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Abstract Although virtualization technologies bring many benefits to cloud com-
puting environments, as the virtual machines provide more features, the middleware
layer has become bloated, introducing a high overhead. Our ultimate goal is to pro-
vide hardware-assisted solutions to improve the middleware performance in cloud
computing environments. As a starting point, in this paper, we design, implement,
and evaluate specialized hardware instructions to accelerate GC operations. We se-
lect GC because it is a common component in virtual machine designs and it in-
curs high performance and energy consumption overheads. We performed a profiling
study on various GC algorithms to identify the GC performance hotspots, which con-
tribute to more than 50% of the total GC execution time. By moving these hotspot
functions into hardware, we achieved an order of magnitude speedup and significant
improvement on energy efficiency. In addition, the results of our performance esti-
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mation study indicate that the hardware-assisted GC instructions can reduce the GC
execution time by half and lead to a 7% improvement on the overall execution time.

Keywords Hardware acceleration · Garbage collection · Middleware

1 Introduction

Cloud computing is a relatively new computing paradigm which allows the virtual
sharing of computing resources and yet enables the system management details to
remain abstracted from the end users [1, 2]. One of the key enabling technologies
for cloud computing is virtualization, which manages the underlying heterogeneous
computing resources, abstracts these resources, and provides a uniform interface to
the end users. The virtualization technologies in cloud computing consist of two main
categories. The first is the language-level virtual machine, e.g. Java Virtual Machine
(JVM) [3] and Common Language Runtime (CLR) [4]. These virtual machines pro-
vide the “write-once-run-anywhere” capability which allows user applications to run
on any type of hardware platforms. The second category is the system-level virtual
machine, e.g. VMware [5]. These virtual machines dynamically partition the hard-
ware resources and virtualize the resources for the end users. This allows an m-to-n
mapping where m users, each with his/her own operating system image, possibly un-
aware of each other, can share the n available hardware resources on a strict need
basis.

Although virtualization technologies bring many benefits to the cloud computing
environment, as virtual machines provide more features, the middleware layer has
become bloated, introducing a high overhead. Recent studies [6, 7] have found that
the CPU overhead generated by the system virtual machine hypervisor can reach
35% and this number will likely grow in the near future. The situation is similar
in language virtual machines: It was found that the garbage collection (GC) module
alone consumes on average 10% of the CPU cycles in Apache Harmony [8]. For some
data-intensive applications that frequently trigger the garbage collector, the overhead
may be even higher.

Our ultimate goal is to provide hardware-assisted solutions to improve the mid-
dleware performance in cloud computing environments. By moving some operations
to hardware, we expect to reduce the overheads introduced by the middleware layer
and leave the computing resources to perform useful work. In detail, we abstract the
virtual machine design so that the common software components can be implemented
in hardware more cost-efficiently and power-efficiently. As a starting point, we plan
to design specialized hardware instructions for GC operations. We select GC because
it is a common component in virtual machine designs and it incurs high performance
and energy consumption overheads. To this end, we use the Apache Harmony JVM
as our test platform to study the behaviors of different GC designs and to provide
hardware solutions to accelerate GC.

The contributions of this paper are threefold: first, we identify the common execu-
tion “hot spots” during GC; second, we study the GC energy consumption behavior;
third, we design, implement, and evaluate hardware-assisted solutions to accelerate



Achieving middleware execution efficiency: hardware-assisted 1103

the GC operations. The rest of this paper is organized as follows: in Sect. 2, we re-
view the related work in GC acceleration techniques; in Sect. 3, we introduce various
GC algorithms; in Sect. 4, we study the performance of different GC designs and
identify the execution “hot spots”; in Sect. 5, we delve into the energy consumption
behavior of GC operations; in Sect. 6, we design and implement specialized hardware
instructions to accelerate the GC hotspots, and we evaluate the energy consumption
and hardware resource utilization of these hardware solutions. In Sect. 7, we conclude
and discuss our future work.

2 Related work

Conventional garbage collectors utilize Mark–Sweep algorithms [9, 10] to manage
the whole heap. When the heap has no more free space, GC is triggered and the col-
lectors start to trace the heap. If an object can be reached, then it is a live object and
the status is marked in the object header or some other metadata area. After trac-
ing, all unmarked objects are swept and their occupied spaces are recycled. The free
space in the heap is managed with a linked list. During allocation, the allocators fetch
a suitable free region. The main advantage of this algorithm is that no data move-
ment is necessary, such that it incurs low overhead during space recycling. However,
Mark–Sweep algorithms introduce heavy fragmentation on the heap, leading to ineffi-
cient space utilization. To address this problem, moving GC algorithms are proposed,
such as semi-space algorithms and compaction algorithms [11]. Nevertheless, com-
paction algorithms usually impose lengthy pause time. To reduce pause time, several
parallel compaction algorithms have been proposed. Abuaiadh et al. [12] propose a
three-phase parallel compactor that uses a block-offset array and mark-bit table to
record the live objects moving distance in blocks. Kermany and Petrank [13] pro-
pose the Compressor that requires two phases to compact the heap; also Wegiel and
Krintz [14] design the Mapping Collector with nearly one phase.

It has been empirically observed that in many programs, the most recently created
objects are also those most likely to become unreachable quickly. Generational GCs
leverage this property and divides objects into generations [15]. In this case, separate
memory regions are used for objects of different generations. For example, the heap
can be divided into a Nursery Object Space (NOS) to store newly created objects and
a Mature Object Space (MOS) to store mature objects, i.e. the objects that survive
one or more collections. When NOS becomes full, GC happens in NOS and moves
those few live objects to MOS, and the entire NOS region can then be overwritten
with fresh objects; we call this a minor collection.

Special hardware memory modules that support GC have been proposed, the best
known of which is the garbage-collected memory module (GCMM) [16] designed
for hard real-time applications written in C or C++. Apart from the actual mem-
ory devices, the GCMM contains a standard microprocessor and a number of custom
circuits, including an arbiter and two elaborate CAM-like devices. Unfortunately,
however, the hardware costs of the GCMM are extremely high and in particular pro-
hibitive for embedded systems. Regarding performance, the module’s data through-
put is considerably inferior to that of standard memory, especially when compared
with modern, burst-oriented devices.
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Another approach of GC acceleration is the utilization of GC coprocessors. Meyer
proposed a garbage collection coprocessor along with the host pipelined RISC proces-
sor [17]. In this design, GC is executed in micro-codes on the coprocessor. As a result,
GC imposes negligible runtime overhead on the host processor. In a subsequent study,
the same author went further into a hardware read barrier design, integrating read bar-
rier checking and read barrier fault-handling directly into a processor pipeline [18].

Recently, Joao et al. proposed a hardware-software reference counting approach
to reduce the frequency of garbage collection by detecting and reusing dead mem-
ory space in hardware [19]. In this approach, hardware reference counters are used,
resulting in less frequent garbage collections and consequently less overhead on the
overall performance. Nevertheless, this approach is only suitable for garbage collec-
tion algorithms that utilize reference counting methods.

Recognizing the importance of the middleware, our ultimate goal is to provide a
specialized instruction set to accelerate the middleware layer, and in this paper we
focus on GC. Our approach differs from previous work in that we intend to provide
a generic GC accelerator instead of focusing on one GC algorithm. To this end, we
start by identifying the common “hot spots” in different GC algorithms across a set of
benchmarks, and implement a set of hardware instructions to accelerate these com-
mon “hot spots.” We also study the energy efficiency and hardware utilization of these
implementations.

3 GC algorithms

To identify the common “hot spots” in different GC algorithms, we use Apache Har-
mony as our test platform. We choose Apache Harmony because it is a complete
open-source JVM platform that implements many advanced GC algorithms. The de-
fault GC in Apache Harmony uses the Partial Forward algorithm (PF) for minor col-
lections, and the Move Compact algorithm (MC) for major collections. But other GC
algorithms are available as well, which include the non-generational Mark–Sweep
algorithm (MS), the Semi-Space algorithm for minor collections (SS), and the Slide
Compact algorithm for major collections (SC), etc. Note that these algorithms are
generic and have been implemented in many GC designs. In this section, we intro-
duce the basic concepts behind these algorithms.

As shown in Fig. 1, for better space management in modern GC designs, the heap
is divided into multiple spaces. First, the heap is divided into Large Object Space
(LOS), which stores objects that are larger than a certain size (usually 4 KB); and
regular object space, which stores objects that are less than the size limit. Then based
on the property that newly allocated objects are more likely to be recycled, the regular
object space is further divided into Nursery Object Space (NOS), which stores newly
allocated objects; and Mature Object Space (MOS), which stores objects that have
survived one or more garbage collections. Note that by dividing the heap into different
spaces, we can apply different GC algorithms in different spaces to achieve maximum
GC efficiency. For instance, when NOS is full, we can trigger a GC algorithm to
recycle space in NOS only, which we call a minor collection; and when either MOS
or LOS is full, we trigger a GC algorithm to recycle space in the whole heap, which
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Fig. 1 Generic heap layout in modern Garbage Collection designs

we define as a major collection. On the other hand, we can apply one GC algorithm
(such as Mark–Sweep) across the whole heap to minimize GC latency.

3.1 Partial Forward

Partial Forward is one of the collection algorithms for NOS in Apache Harmony.
This algorithm leaves the newly allocated objects in NOS and only copies the mature
objects (objects that have survived one minor GC to MOS). The assumption is that the
newly allocated objects are the most likely to be collected. Hence, we can probably
save the copying overheads by leaving the newly allocated objects uncopied until
they survive one minor GC. In detail, in Partial Forward algorithm, the old copy of a
forwarded object has the FORWARD bit set to one, indicating that the object has been
forward to MOS. On the other side, those newly allocated objects have the MARK
bit set to one, indicating that the new objects are still alive (not to be recycled). As a
result, after a minor collection, a reference to a NOS object can check the MARK bit
and the FORWARD bit to decide whether the object has been moved or recycled.

3.2 Semi-Space

The Semi-Space algorithm has been implemented in Apache Harmony GC for NOS
collection, or minor collection. When using this algorithm, the NOS is further divided
into two spaces: the from-space, where new objects are allocated, and the to-space,
which holds the objects that have survived one minor collection. At the beginning of
each allocation cycle, programs allocate objects in the from-space. When the from-
space is full, a minor collection is triggered, such that it scans the from-space for live
objects and moves the live objects to the to-space. Similarly, when the to-space is
full, it scans the to-space for live objects and moves the live objects to MOS.

3.3 Move Compact

This algorithm is designed to perform major collections, and as its name implies, it
involves object movements. When either LOS or MOS is full, this algorithm first halts
all object allocation, and then it scans the heap and marks all the live objects in both
MOS and LOS. Next, it starts a process called compaction, in which it moves all live
objects toward the left end of both MOS and LOS, thus leaving a large continuous
chunk of empty space for future object allocation. By compacting objects toward one
end of the heap, compaction algorithms solve the problem of heap fragmentation.
Nevertheless, as a trade-off, it takes more time to complete (higher latency) compared
to the non-moving algorithms, such as Mark–Sweep.
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3.4 Slide Compact

Similarly to the Move Compact algorithm, the Slide Compact algorithm is another
compaction algorithm designed for major collections. Typical sliding compaction is
done into five phases. In the first phase, it scans the heap to mark the live objects. Then
in the second phase, this algorithm computes the new locations for the live objects.
In the third phase, it fixes all references that are pointing to the live objects to point
to the new locations of these live objects. In the fourth phase, it moves all the live
objects to their new locations. And finally, it restores the object header information
of these live objects to reflect their location changes.

3.5 Mark–Sweep

On the other hand, Mark–Sweep algorithm does not have to divide the heap into
separate spaces, thus both normal and large objects share the same allocation space.
The major benefit of Mark–Sweep algorithm is low latency, because it does not have
to move objects. When garbage collection is triggered, it scans the heap and marks all
live objects. Then it sweeps all the unmarked objects, leaving holes in the heap. These
holes are then added into a linked list for future allocations. Although this algorithm
is fast, it could introduce serious fragmentation problems in the heap. In cases when
fragmentation is very serious, it is unable to find a hole on the linked list to fit a newly
allocated object.

4 Performance of Garbage Collection

GC incurs high performance overheads, thus it is worthwhile to provide hardware so-
lutions to accelerate GC. To study the GC performance and identify GC hot spots, we
executed various Java benchmark programs on the Apache Harmony JVM and used
the Vtune [20] analysis tool to characterize the GC performance. The benchmark pro-
grams used in our experiments include six applications from the Dacapo benchmark
suite [21], the SPECJVM 2008 benchmark [22], as well as an allocation-intensive
program, Alloc, taken from [23].

4.1 GC performance overheads

First, we studied the GC execution behavior to characterize the performance over-
head it incurs. We used the Vtune analysis tool to capture the fraction of the overall
execution time incurred by GC operations. The results are shown in Fig. 2, where
the x-axis shows the benchmark names and the y-axis shows the percentage of the
overall execution time that is incurred by GC operations in a particular benchmark.
The results show that for memory-intensive applications, GC operations incur a high
performance overhead. In the execution of Dacapo-eclipse, and Dacapo-xalan, the
GC overhead is over 10 and 15% of the overall execution time, respectively; in Al-
loc, this number even reaches over 20%. When we take an average over all bench-
marks, the overhead incurred by GC operations alone is 10.3% of the overall execu-
tion time. Considering that GC operations introduce pure management overheads and
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Fig. 2 Fraction of execution time incurred by GC

do not contribute to the execution of the user programs, 10% is a significant overhead.
Therefore, these results indicate the need to optimize GC operations and serve as the
motivation of this paper.

4.2 Performance hot spots in GC

The GC module in JVM implementations is responsible for memory management and
it performs two main tasks: object allocation and garbage collection. During program
execution, where there is an object allocation request, the GC fetches a chunk of free
memory from the heap and returns. If not enough space is in the heap to satisfy the
allocation request, then garbage collection is triggered, such that the GC scans the
heap to recycle the dead objects.

In this subsection we study the GC execution behavior in order to identify the
execution hot spots. By identifying these hot spots, we can design the hardware ac-
celerators to speed up GC execution. In the first experiment, we executed the bench-
mark programs on Apache Harmony using the default GC. We observed that the top
three hot spots of the GC executions were the functions gc_alloc_fast, scan_slot,
and the vtable manipulation functions, and this observation was consistent across
all benchmarks. Table 1 summarizes the results: the first column lists all benchmark
programs; the columns, %alloc_fast, %vt, and %scan_slot, respectively, show the
fraction of GC execution time incurred by the functions gc_alloc_fast, vtable manip-
ulations, and scan_slot; the last column, %total shows the fraction of GC execution
time incurred by the combination of these functions. The last row of Table 1 shows
the average results across all benchmarks. The results indicate that on average, these
functions contribute to almost 50% of the GC execution time. In the case of xalan, a
data-intensive application, the gc_alloc_fast alone contributes to almost 50% of the
GC execution time, and the combination of these functions contributes almost 70%
of the GC execution time.

In the second experiment, we executed the xalan benchmark on Apache Harmony
using different garbage collection algorithms. We chose xalan because it is a data-
intensive application, which will stress the GC module in the Apache Harmony JVM.
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Table 1 Hot spots in the
default GC Benchmark %alloc_fast %vt %scan_slot %total

h2 7 23.5 11 41.5

Eclipse 17 22 10 49

Jython 24.5 20 8 52.5

Lusearch 21 18 8 47

Pmd 13.5 21 6 40.5

Xalan 46 17 6 69

Specjvm 20.5 19 5.5 45

Alloc 3 30 5 38

Average 19.1 21.3 7.4 47.8

Table 2 Hot spots in various
GC algorithms Algorithm %alloc_fast %vt %scan_slot %total

PF–SC 45 14 4 63

PF–MC 46 17 6 69

SS–MC 21 13.5 3.5 38

SS–SC 17 16 6 39

MS 27 5 2 34

Average 31.2 13.1 4.3 48.6

In our observation, the top three hot spots of the GC executions were still the func-
tions gc_alloc_fast, scan_slot, and the vtable manipulation functions. Table 2 sum-
marizes the results: the first column lists the GC algorithms: for example, PF–SC
indicates that the Partial Forward algorithm was used for minor collections and the
Slide Compact algorithm was used for major collections; and SS–MC indicates that
the Semi-Space algorithm was used for minor collections and the Move Compact
algorithm was used for major collections, etc. Note that MS indicates that the Mark–
Sweep algorithm was used for the whole heap collection, and no generational algo-
rithm was used. The rest of the table organization is the same as in Table 1. The results
are similar to those in the previous experiment, such that on average, these functions
contribute to almost 50% of the GC execution time. By accelerating these functions,
we expect to reduce the execution overhead incurred by the GC operations.

4.3 Analysis of the GC hot spots

Before designing hardware accelerators for these GC hot spots, we analyze the details
of these functions. Figure 3 illustrates the pseudo-codes of the function gc_alloc_fast.
In a straightforward allocator design, whenever there is an object allocation request,
the allocator thread attempts to obtain the requested free space from the heap. How-
ever, the heap is a shared resource and multiple threads may be contending to access
it, which dramatically slows down the operation. To address this problem, each thread
can reserve a block of the global memory, which is termed thread local storage, or
TLS. In this case, the allocator thread does not have to contend for heap access; in-
stead, it just allocates from its own TLS with so-called “bump-pointer” allocation, and
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Fig. 3 Pseudo-codes of gc_alloc_fast

Fig. 4 Pseudo-codes of vtable
manipulations

thus largely speeds up the operation. The function gc_alloc_fast performs exactly this
operation: in the first step, the address of the TLS is identified; in the second step, it
checks whether the object size is too big to allocate in the TLS; and in the final step,
it checks whether the TLS contains enough space for the allocation; and if so, the
object is allocated.

Figure 4 shows several vtable manipulation functions. In JVM implementations,
each object contains a header, which records the attributes and information of the
object; vtable, or virtual method table, is a part of the object header. In Apache
Harmony implementation, the vtable structure contains the virtual table of the ob-
ject methods. The VM reserves 4 bytes for exclusive use by the GC. The GC uses
4 bytes of GC-private space to put the pointer to the object information structure.
Many operations on the objects require the manipulation of the related information
stored in vtable. For example, when a new object is created, its vtable pointer needs
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Fig. 5 Pseudo-codes of scan_slot

to be set in the object header; also, when GC occurs, the vtable fields in the ob-
ject header need to be marked to indicate that the object is reachable. The vtable
manipulation functions perform these functions and contribute to a large portion of
the GC execution time. Figure 4 shows three of these functions: vtable_get_gcvt re-
trieves the GC vtable information and masks it with the GC_CLASS_FLAGS_MASK;
obj_get_gcvt takes an object pointer as input and retrieves its GC vtable informa-
tion, note that vtable_get_gcvt is called within this function; obj_mark_in_vt marks
an object’s vtable to indicate that the object is alive. Note that the vtable manipulation
functions also include obj_get_vt_raw, obj_get_vt, obj_set_vt, vtable_get_gcvt_raw,
and obj_get_gcvt_raw.

Figure 5 illustrates the pseudo-codes of the function scan_slot. When GC is trig-
gered to recycle dead objects, it scans the references in each reachable object recur-
sively from the root set, and checks whether the reference points to a reachable object
that has not yet been discovered. The function scan_slot performs exactly this opera-
tion: in the first step, it checks whether the reference points to an object; in the second
step, it checks whether the object has already been marked and it marks the object if
the object has never been marked; in the third step, it pushes the object to the trace
stack, such that later it can trace the references contained in this object; and in the
final step, it checks whether the current trace stack is full, and if so, it obtains another
trace stack.

In order to identify the execution time of each of these hot spots, we used Vtune
to capture the number of instructions and the clocks per instruction measure for each
function; then we multiplied these two numbers to derive the number of cycles taken
to execute each function. The results show that gc_alloc_fast takes 120 cycles to com-
plete, scan_slot takes 105 cycles to complete, and on average the vtable manipulation
functions take 20 cycles to complete.
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Fig. 6 Energy consumption of the Apache Harmony JVM execution

5 Energy consumption of GC

In this section, we estimate the energy consumption incurred by each invocation of
the GC hotspot functions. To achieve this, we follow the techniques presented in [24]
such that we combine real-time total power measurements with performance-counter-
based per-unit power estimation. In detail, live power measurements for the running
system are obtained from the Vtune battery discharge rate monitor. In parallel, the
processor hardware performance counter readings are obtained to derive the energy
consumption information for each function. Then we combined these two pieces of
information to derive energy consumption of the execution of individual software
components.

First, we studied how the Apache Harmony JVM execution affects the overall sys-
tem energy consumption. We selected the default GC and executed xalan. Then, we
utilized Vtune to monitor the power consumption as well as processor activity during
the Apache Harmony JVM execution. The real-time measurement results are shown
in Fig. 6. The y-axis shows the normalized processor activity and battery discharge
rate, and the x-axis shows execution time in milliseconds. The red dotted line and
the gray square line represent the activity of the two CPU cores; whereas the blue tri-
angle line represents the battery discharge rate. At the beginning, both the processor
activity and the battery discharge rate are low due to the lack of activity in the sys-
tem. Once the JVM execution starts, the activities of both processor cores increase
to almost 100% and the system starts drawing more power. The processor activities
and system power consumption stay high for about five minutes until the execution
completes. Then the processor switches into idle mode; and the power management
module detects the processor inactivity and reduces the battery discharge rate to con-
serve energy. The energy consumption for each JVM execution can then be calculated
by taking the product of the voltage, the discharge current, and the execution time.
Using the average value of five executions, we calculated that each execution of xalan
on Apache Harmony consumed 213 joules of energy.

Second, we estimated the energy consumption of each invocation of the GC
hotspot functions. While there is no direct way to measure this data, we utilized
the counter-based power consumption approximation approach used in [24]. The
counter-based energy consumption model we used is presented in (1), which approx-
imates the total system energy consumption E as the summation of energy consumed
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Table 3 Energy consumption
of GC hot spots Hot spots total E (J) count (106) E (nJ)

gc_alloc_fast 3.515 100 17.6

scan_slot 0.208 0.84 124

obj_get_vt 0.384 40 4.8

vtable_get_gcvt_raw 1.329 121 5.5

obj_get_gcvt_raw 0.109 15 3.6

vtable_get_gcvt 0.180 25 3.5

obj_get_gcvt 0.217 25 4.2

by hardware components, including the processors, the system bus, and the memory
modules. The energy consumed by component i can be approximated by the product
of the number of times the component is triggered, Ci , and the energy consumed by
the component each time, Ei . To approximate the energy consumption of the proces-
sors, we utilized the hardware performance counter to obtain the number of retired
instructions; for the system bus energy consumption, we obtained the number of bus
transactions during the JVM execution; and for the memory subsystem energy con-
sumption, we monitored the number of memory accesses during the JVM execution.

E =
n∑

i=0

CiEi (1)

Next, to find out the energy consumption for each GC hotspot functions, we used
Vtune to capture the number of retired instructions, the number of bus transactions,
and the number of memory accesses incurred by each of the GC hotspot functions. By
taking all this counter information into (1) and assuming that each activity consumes
the same amount of energy (e.g. Ei is the same for memory access, bus transaction,
and instruction execution), we were able to approximate the energy consumption in-
curred by each of the GC hotspot functions and the results are summarized in Table 3.
The second column shows the total energy consumption incurred by all invocations of
a hotspot function; the third column shows the number of invocations during execu-
tion; and the last column shows the average energy consumption incurred by each in-
vocation. The results indicate that each invocation of gc_alloc_fast consumes 17.6 nJ
of energy, each invocation of scan_slot consumes 124 nJ of energy. Also, on average,
each vtable manipulation function consumes 4.3 nJ of energy.

6 Hardware-assisted Garbage Collection

In this section, we explore hardware solutions to accelerate the GC hotspots. We
implement the design and evaluate the performance, hardware utilization, and energy
consumption of the hardware solution.

6.1 System integration

The traditional method to incorporate an accelerator into a system is by designing a
special hardware module (e.g. [16]) or a coprocessor (e.g. [17]). This method does
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Fig. 7 System integration of the GC accelerator

not require the modification of existing hardware; nevertheless, this approach suffers
from several disadvantages. The first one is the lack of flexibility: by having a ded-
icated hardware module, the module can target only one GC algorithm. Thus, each
time there is a change of GC algorithm or modification of existing GC algorithms, the
hardware module needs to be changed or modified. However, it is very difficult and
expensive to re-design and re-implement the hardware modules. Second, by having
a dedicated module, the communication overhead can be as high as tens of cycles
(if the module stays in the same chip as the host processor), or even hundreds of cy-
cles (if the module stays in a different chip). This high communication overhead may
offset the performance benefits brought by the accelerator modules.

On the other hand, instead of accelerating specific GC algorithms on dedicated
hardware modules, we target basic operations (those identified in Sect. 4) that are
generic across different GC algorithms. As illustrated in Fig. 7, for GC acceleration,
our plan is to extend the Execution Logic (ALU) in existing pipelines to incorporate
hardware accelerators of these basic GC operations. This design brings two benefits:
first, even if the GC algorithm has been changed, it is very likely that the new GC
algorithm still uses all, or at least part of, the same set of basic operations, thus the
accelerator would still be able to accelerate the GC operations. Second, by tightly
coupling the accelerator into the host pipeline, the communication overhead between
the host pipeline and the accelerator becomes negligible, thus maximizing the benefits
of the GC accelerator.

For simplicity, we use a five-stage MIPS pipeline as an example in Fig. 7. At the
beginning, the Instruction Fetch unit fetches a new instruction from the instruction
memory; this instruction can be the legacy MIPS instruction or the proposed GC
operations. Then the Instruction Decoder decodes the instruction and decides whether
the ALU or the Garbage Collection Accelerator should execute this instruction. Then
the rest of the pipeline remains the same, after going through the Memory Access and
Write Back stages, the instruction retires.

6.2 Design of the Garbage Collection Accelerator

Now we look into the design of the Garbage Collection Accelerator (GCA). Recall
that in Sect. 4 we have identified three sets of the basic GC operations, including
gc_alloc_fast, scan_slot, and vtable_ops. As shown in Fig. 8, our GCA design in-
corporates hardware accelerators for these basic GC operations and data flows from
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Fig. 8 Design of the GC accelerator module

left to right in the GCA. At the beginning, a five-bit Opcode is required to choose
the property GC operation; also, Reg1 and Reg2 store the input values, e.g. the size
of allocation in gc_alloc_fast. Then, based on the five-bit Opcode, the decoder en-
ables one of the hardware modules to performance computation. After the operation
is complete, the result or output is stored in Reg3 such that the host pipeline can
retrieve it.

To implement the basic GC operations in hardware, we apply two optimizations:
configuration registers and parallel execution. Before JVM execution starts, the con-
figuration parameters, such as tls_gc_offset (line 4 in Fig. 3), are set in the program.
These configuration parameters are frequently used in the execution. However, in
the software implementation, each time these configuration parameters are accessed,
they need to be loaded from memory into registers. This incurs high performance and
power consumption overhead.

To address this problem, we utilized dedicated configuration registers to store
these configuration parameters in the hardware implementation. For instance, in the
vtable manipulation functions, the offsets vt_raw and gcvt can be pre-loaded into
the configuration registers. As a result, during the execution of the simple function
obj_get_gcvt, instead of issuing two memory-access instructions to load the values of
vt_raw and gcvt, these values can be obtained from the configuration registers. In this
way, all the computations can be completed in one instruction instead of spreading
over multiple instructions.

To identify opportunities for parallel execution, we generated the dataflow graphs
of these hotspot functions and converted them into finite state machines. For instance,
in gc_alloc_fast, when there is an allocation request, it checks whether the allocation
size is valid; also, it needs to identify the starting address of the thread local stor-
age. Although these two operations are arranged in sequential order in the software
implementation, there are no data dependencies between these operations according
to the dataflow graph. Hence, we can execute these two operations in parallel and
abstract them into one state in the finite state machine. Following this methodology,
the designs of the hardware implementations are as follows.
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gc_alloc_fast
In the first state, the input values are loaded into the registers and the address of the

thread local storage is identified. In the second state, it checks whether the size of the
allocation request is valid, and also it checks the base and ceiling address of the thread
local storage. In the third state, it computes the new ceiling address of the thread
local storage. In the fourth state, it checks whether the thread local storage contains
sufficient space for the allocation. In the fifth state, it updates the base address of the
thread local storage and generates address for the allocation. In the sixth state, the
address is returned and the operation completes.

scan_slot
In the first state, the input values are loaded into registers and it checks whether

the input reference is valid. In the second state, it gets the vtable value from the object
information. In the third state, it obtains the address of the trace stack. In the fourth
state, it pushes the object into the trace stack and checks whether the trace stack is
full. In the fifth state, it saves the current trace stack. In the final state, it obtains a
new trace stack for further scanning operations.

vtable manipulations
There are multiple vtable manipulation functions, and these functions are all im-

plemented in the same hardware unit since there are a lot of operations that overlap
with each other. Two functions, obj_get_gcvt_raw and obj_get_gcvt, take three cy-
cles to complete and they are the critical path of this hardware unit. Other functions
either take two cycles or only one cycle to complete; these shorter functions may be
included in the longer functions. For example, the function obj_get_gcvt_raw calls
the function vtable_get_gcvt_raw, and vtable_get_gcvt_raw takes two cycles to com-
plete. Most of these functions involve the loading or modification of the object header
information. In the case of obj_get_gcvt_raw, in the first state, it loads the input into
the address register. In the second state, it obtains the gcvt value of the object header.
In the third state, it loads the gcvt value into the output register and returns.

6.3 Implementation and evaluation

We implemented the hardware-assisted GC functions on the Xilinx Spartan III FPGA
board [25]. We also measured the hardware resource utilization, performance, and
energy consumption. Table 4 summarizes the hardware resource utilization of these
implementations: the hardware utilization measures include the number of hard-
ware slices (#slices), the number flip-flops (#FF), and the number of look-up tables
(#LUT). As a comparison, we also present the resource utilization of a simple MIPS

Table 4 Hardware resource
utilization #slices #FF #LUT

gc_alloc_fast 170 180 220

scan_slot 140 140 270

vtable 120 110 80
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Table 5 Performance and
energy consumption Function time (cycles) E (nJ)

gc_alloc_fast 6 9.6

scan_slot 6 10.8

obj_set_vt 1 1.6

vtable_set_gcvt 1 1.6

get_obj_info_raw 2 3.2

obj_get_vt_raw 2 3.2

obj_get_vt 2 3.2

vtable_get_gcvt_raw 2 3.2

obj_get_gcvt_raw 3 4.8

obj_get_gcvt 3 4.8

in-order processor [28], which requires 10,450 hardware slices, 10,400 flip-flops,
and 19,500 look-up tables. Thus, the hardware-assisted gc_alloc_fast, scan_slot, and
vtable functions incur about 1.5, 1.5, and 1% respectively of hardware resource over-
heads compared to the simple in-order MIPS processor.

Table 5 summarizes the latency and energy of each invocation of these hardware
implementations. The second column lists the number of cycles taken to execute
these functions. The third column lists the energy consumption for each invocation,
which is derived by multiplying the execution time by the power consumption of
the design. We obtained the power consumption information by using the Xilinx
XPower [26]: the power consumption for gc_alloc_fast, scan_slot, and vtable ma-
nipulations is respectively 0.8, 0.9, and 0.8 W. Compared to the software implemen-
tation, the hardware gc_alloc_fast results in 20-fold performance improvement and
2-fold energy consumption improvement; the hardware scan_slot results in 18-fold
performance improvement and 12-fold energy consumption improvement; and on
average, the vtable manipulation functions take 2 cycles to complete and consume
3.2 nJ of energy, representing a 10-fold performance improvement and 50% energy
consumption improvement. Note that this comparison is based on the FPGA technol-
ogy. According to [27], the ASIC technology is about 12 times more power-efficient
than the FPGA technology. Therefore, by moving these hardware implementations to
ASIC designs, we expect to get better energy efficiency.

6.4 Performance estimation

We have demonstrated that the hardware implementations make possible to accel-
erate the GC hotspots gc_alloc_fast, scan_slot, and vtable manipulation functions
by 20, 18, and 10 times, respectively. To estimate how the hardware implementations
would improve performance when integrated into a system, we utilized the speedup
data and conducted an extrapolation study. From Table 2, we obtained the workloads
of these three hotspot functions relative to the total GC time; then we applied the
speedup information of these functions and calculated how the total GC time would
be affected. Recall that the results in Table 2 were gathered using the xalan bench-
mark, and according to Fig. 1 the GC time contributes to 11.2% of the total execution
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Table 6 Performance
estimation with GC acceleration Algorithm %GC GC time Overall time

PF–SC 63 0.42 0.93

PF–MC 69 0.42 0.93

SS–MC 38 0.40 0.93

SS–SC 39 0.41 0.93

Unique MS 34 0.39 0.93

Average 48.6 0.41 0.93

time in xalan, so we were able to derive how the hardware implementations affect the
total JVM execution time. The results of our performance estimation study are sum-
marized in Table 6: the second column lists the percentage of the total GC execution
contributed by these three hotspot functions; the third column lists the fraction of the
new GC time (by using the hardware implementations) relative to the original GC
time (by using pure software implementations); and the last column lists the fraction
of the new JVM execution time relative to the original JVM execution time. The re-
sults indicate that on average these three hardware implementations make possible to
reduce the total GC time by 60% on various GC algorithms, and this GC performance
improvement contributes to 7% reduction of the total JVM execution time.

7 Conclusions

In this paper, we designed, implemented, and evaluated specialized hardware instruc-
tions to accelerate GC operations. We selected GC because it is a common component
in virtual machine designs and it incurs high performance and energy consumption
overheads.

Our profiling results indicate that GC incurs significant overheads, contributing
to about 10% of the total execution time. By examining the details of GC execu-
tion using different GC algorithms, we identified three performance hotspots. These
hotspots contribute to more than 50% of the total GC execution time, and they also
consume a significant amount of energy. By moving these hotspot functions into hard-
ware, we achieved an order of magnitude speedup and significant improvement on
energy efficiency. In addition, we also performed an extrapolation study by using
the hardware parameters into the profiling data. The results indicate that these three
simple hardware-assisted GC instructions can reduce the GC execution time by more
than half and lead to a 7% improvement on the overall execution time.

Note that our ultimate goal is to provide hardware-assisted solutions to improve
the middleware performance in cloud computing environments. Thus in the next
step we plan to provide hardware solutions to accelerate other parts of system and
language virtual machines. Afterwards, we plan to incorporate these specialized in-
structions into an architectural simulator and perform system-level study to evaluate
how these specialized instructions can improve the performance of the middleware
layer.
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