of 
central tendency for the objective function values. Thus, the chromosomes with 
RMSE values greater than the median statistic are eliminated in the replacement 
step. A new approach called statistical-based replacement is proposed to deter-
mine the chromosomes to be eliminated in the replacement. The number of chro-
mosomes to be eliminated is determined automatically, preserving about 50% of 
the chromosomes from the parents and offspring population. The performance of 
the proposed GA approach is evaluated on the training process of single multipli-
cative neuron model artificial neural networks (SMNM-ANN) proposed in [30].

The paper is organized as follows: in Sect. 2, we introduce the statistical-based 
replacement method. In Sect.  3, we give a brief introduction to SMNM-ANN. 
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Section 4 summarizes very briefly the GA. Our proposed methodology is given 
in Sect. 5. Section 6 compares the results of our proposed algorithm against other 
methods. Finally, the paper ends with a discussion and conclusions in Sect. 7.

2 � The proposed statistical‑based replacement procedure

Determining the number of chromosomes to be eliminated is a very important step in 
the GA iterative process. The size of the population usually remains constant at each 
iteration. This is achieved in the replacement phase, where a constant number from the 
parent and offspring population is preserved for the next generation. Replacement is the 
last step of any genetic algorithm cycle.

Let us consider the objective function values obtained for each chromosome in the 
population as a data set. We verify whether this data set has a normal distribution or 
not. The Lilliefors test is used to check the normality of the distribution. When a data 
set has a normal distribution, the mean statistic is the best measure of central tendency. 
If a data set does not have a normal distribution, the median statistic can be preferred as 
a measure of central tendency.

From this statistical perspective, if the relevant data set (the objective function val-
ues of each chromosome in our case) has a normal distribution, the chromosomes with 
an objective function value greater than the mean statistics (obtained by dividing the 
sum of the objective function values of each chromosome in the population to the total 
number of chromosomes) are eliminated for an objective function that requires minimi-
zation. When the objective function needs to be maximized, the chromosomes with an 
objective function value smaller than the mean statistics are eliminated.

Otherwise, if the relevant data set does not have a normal distribution, the chromo-
somes with an objective function value greater than the median statistics are eliminated, 
in the case of objective minimization. In case of objective function maximization, the 
chromosomes with an objective function value smaller than the median statistics are 
eliminated. This strategy is called as a statistical-based replacement in this paper.

An example of this representation is given in Fig. 1. There are n chromosomes, and 
each chromosome has g genes. OFV shows the objective function value obtained for 
each chromosome, and the median statistic of OFV is calculated by Eq. (1):

Fig. 1   An example of the representation used by the proposed method
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where X represents the median rank of the sorted OFV values.

3 � Single multiplicative neuron model artificial neural networks

SMNM-ANN proposed in [30] is an artificial neural network that uses multiplica-
tive neuron in its structure instead of additive neuron (that is most common with 
ANNs models). The authors use backpropagation learning (BP) algorithm in the 
training of SMNM-ANN.

The structure of SMNM-ANN is given in Fig. 2.
In Fig.  2, f represents the activation function, the join function Ω is mul-

tiplication, the weight and bias vector is Θ = (w1,w2,… ,w
m
, b1, b2,… , b

m
) 

and the inputs are (x1, x2,… , x
m
) . The neuron model with m input variables 

(

x
i
, i = 1, 2,… ,m

)

 given in Fig.  2 has (2 × m) elements. Of these, m correspond 
to the weights 

(

w
i
, i = 1, 2,… ,m

)

 and the other m to the biases 
(

b
i
, i = 1, 2,… ,m

)

 . 
The output of the SMNM-ANN with the logistic activation function is calculated 
using Eqs. (2) and (3):

Many heuristic optimization algorithms have also been used in the training 
process of SMNM-ANN in recent years. [24] uses particle swarm optimization 
(PSO), [22] uses improved back propagation algorithm, [6] uses harmony search 
algorithm, [37] employs online training algorithms, [19] uses improved glow-
worm swarm optimization algorithm, [10] uses differential evolution algorithm 

(1)med =

⎧
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� if n is odd number

X
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+ X
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m
∏
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)

(3)y = f(net) =
1

1 + exp( - net)

Fig. 2   The architecture of SMNM-ANN
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(DEA), [11] uses artificial bat algorithm (ABA) for the optimization of SMNM-
ANN. [12] also used PSO for the training of SMNM-ANN and proposed a robust 
learning algorithm for SMNM-AN. [38] makes use of SMNM-ANN for forecast-
ing of hourly wind speed. [27] used SMNM-ANN based on Gaussian activation 
function. [28] proposed a SMNM-ANN with autoregressive coefficient for time-
series modeling. [13] uses sine cosine algorithm and [9] uses a hybrid ABA and 
BP algorithm in the training process of SMNM-ANN. [4] proposes a SMNM-
ANN based on threshold for non-linear time-series forecasting.

4 � Genetic algorithms

There are many metaheuristics optimization algorithms, with different properties, 
available in the literature. Among these algorithms, harmony search algorithm 
aims to obtain the best harmony from different melodies, sine cosine optimization 
algorithm employs the properties of sine and cosine functions, symbiotic learning 
algorithm is linked to the optimization process of symbiotic relationships in nature, 
and GA is a population-based heuristic optimization algorithm [18]. Many popu-
lar metaheuristics optimization algorithms similar to these are clearly explained, 
together with the algorithm provided, in the studies of [16, 36] and [23].

Among these methods, GA is one of the oldest known heuristic algorithms. GA 
differs from other heuristic optimization algorithms with its unique paradigm and 
operators used in the optimization process.

GA is a search and optimization method inspired from natural selection and 
genetics. GA is an approximation method, generally very effective in searching over 
very large (almost intractable) search space and in finding a good solution. The ele-
ments of a GA are called chromosomes, the basic structural units of the chromo-
some are called genes, and the values of genes are alleles. To solve a problem with a 
GA, it is necessary to create an initial population, to determine the types and rates of 
crossover and mutation operators, the selection operator and the stopping criterion. 
All of these parameters and operators greatly affect the overall performance.

The chromosomes correspond to potential solutions. If the GA has a good initial 
population, the algorithm is considered to have a better chance of finding a good 
solution. The population size parameter, which is generally defined by the user, is 
one of the important factors affecting the performance of the GA. It is known that 
small population size can direct the algorithm to non-optimal solutions, and large 
population size may require more computation time for the algorithm to find a solu-
tion. The crossover operator, one of the most basic operators in GA, is an operator 
that allows the creation of new chromosomes according to a predetermined recom-
bination mechanism applied to selected chromosome pairs. The mutation operator is 
an operator applied generally with a lower probability. The mutation operator takes 
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a random walk around the chromosomes and has the effect of replacing the allele of 
a random gene of a randomly selected chromosome. In the final step of GA, which 
is the replacement of the population for the next generation, the chromosomes from 
the old population are replaced by new ones.

This process is iterative, repeated until a stopping condition is met.
GA has been used for different aims with ANNs. [17and [29] proposed a method 

based on GA and ANN. GA-based ANN has been used for scheduling problems 
in [1, 2], fault diagnosis model in [33], for bankruptcy prediction in [5], and for 
forecasting in [34]. GA has been used for designing ANN in [3], [14] and [26]. [8] 
and [32] trained the feed-forward ANN with GA. [25] used GA for missing data 
problems in ANN. [20] and [31] compared GA with backpropagation and simulated 
annealing, respectively. [21] compared GA-based ANN with a statistical methods. 
[39] used GA for input selection in ANN. 

5 � The proposed genetic algorithm with statistical‑based 
replacement procedure for the training of SMNM‑ANN

Determining the size and the elements of the chromosome set to be eliminated in 
the replacement step appears to be a problem in the GA process. In this paper, we 
propose a method to overcome the problem of selecting the chromosomes to be 
eliminated in the replacement step. We use a statistical evaluation that takes into 
account a statistical-based replacement procedure. How many and what chromo-
somes to be eliminated is determined by whether the RMSE value of a chromo-
some is greater or smaller than the mean or median of the objective function val-
ues of the entire population. Chromosomes with values greater than the mean or 
median RMSE values of all chromosomes in the population are eliminated. The 
innovations and advantages of the proposed method are as follows:

•	 The method is systematic and statistically based;
•	 Important genes are preserved due to the fact that the top 50% of the chromo-

somes in the population are not eliminated;
•	 The convergence speed of GA is increased by using the greedy selection strat-

egy in the mutation and crossover steps;
•	 The restart strategy is used to increase the probability that the algorithm will 

escape the local optimum trap;
•	 In order to prevent the overfitting problem of the artificial neural network, the 

number of iterations in which the genetic algorithm cannot provide improvement 
in the best chromosome of the population is checked as an early stop condition.

The steps of the proposed methodology are given below.
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Step 1. Set GA and SMNM-ANN parameters.
These parameters are:

•	 nc : the number of chromosomes in the population;
•	 ng : the number of genes in a chromosome;
•	 cor : the crossover ratio;
•	 mr : the mutation ratio;
•	 m : the number of the inputs for the network;
•	 n: the size of the training set.

Step 2. Generate the initial population.
The initial population is generated by considering the parameters nc, ng and m . 

Since an SMNM-ANN with m input will have m bias and m weight values, each 
chromosome in the population has a total of (2 × m) genes. These gene values are 
generated with a uniform distribution between zero and one (U(0, 1)) . A popula-
tion structure with m and nc parameters is represented in Fig. 3.

Step 3. Calculate the objective function values of each chromosome in the 
population.

For this aim, the net values of each chromosome are first calculated using 
Eqs.  (2 and 3). Then, these net values are used for the calculation of SMNM-
ANN output ( ŷt ). Finally, the RMSE criterion given in Eq. (4) is used as the fit-
ness function value.

Step 4. Apply the genetic operators.
Step 4.1. Apply crossover operator.
Before applying the crossover operator, the number of chromosome pairs to 

be crossed is determined by the cor parameter. The chromosomes are selected 
randomly from the population and the mutual genes of chromosome pairs to be 

(4)RMSE =

�

∑n

t=1

�

yt − ŷt
�2

n

Fig. 3   The positions in the population of a genetic algorithm with statistical-based replacement
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crossed are displaced. The new chromosome obtained as a result is evaluated 
according to the greedy selection strategy and is included in the population if it 
has a fitness value better than the old chromosome. Otherwise, the old chromo-
some is stored in the population.

Step 4.2. Apply the mutation operator.
The number of chromosomes to be mutated is determined by the multiplica-

tion of nc and mr parameters. The chromosomes are selected randomly from the 
population and the gene/genes to be changed are also randomly selected. The new 
chromosome obtained as a result of the mutation is evaluated according to the 
greedy selection strategy and is included in the population if it has a better fitness 
value than the parent chromosome. Otherwise, the old chromosome is stored in 
the population.

Step 5. Apply the restart strategy.
The number of iterations is checked. If a pre-set number of iterations is reached 

(this is set to 200 in our work), all chromosomes in the population are randomly 
reproduced.

Step 6. Determine the number of chromosomes to be eliminated.
After calculating all RMSE values corresponding to each chromosome in the 

population, these RMSE values are subjected to normality test using Lilliefors 
test. If the RMSE values have a normal distribution, calculate the mean of these 

Fig. 4   The flowchart for the statistical-based genetic algorithm
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RMSE (meanRMSE) values and the RMSE values corresponding to chromo-
somes greater than meanRMSE are eliminated. If these RMSE values do not have 
normal distribution, calculate the median of these RMSE (medianRMSE). The 
chromosomes whose RMSE values are greater than medianRMSE are eliminated. 
The eliminated chromosomes are replaced by new generated chromosomes.

Step 7. Check the stopping condition.
If the maximum number of iterations or a number of consecutive iterations with 

no improvements has been reached, the process is ended. Otherwise, go to Step 3. 
The flow chart is given for the algorithm of the proposed method in Fig. 4.

Table 2   RMSE and MAPE results of S&P500 stock exchange time-series test data

Methods ntest = 10 ntest = 20 ntest = 50

RMSEtest MAPEtest RMSEtest MAPEtest RMSEtest MAPEtest

S&P500-2016 PSO 32.8057 0.0138 73.2183 0.0321 72.0658 0.0312
GA 13.9203 0.0048 45.9575 0.0192 58.2112 0.0235
BAT 9.1049 0.0284 54.7701 0.0158 63.7461 0.0107
ABC 10.2435 0.0041 58.3006 0.0253 64.5619 0.0268
BAT-BP 14.6867 0.0055 60.3757 0.0263 66.1348 0.0071
BP 17.3324 0.0064 68.5691 0.0300 74.4551 0.0321
DEA 23.7273 0.0097 64.7273 0.0283 65.7213 0.0285
SBGA 13.0933 0.0046 42.0400 0.0263 54.4407 0.0348

S&P500-2017 PSO 55.0538 0.0204 64.9063 0.0238 115.5076 0.0430
GA 18.3982 0.0253 26.0058 0.0085 70.8370 0.0213
BAT 19.4480 0.0093 27.1309 0.0071 86.3147 0.0108
ABC 23.5598 0.0086 28.3679 0.0091 99.6372 0.0371
BAT-BP 33.6272 0.0123 41.7887 0.0149 112.5976 0.0043
BP 28.2331 0.0103 53.7690 0.0196 103.1956 0.0386
DEA 44.2626 0.0164 51.5337 0.0187 109.6954 0.0408
SBGA 18.4156 0.0066 26.1779 0.0086 81.9483 0.0091

S&P500-2018 PSO 192.7369 0.0764 160.9250 0.0593 124.6160 0.0433
GA 201.1307 0.0760 169.4200 0.0566 111.2283 0.0344
BAT 149.8958 0.0143 122.3444 0.0154 128.1141 0.0080
ABC 216.0000 0.0851 167.6045 0.0598 147.0836 0.0466
BAT-BP 192.3053 0.0762 159.5513 0.0592 126.6434 0.0067
BP 210.0349 0.0834 181.3610 0.0650 130.0560 0.0431
DEA 193.2204 0.0766 159.7082 0.0589 122.5963 0.0423
SBGA 116.8781 0.0396 113.5456 0.0349 109.0885 0.0103
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6 � Experiments

In the application part of the paper, a detailed analysis is carried out to evaluate the 
performance of the proposed method. S&P500, DOW JONES, and NIKKEI stock 
exchange closing time-series data sets between 2016 and 2018 are analyzed with 
SMNM-ANN trained by particle swarm optimization algorithm (PSO) proposed 
in [24], SMNM-ANN trained by artificial bat algorithm (BAT) proposed by [11], 
SMNM-ANN trained by a hybrid of artificial bat algorithm and backpropagation 
algorithms (BAT-BP) proposed by [9], SMNM-ANN trained by differential evolu-
tion algorithm (DEA) proposed by [10], SMNM-ANN trained by GA, SMNM-ANN 

Fig. 5   A graphical representation of S&P500 data set analysis
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trained by artificial bee colony algorithm (ABC), SMNM-ANN trained by back-
propagation algorithm (BP) proposed by [30].

The performance of each time series analyzed is tested on different test set lengths. 
For this purpose, the test set lengths for each year of each time series are taken as 10, 
20, and 50. In the use of the proposed SBGA, the number of inputs varies between 1 to 
5 with an increment of 1, the number of chromosomes in the population varies between 
30 and 100 with an increment 10, the crossover rate takes values between 0.1 and 0.7 
with an increment 0.1, the mutation rate values used are 0.01, 0.05, 0,1, 0.15 and 0.2, 
and the parameter sets for the best result for each year of each time series with different 

Table 3   RMSE and MAPE results for DOW JONES stock exchange time-series test data

Methods ntest = 10 ntest = 20 ntest = 50

RMSEtest MAPEtest RMSEtest MAPEtest RMSEtest MAPEtest

DOW 
JONES2016

PSO 389.9856 0.0194 955.7190 0.0479 1127.9223 0.0571
GA 69.6603 0.0029 699.3671 0.0351 1026.7392 0.0504
BAT 89.8992 0.0214 690.7255 0.0342 1041.1092 0.0118
ABC 76.9702 0.0033 768.8020 0.0384 1129.3081 0.0084
BAT-BP 132.7509 0.0060 788.2336 0.0394 1101.6981 0.0069
BP 346.9386 0.0172 899.1352 0.0451 1120.3072 0.0580
DEA 249.9601 0.0123 906.1325 0.0454 1041.2582 0.0515
SBGA 69.6602 0.0029 643.9073 0.0321 1019.1773 0.0108

ntest = 10 ntest = 20 ntest = 50
DOW 

JONES2017
PSO 432.5946 0.0173 772.9808 0.0309 1441.2224 0.0585
GA 174.9125 0.0068 360.2194 0.0123 1162.8709 0.0464
BAT 200.3412 0.0144 383.8943 0.0134 1479.5076 0.0087
ABC 218.8914 0.0086 454.4878 0.0170 1275.5598 0.0517
BAT-BP 281.7119 0.0113 502.6699 0.0194 1368.7199 0.0044
BP 258.2431 0.0100 556.5765 0.0219 1440.4668 0.0591
DEA 590.8931 0.0238 741.4200 0.0296 1424.1017 0.0578
SBGA 174.9063 0.0068 416.3377 0.0156 1037.8331 0.0070

ntest = 10 ntest = 20 ntest = 50
DOW 

JONES2018
PSO 1474.4546 0.0622 1216.4113 0.0475 917.0274 0.0332
GA 1523.7848 0.0577 1531.7040 0.0543 948.5392 0.0289
BAT 1471.9120 0.0085 1199.0018 0.0443 831.8256 0.0115
ABC 1659.0027 0.0691 1344.9829 0.0509 1040.5672 0.0322
BAT-BP 1478.3254 0.0623 1202.9630 0.0470 917.5645 0.0073
BP 1723.9134 0.0731 1462.4495 0.0530 1044.0518 0.0332
DEA 1472.9200 0.0620 1194.5862 0.0460 854.1565 0.0300
SBGA 1463.8728 0.0619 1192.8610 0.0452 826.5660 0.0105
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test lengths are given in Table 1. The parameter settings used for the proposed method 
are the same as the ones used by the other methods we compared our results with.

An evaluation of all the methods analyzed in this paper is done considering the 
RMSE metric (given in Eq. (4)) and mean absolute percentage error (MAPE) criteria 
given in Eq. (5):

The RMSE and MAPE results for the S&P500 stock exchange time-series test data 
for different years are given in Table 2. When analyzing the results, we can observe that 
the proposed SBGA method is the best in terms of RMSE criterion when the length 
test is 20 and 50 for S&P500 2016 test data set and for all the test lengths (10, 20, and 
50) for SP500 2018 test data set.

(5)MAPE =
1

n

n
∑

t=1

|

|

|

|

yt − ŷt

yt

|

|

|

|

Fig. 6   A graphical representation of DOW JONES data set analysis results
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SBGA method also obtains the best results for MAPE criterion when the length test 
is 10 for S&P500 2017 test data set. Results are also graphically given in Fig. 5.

Overall, the results are also very good for the other values of the parameters.
We next look at the DOW JONES stock exchange data sets. The RMSE and MAPE 

results are provided in Table 3. From the results presented, we can observe that SBGA 
method is the best in terms of RMSE and MAPE criteria when the length test is 10 and 
20 for DOW JONES 2016 test data set. SBGA method obtains the best results for.

RMSE criterion and the second-best values for MAPE metric when the length test 
is 50 for DOW JONES 2017 test data set. Also, SBGA method is the best in terms of 
RMSE criteria when the length test is 10 and 50 for DOW JONES 2017 test data set 
and the length test is 10, 20 and 50 for DOW JONES 2018 test data set. Results are 
given in Fig. 6.

Table 4   RMSE and MAPE results for NIKKEI stock exchange time-series test data

Methods ntest = 10 ntest = 20 ntest = 50

RMSEtest MAPEtest RMSEtest MAPEtest RMSEtest MAPEtest

NIKKEI2016 PSO 394.4701 0.0196 1121.6348 0.0573 1131.6933 0.0582
GA 148.9228 0.0075 1026.8489 0.0519 1629.3597 0.0830
BAT 151.7122 0.0183 903.7622 0.0138 1141.1352 0.0145
ABC 283.6816 0.0133 1032.4856 0.0531 1397.0488 0.0691
BAT-BP 200.6557 0.0096 978.9420 0.0503 1108.3219 0.0123
BP 595.9649 0.0300 1533.3993 0.0798 1380.4613 0.0680
DEA 371.4213 0.0184 1069.0097 0.0549 1108.3219 0.0123
SBGA 148.9246 0.0075 859.9532 0.0445 1099.5598 0.0137

NIKKEI2017 PSO 104.1047 0.0040 197.7221 0.0074 1477.5699 0.0646
GA 84.9503 0.0029 250.4937 0.0076 1132.3805 0.0475
BAT 84.5229 0.0187 170.2447 0.0127 1152.1659 0.0093
ABC 57.4978 0.0020 188.1088 0.0059 1400.7458 0.0614
BAT-BP 73.6435 0.0023 165.6889 0.0053 1243.9950 0.0060
BP 78.0824 0.0031 202.8452 0.0056 1761.1306 0.0775
DEA 146.5628 0.0058 195.6326 0.0073 1445.6248 0.0634
SBGA 66.9498 0.0019 196.3139 0.0069 1151.8891 0.0097

NIKKEI2018 PSO 1368.3451 0.0650 1130.7235 0.0492 914.5688 0.0375
GA 1337.0551 0.0620 1283.2261 0.0561 899.4430 0.0312
BAT 1362.9100 0.0130 1079.1186 0.0169 1002.0087 0.0109
ABC 1584.2494 0.0748 1295.2989 0.0563 1151.8517 0.0436
BAT-BP 1359.1801 0.0646 1156.3557 0.0517 912.6640 0.0078
BP 1761.1466 0.0839 1392.0961 0.0600 1030.4809 0.0422
DEA 1384.1417 0.0657 1131.3233 0.0503 883.0981 0.0365
SBGA 1269.5255 0.0600 1060.5231 0.0472 882.4651 0.0098
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The last experiment performed is for NIKKEI data set, with the results presented in 
Table 4. SBGA method is the best in terms of RMSE criterion when the length test is 
20 and 50 for NIKKEI 2016 test data set and when the length test is 10, 20, and 50 for 
NIKKEI 2018 test data set. SBGA method obtains the best results for the MAPE crite-
rion when the length test is 10 for NIKKEI 2017 test data set. Results are also graphi-
cally given in Fig. 7.

Finally, we rank all the methods compared in this study in terms of RMSE results 
for each of the parameter configuration considered. Results are presented in Table 5.

7 � Conclusions and discussions

In the GA literature, although there are certain parameter values for population size, 
crossover and mutation rates, there is no specific value or percentage for the number 
of chromosomes to be eliminated in the replacement step. In order to fill this gap, a 
new replacement operator named statistical-based replacement procedure based on 

Fig. 7   A graphical representation of the NIKKEI data set analysis
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the distribution of the objective function values is proposed in this paper. The new 
method is a statistical-based replacement procedure and uses the mean or median 
statistics through the replacement procedure, regardless of whether the value of the 
objective function has a normal distribution or not. The proposed statistical-based 
replacement procedure is used in the training process of SMNM-ANN. The perfor-
mance of the proposed method is assessed on different test sets with different test 
lengths. The analysis results show that the proposed method is the best among all 
the methods used. It can be also said that the GA method using statistical-based 
replacement has a significantly superior performance compared to the classical 
genetic algorithm.

Table 5   RMSE ranking of all the methods for all the parameter value combinations

Data set ntest PSO SBGA GA BAT ABC BAT-BP BP DEA

SP500 2016 10 8 3 4 1 2 5 6 7
20 8 1 2 3 4 5 7 6
50 7 1 2 3 4 6 8 5

SP500 2017 10 8 2 1 3 4 6 5 7
20 8 2 1 3 4 5 7 6
50 8 2 1 3 4 7 5 6

SP500 2018 10 4 1 6 2 8 3 7 5
20 5 1 7 2 6 3 8 4
50 4 1 2 6 8 5 7 3

SP500 Mean Rank 6.66 1.55 2.88 2.88 4.88 5.00 6.66 5.44
NIKKEI 2016 10 7 2 1 3 5 4 8 6

20 7 1 4 2 5 3 8 6
50 4 1 8 5 7 2 6 3

NIKKEI 2017 10 7 2 6 5 1 3 4 8
20 6 5 8 2 3 1 7 4
50 7 2 1 3 5 4 8 6

NIKKEI 2018 10 5 1 2 4 7 3 8 6
20 3 1 6 2 7 5 8 4
50 5 1 3 6 8 4 7 2

NIKKEI Mean Rank 5.67 1.78 4.33 3.56 5.33 3.22 7.11 5.00
DOW JONES 2016 10 8 1 2 4 3 5 7 6

20 8 1 3 2 4 5 6 7
50 7 1 2 3 8 5 6 4

DOW JONES 2017 10 7 1 2 3 4 6 5 8
20 8 3 1 2 4 5 6 7
50 7 1 2 8 3 4 6 5

DOW JONES 2018 10 4 1 6 2 7 5 8 3
20 5 1 8 3 6 4 7 2
50 4 1 6 2 7 5 8 3

DJ mean rank 6.44 1.22 3.56 3.22 5.11 4.89 6.56 5.00
Overall mean rank 6.06 1.50 3.94 3.39 5.22 4.06 6.83 5.00
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For each data set analysis, the rank numbers are computed for all methods. The 
mean of the rank numbers is calculated by using ranks as sample data for different test 
set lengths. The mean rank numbers of the proposed method are 1.83, 2.83 and 1.5 for 
the Nikkei data sets, 3.16, 2 and 1.66 for the S&P500 data sets and 1.33, 1.83 and 1.66 
for the DOW JONES data sets for different years, respectively. The proposed method 
is the best or second-best method for all individual analyses, and it has the best perfor-
mance overall.

In future studies, the proposed method can be used for the training of different artifi-
cial neural network types and in other application areas with similar data types.

Data availability  The data used in this work are publicly available in open repositories.
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