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Abstract
We study connections between ordinary differential equation (ODE) solvers and probabilistic regression methods in statistics.
We provide a new view of probabilistic ODE solvers as active inference agents operating on stochastic differential equation
models that estimate the unknown initial value problem (IVP) solution from approximate observations of the solution deriva-
tive, as provided by the ODE dynamics. Adding to this picture, we show that several multistep methods of Nordsieck form
can be recasted as Kalman filtering on q-times integrated Wiener processes. Doing so provides a family of IVP solvers that
return a Gaussian posterior measure, rather than a point estimate. We show that some such methods have low computational
overhead, nontrivial convergence order, and that the posterior has a calibrated concentration rate. Additionally, we suggest
a step size adaptation algorithm which completes the proposed method to a practically useful implementation, which we
experimentally evaluate using a representative set of standard codes in the DETEST benchmark set.

Keywords Initial value problems · Nordsieck methods · Runge–Kutta methods · Filtering · Gaussian processes · Markov
processes · Probabilistic numerics
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1 Introduction

Numerical algorithms estimate intractable quantities from
tractable ones. It has been pointed out repeatedly (Poincaré
1896; Diaconis 1988; O’Hagan 1992) that this process
is structurally similar to statistical inference, where the
tractable computations play the role of data in statistics, and
the intractable quantities relate to latent, inferred quantities.
In recent years, the search for numerical algorithms which
return probability distributions over the solution for a given
numerical problem has become an active area of research
(Hennig et al. 2015). Several models and methods have been
proposed for the solution of initial value problems (IVPs)
(Skilling 1992; Chkrebtii et al. 2016; Schober et al. 2014a;
Conrad et al. 2017; Kersting and Hennig 2016; Teymur
et al. 2016). However, these probabilistic algorithms have
no immediate connection to the extensive literature on this
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task in numerical analysis. Most importantly, such inference
algorithms do not come with convergence analysis out of the
box. The methods in Chkrebtii et al. (2016), Conrad et al.
(2017) and Teymur et al. (2016) have convergence results,
but their respective implementations are based on sampling
schemes and, thus, do not offer guarantees for individual
runs. The methods in Schober et al. (2014a) and Kersting
and Hennig (2016) offer a deterministic execution and an
analytical guarantee for the first step, but we will show that
this guarantee is lacking for the whole integration domain.

In this paper, we present a class of probabilistic solvers
which combine properties of the standard and the proba-
bilistic algorithms. We formulate desiderata that users might
have for a probabilistic numerical algorithm. We present one
construction that fulfills these desiderata and we provide a
MATLAB code1 which we compare empirically against other
available codes. The construction uses the algebra of Gaus-
sian inference to provide a Gaussian posterior distribution
over the solution of an IVP. In particular, we show that the
posterior mean can be understood as a multistep method in
Nordsieck representation, and thus, analytical results about

1 https://pn.is.tuebingen.mpg.de/code/pfos.
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these methods carry over to the present algorithm. Addition-
ally, we propose to interpret the posterior covariance as a
measure of uncertainty or error estimator and argue that this
interpretation can be analytically justified. In the context of
a larger pipeline of empirical studies and numerical compu-
tations, the framework of probability modeling provides a
common language to analyze the epistemic confidence in its
result (Cockayne et al. 2017). In the framework of Cockayne
et al. (2017), the code provides approximate Bayesian uncer-
tainty quantification (Sullivan 2015) at low computational
overhead and almost complete backwards compatibility to
the MATLAB IVP solver suite.

1.1 Problem description

We study the problem of finding a real-valued curve y : T →
R over an interval T = [t0, T ] such that

y′(t) = dy

dt
(t) = f (t, y(t)) (“the ODE”), (1a)

and

y(t0) = y0 (“the initial value”), (1b)

with f Lipschitz continuous with constant L in the second
argument and sufficientlymany times differentiable in its sec-
ond argument. Users might be interested in approximations
to y on either a predefined mesh�S ⊂ T or an automatically
selected mesh � ⊂ T of finitely many intermediate function
values. The derivationswill be presentedwith a scalar-valued
problem, but the results carry over to the multivariate case.

IVPs are a particularly deeply studied class of ODE-
related tasks. Part of their significance is due to the Picard–
Lindelöf theorem which guarantees local unique existence
of solutions. As a consequence, IVPs lend themselves to be
solved by so-called step-by-step methods, where the solu-
tion is advanced iteratively on expanding meshes �n+1 :=
({t0, . . . , tn} ∪ {tn+1}) ⊃ �n . The knots tn of a mesh are
either generatedon a regular grid tn := t0+hn, n = 0, . . . , N
for some N ∈ N and h = (T − t0)N−1 or the step size h
may very per step, thus yielding tn = t0 + ∑n

i=1 hi .
To construct a probabilistic numerical method, we define

the following list of desiderata that an algorithm should ful-
fill. These properties will be defined and motivated in turn
below.

Probabilistic inference The computations should be opera-
tions on probability distributions.

Global definitionTheprobabilisticmodel should not depend
on the discretization mesh.

Deterministic execution When run several times on the
same problem, the algorithm produces the same output
each time.

Analytic guarantees The algorithm’s output should have
desirable analytic properties.

Online execution The algorithm execution can be extended
indefinitely when required.

Speed. The execution time should not be prohibitively slow.
Problem adaptiveness The algorithm should automatically

adapt parameters to problem and accuracy requirements.

Throughout this paper, we will use zero-based indexing
for vectors and matrices such that a d-dimensional vector v
is written as v = (v0, . . . , vd−1)

ᵀ and the d canonical basis
vectors are e0, . . . , ed−1.

2 From classical to probabilistic numerical
algorithms

In this section, we explain and motivate the first two items
from our list of desiderata in turn—probabilistic inference
and global definition.

On a high-level view, numerical algorithms can be
described as combinations of tractable approximating func-
tion classes and computation strategies for informative
values. Analyses of numerical methods show to what level
the approximations can converge to the true problem solu-
tion and how fast the computation strategies can be carried
out. This is structurally very similar to problems in statistics
where unknown quantities need to be related to approximat-
ing function classes via observable informative values. In
particular, finding a function Y = (Yt )t∈T given a collec-
tion of information zn, n = 0, . . . N about Ytn at times tn is
studied in regression analysis in statistics. In that context,
the unknown function is often treated as a stochastic process
and the approximating function is obtained by conditioning
it on the measurements. Consequently, this paper treats the
problem of finding an approximate solution Y = (Yt )t∈T
to the true unknown solution y(t) as a statistical regression
problem on a stochastic process.

Accepting the probabilistic approach as a framework for
plausible reasoning (Jeffreys 1969; Cox 1946; Hennig et al.
2015), we require a probability measure or law PY over
the numerical solution Yt . The computations necessary for
the construction of PY should be interpretable as (approx-
imate) probabilistic inference. When such an interpretation
is admissible, we call the resulting algorithm a probabilistic
numerical method (PNM) for the purposes of this paper. A
more rigorous definition has been given by Cockayne et al.
(2017). The motivation behind this requirement is that there
should not be an analysis gap between statistical and numer-
ical computations. This is particularly beneficial, when the
differential equation solver is embedded in a longer chain
of computations (Cockayne et al. 2017). In principle, this
should allow to build fine-tuned methods adapting to sources
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Table 1 Properties of existing
PNM ODE solvers

Method Glob. def.? Determ.? Guarantees?

Skilling (1992) � × ×
Chkrebtii et al. (2016) � × ≈

Schober et al. (2014a) ≈ � ≈

Conrad et al. (2017) × × ≈

Kersting and Hennig (2016) � � ×
Teymur et al. (2016) × × ≈

PFOS (this paper) � � �

of data uncertainty and computational approximation during
runtime and provide richer feedback of approximation qual-
ity as recently empirically validated by Schober et al. (2014b)
and Hauberg et al. (2015).

Let z[n] := {zk | k ≤ n} be the set of collected data up to
and including step n. Given a prior law PY over the space
of solutions and a likelihood function P(zn | Ytn ) relating the
value of the process Ytn to collected data, Bayes’ theorem
leads to the (predictive) posterior measure

PY | z[n] = P(z[n] | Y ) PY∫
P(z[n] | Y ) dPY

. (2)

where P(z[n] | Y ) = ∏
k≤n P(zk | Ytk ). Rigorously, the above

expression is valid only for finite collections of values of
Yt , in which case the corresponding probability measures
PY are typically represented by their densities, but as the
finite-dimensional distributions define the full measure, we
use this slight abuse of notation here. In function space form,
the posterior process is only defined as a Radon–Nikodym
derivative with respect to the prior measure PY which yields

dPY | z[n]
dPY

= 1
∫
exp(−�(y; z)) dPY exp(−�(y; z)), (3)

where � is a “potential” function analogous to a likelihood.
For details, we refer the reader to Stuart (2010), Giné and
Nickl (2015, §7.3). We denote the posterior distributions
(typically densities) of point values of Y as P(Yt | z[n]).

We propose to think about the probabilistic framework as a
more informative output information than the point estimates
returned by classical numerical algorithms (see also Hennig
et al. 2015).

Furthermore, a probabilistic IVP solver shall be called
globally defined on its input domain T, if its probabilistic
interpretation does not depend on the discretization mesh
�. PNMs satisfying this property provide two benefits.
Users may evaluate the (predictive posterior) distribution
P(Yt | z[n]) for any t ∈ T. In particular, users may eval-
uate P(Yt | z[n]) for t /∈ �. Thus, users may request
P(Yts | z[n]), ts ∈ �S and the support of a user-defined mesh
�S is not a separate requirement. Secondly, this implies

that the inference can be paused and continued after every
expansion from �n 	→ �n+1. In principle, this also enables
iterative refinement of the solution quality based on its pre-
diction uncertainty.

Table 1 lists PNM ODE solvers that have been proposed
in the literature. A � indicates that the method satisfies a
given property, a× indicates that a method does not satisfy a
given property, and a ≈ indicates that a property holds with
some restrictions. The listing shows that almost all methods
proposed so far are globally defined. Furthermore, we see
that the definition is independent of a method being sampling
based or not. The method proposed by Conrad et al. (2017) is
a generative process on subintervals [tn, tn+1] ⊂ T based on
a numerical discretization. It is easy to construct two different
meshes�n,�

′
n that define different distributions for Yt in the

case of y′ = λy, and a general argument can be made from
this example. In Teymur et al. (2016), the predictive posterior
is only defined on the discretization mesh. This defect is not
for lack of definition, but a consequence of the underlying
numerical method the probabilistic algorithm is built upon.
Since the method is defined on a windowed data frame, it is
easy to construct a mesh such that the prediction Yt at time t
will be different depending on thewindow [tn−i , . . . , tn+ j ] 

t is considered to be part of.

The analysis in Schober et al. (2014a) proposes two
main modes of operation: naive chaining and probabilis-
tic continuation. Naive chaining is not a globally defined
method since mesh points tn are part of adjacent Runge–
Kutta blocks, and the corresponding predictive posterior
distribution P(Ytn | z[n]) is different for these two blocks.
Probabilistic continuation is globally defined, but there has
been no convergence theory for this mode yet. This paper
fills this gap.

2.1 State-spacemodels for Gauss–Markov processes

Our approximate model of the true solution y(t) is a vector
x(t) = (y(0)(t), . . . , y(q)(t))ᵀ where y(i)(t) is the true i th
derivative of y(t) at time t . We represent the prior uncer-
tainty about x(t) by the distribution P(Xt ) of the random
variable Xt—or more generally as the measure or the law
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PX of the stochastic process X—which is then conditioned
on the observed values.

The prior model, which has also been considered in
Schober et al. (2014a), belongs to the class of Gauss–Markov
processes.Models of this class can often bewritten as a linear
time-invariant (LTI) stochastic differential equation (SDE) of
the form

dXt = FXt dt + L dWt , (4)

whereXt is the so-called state of themodel,F∈R
(q+1)×(q+1)

is the state feedback matrix and L ∈ R
(q+1) is the diffusion

matrix of the system. dWt is the increment of a Wiener pro-
cess with intensity σ 2, that is, dWt ∼ N (0, σ 2 dt).

Here, we consider models where L is the last standard
basis vector eq and F = Uq+1 + eq fᵀ is a (transposed)
companion matrix. Here, Uq+1 denotes the upper shift
matrix and the row vector fᵀ contains the coefficients in
the last row of F. In this case, the vector-valued process
Xt = (Xt,0, . . . , Xt,q)

ᵀ obtains the interpretation Xt =
(Yt ,Y ′

t , . . . ,Y
(q)
t )ᵀ, because the form ofF andL implies that

the realizations of Yt are q-times continuously differentiable
on R. Later, we will also consider scaled systems X̃t = BXt

with an invertible linear transformation B. In this case, we
denote by Hi the matrix that projects onto the i th derivative
Y (i)
t = Hi X̃t := eᵀ

i B
−1X̃t . Two particular models of this

type are the q-times integrated Wiener process (IWP(q)) and
the continuous auto-regressive processes of order q. Detailed
introductions can be found, for example, in Karatzas and
Shreve (1991), Øksendal (2003) and Särkkä (2006). SDEs
can also be seen as path-space representations of more gen-
eral temporal Gaussian processes arising inmachine learning
models (Särkkä et al. 2013).

Models of form (4) are also related to nonparametric
spline regression models (Wahba 1990) which often have a
natural interpretation in frequentist analysis (Kimeldorf and
Wahba 1970). Conceptually, these models are a compromise
between globally defined parametricmodels, whichmight be
too restrictive to achieve convergence, and local parametric
models, which might be too expressive to be captured by a
globally defined probability distribution. Models of this type
have been studied in the literature (Loscalzo andTalbot 1967;
Andria et al. 1973), but the presentation here starts fromother
principles.

Conditioning on (random) initial conditionsXt∗ at a start-
ing time t∗ of the process, the solution of Eq. (4) has the
analytic form

Xt = eF�t
t∗Xt∗ +

∫ t

t∗
eF�t

τ L dW (τ ), (5)

where eF�t
t ′ := ∑∞

k=0[F�t
t ′ ]k[k!]−1 is the matrix exponen-

tial of F�t
t ′ and �t

s := t − s.

If Xt∗ ∼ N (m∗,C∗), then the distribution of Xt remains
Gaussian for all t by linearity and its statistics can be com-
puted explicitly (Grewal and Andrews 2001; Särkkä 2006)
via

mt := E(Xt ) = eF�t
t∗m∗

cov(Xt ,Xt ′) = eF�t
t∗C∗(eF�t ′

t∗ )ᵀ

+
∫ min(t,t ′)

t∗
eF�t

τLσ 2Lᵀ(eF�t ′
τ )ᵀdτ

︸ ︷︷ ︸
=:Qt∗ (t,t ′)

.

(6)

For practical purposes, only the covariance matrix Ct =
cov(Xt ,Xt ) of the states at a single time t is needed.

The choice of prior measure PX in Eq. (4) can be inter-
preted as a prior assumption or belief encoded in the
algorithm, in the sense that the algorithm amounts to an
autonomous agent.We emphasize that if one adopts this view,
then the results reported in later sections amount to an exter-
nal analysis of the effects of these assumptions. That is, we
will show that if the agent is based on this prior measure PX
with a likelihood to be defined in Sect. 2.3, they give rise
to a posterior distribution with certain desirable properties.
By contrast, one could also take a more restrictive stand-
point internal to the algorithm and state that the proposed
method works well if the true solution x(t) is indeed a sam-
ple from PX. This is expressly not our viewpoint here, and
it would be a flawed argument, too, given that in practice,
x(t) is defined through the ODE, thus evidently not a sample
from any stochastic process.

Denote by A(h) := eF�t+h
t the discrete transition matrix

of step size h andQ(h) := Qt (t+h, t+h) the discrete diffu-
sionmatrix of step size h, respectively. For LTI SDE systems,
A(h) and Q(h) fulfill matrix-valued differential equations
which can be solved analytically via matrix fraction decom-
position (Grewal and Andrews 2001; Särkkä 2006). If we
define

�(h) =
(

�11(h) �12(h)

�21(h) �22(h)

)

:= exp

{(
F σ 2LLᵀ

0 −Fᵀ

)

h

}

, (7)

then the matrices A(h) and Q(h) are given by

A(h) = exp(Fh), Q(h) = �12(h)�−1
22 (h). (8)

Above, �−1
22 (h) can be computed efficiently: from the two

properties of the matrix exponential, exp(X)−1 = exp(−X)

and exp(Xᵀ) = exp(X)ᵀ, it follows that �−1
22 (h) = A(h)ᵀ,

and therefore, Q(h) = �12(h)A(h)ᵀ. In the following, it
will be beneficial to write Q(h) as Q(h)ᵀ = A(h)�12(h)ᵀ,
which is valid since Q(h) is symmetric.

For the rest of this paper, we will focus on the q-times
integrated Wiener process IWP(q), which is defined by
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dXt = Uq+1Xt dt + eq dWt . (9)

In this case, fᵀ = (0, . . . , 0) and there is no feedback from
higher states Xt,i to lower states Xt, j , i < j . In particular,
this process is nonstationary and does not revert to the initial
meanmt∗ . In this system,A(h) andQ(h) can be be computed
analytically

(A(h))i, j = Ii≤ j
h j−i

( j − i)! ,

(Q(h))i, j = σ 2 h2q+1−i− j

(2q + 1 − i − j)(q − i)!(q − j)! ,
(10)

which can be derived directly from Eq. (6).

2.2 Data generationmechanism

Many problems in statistics assume the existence of an
externally produced, thus fixed data set {(tn, zn) | tn ∈ �}
and develop appropriate solutions from there. An analogous
concept in numerical algorithms for solvingdifferential equa-
tions would be to pose a global discretization scheme and to
obtain a solution with other tools from numerical analysis.
Methods of this type are often applied to boundary value
problems (BVPs) and partial differential equations (PDEs)
where the integration domains need to be specified a priori
in any case. Cockayne et al. (2017) take this approach by
assuming a fixed information operator A. However, there are
cases where the end T of the integration domain T cannot
be stated beforehand, when the quantity of interest depends
on a qualitative behavior of the solution. For example, in
modeling of chemical reactions a user might be interested in
the long-term behavior of the compounds and it is unknown
when the reaction reaches equilibrium.

In contrast, many numerical IVP solvers proceed in a
step-by-step manner. Having computed a numerical approxi-
mation PY | z[n] on the mesh �n , a prediction y−

n+1 of y(tn+1)

is used to evaluate f (tn+1, y
−
n+1) and the resulting output

zn+1 is used to update the approximation PY | z[n+1] on the
extended mesh �n+1. For example, in a deterministic IVP
the data (t0, y0) can be used to construct the observation
z0 = f (t0, y0)which satisfies the probabilistic interpretation
of y′(t0) ∼ δ(z0− y′(t0)). This serves as a corner case for the
general situation. Setting t−1 := t0 and z−1 := y0, it follows
that y(t0) ∼ δ(z−1 − y(t−1)) and the initial value requires
almost no special treatment. The concept is illustrated in
Algorithm 1 and can, in principle, be extended indefinitely,
at constant cost per step. The term predict–evaluate–correct
(PEC) or predictor–correctormethods have amore technical
meaning in classic textbooks (Hairer et al. 1987; Deuflhard
and Bornemann 2002), but the idea is common to many
numerical IVP solvers. Chkrebtii et al. (2016) calls the pro-
cess of evaluating f (tn, y

−
tn )with tentative y−

tn to generate zn a

model interrogation. From a statistical perspective, this con-
cept of active model interrogation is similar to the sequential
analysis of Wald (1973) and Owhadi and Scovel (2016).

Algorithm 1 conveys the general idea of a probabilistic
ODE solver while omitting parameter tuning aspects like
error control and step size selection. The exact form of line 5
depends on the choice of observation construction and data
likelihood model. Without data, the prior induces a probabil-
ity distribution on the hidden stateXtn . It remains to construct
an observation zn and a likelihood model P(zn |Xtn ).

2.3 Observation assumptions

Recall from Sect. 2.1 the prior state-space assumption

Xt = (Yt ,Y
′
t , . . . ,Y

(q)
t )ᵀ ∼ N (mt ,Ct ). (11)

Combining Eqs. (1) and (11) gives

P(Y ′
t ) = f (t, ·) ◦ N (Yt ; (mt )0, (Ct )00) (12)

�= N (Y ′
t ; (mt )1, (Ct )11) (13)

where Eq. (12) denotes the transformed random variable.
The exact form of that push-forward is not usually tractable
for general f (with the exception of linear ODEs, which of
course do not require nontrivial numerical algorithms).

We will show below, however, that replacing the push-
forward with an approximate inference step captured by a
Gaussian likelihood leads to good analytic properties of the
resulting Gaussian posterior. This likelihood, which ignores
the recursive nature of the ODE (Eq. 12 and Fig. 1), will be
parametrized as

P(zn | Y ′
tn ) = N

(
zn; Y ′

tn , R
2
n

)
(14)

where zn are the observations that have yet to be constructed
and R2

n can be interpreted as an observation uncertainty.
Another way to phrase Eq. (14) is to write

zn = H1Xtn + ν (15)

where the latent variable ν := y′(tn) − f (tn,H0Xtn ) cap-
tures the error between f at the estimated solution and the
true solution’s derivative. The approximation in Eq. (14) is to
assign a centered Gaussian density P(ν) = N (ν; 0, R2

n) to
this latent variable. Purely from a formal perspective, this ν is
a “random variable”, but we stress again that P(ν) captures
uncertainty arising from lack of computational information
about a deterministic quantity, not any physical sort of ran-
domness in a frequentist sense. That is, solving the same IVP
several times will always produce the exact same ν, because
the algorithm is deterministic. But that same ν will always
be just as unknown. Repeated runs will not refine the uncer-
tainty. Figure 1 displays a graphical model corresponding
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Algorithm 1: Active probabilistic model
1: Define t−1 := t0, z−1 := y0 and probabilistic model PX
2: Compute P(Xt−1 | z[−1]). {Add initial value information}
3: for n = 0 to N do
4: Compute P(Xtn | z[n−1]) ∝ P(Xtn |Xtn−1 )P(Xtn−1 | z[n−1]) {Predict tn}
5: Compute observation model P(zn |Xtn ) = observe( f , P(Xtn | z[n−1])) {Evaluate/interrogate model}
6: Compute P(Xtn | z[n]) ∝ P(zn |Xtn )P(Xtn | z[n−1]) {Update information}
7: end for
8: return {P(Xtn | z[n]), n = −1, 0, . . . , N }

Fig. 1 The graphical model corresponding to the proposed construc-
tion. White circles represent unobserved hidden states, and the black
circle represents the observed data. Gray squares represent a jointly nor-
mal distribution. The arrow indicates a model interrogation. An implied
non-Gaussian factor between Y (0)(tn) and zn is ignored to obtain a prac-
tical algorithm

to the construction. All current probabilistic numerical ODE
solvers share this particular assumption (14) (Skilling 1992;
Chkrebtii et al. 2016; Schober et al. 2014a; Conrad et al.
2017; Kersting and Hennig 2016; Teymur et al. 2016). The
differences between these algorithms chiefly lie in the prior
on Xt , and how the observation zn is produced within the
algorithm.

It remains to construct zn and R2
n . One possible way to

achieve this is to compute the expected value of vector field
f under the prediction for the true solution

zn←
∫

f (tn,Ytn )N (Ytn ; (m−
tn )0, (C

−
tn )00) dYtn , (16)

where N (Xtn ;m−
tn ,C

−
tn ) = P(Xtn | z[n−1]) is the prediction

distribution of Xtn given the data z[n−1] and ← denotes
assignment in code.

With these conventions, two new issues emerge: the eval-
uation of the intractable Eq. (16) and the determination of
R2
n . Kersting and Hennig (2016) propose to put

R2
n←

∫

f (tn,Ytn )
2 N (Ytn ; (m−

tn )0, (C
−
tn )00) dYtn − E[ f ]2

(17)

and to evaluate both integrals by Bayesian quadrature.
Chkrebtii et al. (2016) method draws a sample un ∼
N ((m−

tn )0, (C
−
tn )00), computes zn← f (tn, un), and R2

n is set
to (C−

tn )11. In light of Kersting and Hennig (2016), this could
be thought of as a form of Monte Carlo scheme to evaluate
(16).

As a further restriction to the likelihood (14) more widely
used by other probabilistic numerical solvers, we will here
focus on models with R2

n → 0. That is

zn ← f (tn, (m−
tn )0),

P(zn | Y ′
tn ) = δ(zn − Y ′

tn ) = N (zn; Y ′
tn , 0),

(18)

This means the estimation node y−
tn for the evaluation of

f is simply the current mean prediction, and the resulting
observation is modeled as being correct.

From the analytical viewpoint external to the algorithm
itself, of course, one does not expect that the model assump-
tion of a Gaussian likelihood, much less one with vanishing
width, to hold in reality. The point of the analysis in Sect. 3.1
is to demonstrate that this model and evaluation scheme
yield a method satisfying sufficient conditions to prove that
its point estimate converges at a nontrivial order for some
choices of state spaces, while simultaneously keeping com-
putational cost very low (that is very similar to that of
classic multistep solvers). That is because the predic-
tive posterior distributions P(Xtn | z[n]) can be computed
by the linear-time algorithm known as Kalman filtering
(Kalman 1960; Särkkä 2006, 2013). The marginal predictive
posterior distributions given all data P(Xt | z[N ]) can be com-
puted using the Rauch–Tung–Striebel smoothing equations
(Rauch et al. 1965; Särkkä 2006, 2013). Simultaneously,
one can draw samples from the full joint posterior. These
two operations increase the computational cost minimally:
They require additional computations comparable to those
used for interpolation in classic solvers, but neither smooth-
ing nor sampling requires additional evaluations of f . The
computational complexity stays linear in number of data
points collected. If the full joint posterior is also required for
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some reason, this is also possible to construct (Solin 2016;
Grigorievskiy et al. 2016). As a second consequence, the
computation becomes deterministic which enables unit test-
ing of the resulting code.

As a side remark, we note some obvious restrictions of the
combination of Gaussian (process) prior and likelihood used
here: Since this combination means the posterior is always
a Gaussian process, one cannot hope to accurately capture
bifurcation events, higher-order correlations in the discretiza-
tion errors or other higher-order effects.

2.4 Detailed example

Consider a concrete example. We solve the following IVP

y′ = f (t, y) = f (y) = r y(1 − y/K),

y(t0) = y0 = 1/10, r = 3, K = 1,
(19)

on the interval [0, 1.5]. Equation (19) is the sigmoid logistic
growth function. Its solution is available in closed form

y(t) = Ky0 exp(r t)

K + y0(exp(r t) − 1)
.

To solve this system,we apply a 2-times integratedWiener
process. For this example, we fix hn = h = 0.3, such that
tn = t0 + hn for all n. Usually, the initial values are chosen
to be m−

t−1
= 0 and C−

t−1
= Q(∞), which is the so-called

steady state for stationary processes (Hartikainen and Särkkä
2010). The latter does not exist in the case for the integrated
Wiener process, since the IWP is not stationary. However,
as has been shown in Schober et al. (2014a), this can be
done analytically, collecting the first q derivative observa-
tions z0, . . . , zq−1 manually in the interval [t0, t1] and then
inserting them in the analytic formulas, yielding the filter-
ing distribution P(Xt1 | z[q−1]) = N (Xt1;mt1 ,Ct1) (see also
Sect. 3.2). The remainder of the interval [t1, . . . , tN = T ] is
solved with the familiar Kalman filter equations

m−
tn = A(h)mtn−1 , (20)

C−
tn = A(h)Ctn−1A(h)ᵀ + Q(h) (21)

and

λn = f (tn,H0m−
tn ) − H1m−

tn , (22)

Kn = C−
tnH

ᵀ
1 [H1C−

tnH
ᵀ
1 ]−1, (23)

mtn = m−
tn + Knλn, (24)

Ctn = C−
tn − Kn[H1C−

tnH
ᵀ
1 ]Kᵀ

n . (25)

Figure 2 shows the state of the algorithm after 2 steps
have been taken. The solution looks discontinuous, because

the information of later updates zn has not been propagated
to previous time points tm,m < n. The last column of
Fig. 2 shows the (predictive posterior) smoothing distribu-
tion wherein all the information is globally available.

3 Classical analysis for the probabilistic
method

The most important test for any numerical algorithm is that
it works in practice and under the requirements of poten-
tial users. The proposed probabilistic numerical algorithm
has been motivated and derived from the computational
properties that established classical algorithms provide. The
classical algorithms have been studied intensely for over
a century, to a point where the theory could almost be
considered complete (Gear 1981). Thus, a newly proposed
algorithm—even when motivated from a different back-
ground—should stand up to classical analysis.

While many specialized models and algorithms have been
proposed, two standard classes of algorithms have become
prevalent for the solution of (1): Runge–Kutta (RK) meth-
ods and (linear) multistep methods (LMMs) or combinations
thereof (general linearmethods, GLMsButcher 1985). These
classes share a similar type of algorithmic structure and anal-
ysis: At time tn , evaluate f with a numerical approximation
ytn to construct an updated numerical approximation ytn+1

from linear combinations of the function evaluations ftn
(exact definitions below). The update weights are parame-
ters of a given method and, if chosen appropriately, can be
shown to coincide with the Taylor approximation of the true
solution y up to q terms.

In the following, we present results relating the newly pro-
posed probabilistic method to existing algorithms, which
allows us to transfer the known results to our method.
Interpreting the probabilistic model from the viewpoint of
classical analysis adds a justification to the assumptionsmade
in the previous sections by saying that these assumptions—
unintuitive as they may be at first—are the same assumptions
that are implied by the application of a classical algorithm.

3.1 On the connection to Nordsieckmethods

Linear multistep methods are defined by the relationship

q∑

i=0

αi ytn−i = h
q∑

i=0

βi ftn−i , (26)

where ftn are approximations to y′(tn), h is the step size
and the αi and βi are parameters of the method. If β0 = 0,
then (26) defines ytn without requiring ftn and we can set
ftn := f (tn, ytn ) for the computation of ytn+1 . This is called

123



106 Statistics and Computing (2019) 29:99–122

Fig. 2 The 2-times integratedWiener process dXt = U3Xt dt+e2 dWt
applied to the logistic growth problem y′ = r y(1 − y/K ). The plot
shows the true solution (gray) of the function y and its first two deriva-
tives, aswell as the numerical solution Y , given by itsmeanmi (red line)
and covariance C, visualized as point-wise plusminus twice the stan-
dard deviationmi ± 2

√
Ci i . Empty circles are predicted values at time

tn , filled circles represent updated values, and orange dots are function
and derivative observations. The first two columns display two predict–
evaluate–update–predict cycles. The last column shows the smoothed
final solution (green, thick lines) and three samples from the predictive
posterior (thin lines). (Color figure online)

an explicit method. In contrast, if β0 �= 0, we still define
ftn = f (tn, ytn ), but (26) now defines a nonlinear equation
for ytn given a nonlinear f . We say that ytn is implicitly
defined and, therefore, methods with βi �= 0 are called
implicit methods. Assuming that at least one of {αq , βq} does
not vanish, the method requires the numerical approxima-
tion on q previous grid points and (26) is called a q-step
method.

Skeel showed in 1979 that implicit LMMs can be written
in Nordsieck 1962 form:

xn =
(
ytn , hy

′
tn , . . . ,

hq y(q)
tn /q!

)ᵀ
, (27)

xn+1 = (
I − leᵀ

1

)
Pxn + hlzn, (28)

where P is the Pascal triangle matrix with entries pi j =
Ii≤ j

( j
i

)
and l= l({αi , βi }) is the weight vector defining the
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method. The vector xn is called the Nordsieck vector in
honor of its inventor (Nordsieck 1962), and a LMM written
in Nordsieck form is also called a Nordsieck method. The
intuition behind this family of methods is to replace y(t)
or y′(t) on [tn−q , . . . , tn] with a local polynomial π(t) =
π[tn−q ,...,tn ](t) of order q.

The difference in presentation between (26) and (27) can
be understood as expressing π(t) in either Lagrange notation
(Eq. 26) or Taylor expansion notation (Eq. 27). In this case,
Pxn yields a prediction of the numerical Taylor expansion at
tn+1 and the scalar increment zn is implicitly defined as the
solution to

h−1(Pxn)1 + l1zn = f (tn + h, (Pxn)0 + hl0zn), (29)

which is the correction from xn to xn+1 to the Taylor coef-
ficients. Equation (29) can be solved by iterated function
evaluations of the form

z(1)n := f (tn + h, (Pxn)0) (30)

z(M)
n := l−1

1

[
f
(
tn + h, (Pxn)0 + hl0z

(M−1)
n

)

− h−1(Pxn)1
] (31)

or by directly solving (29) with some variant of the Newton–
Raphson method.

If z(M) is used in the computation of (28), the resulting
algorithm is called a P(EC)M method. If Eq. (29) is solved
up to numerical precision, the method is called a P(EC)∞
method. Nordsieck methods with suitable weights l can be
shown to have local truncation error of order q or q + 1
(Skeel and Jackson 1977; Skeel 1979). More details can also
be found in standard textbooks (Hairer et al. 1987; Deuflhard
and Bornemann 2002).

We will now show how the Kalman filter (20)–(25) can
be rewritten such that the mean prediction takes the form of
(28). This enables to analyze the proposed algorithm in light
of classical Nordsieck method results, but can also guide the
further development of the probabilistic approach with the
experience of existing software.

Considering a fixed step size hn = h, n = 1, . . . , N , we
rescale the state space and SDE of the IWP(q) by scaling
matrix B to define an equivalent notation

X̃t =
(
Yt , hY ′

t ,
h2
2! Y

′′
t , . . . hq

q! Y
(q)
t

)ᵀ

= diag
(
1, h, h2

2! , . . . hq
q!

)

︸ ︷︷ ︸
=:B

Xt ,
. (32)

This state vector is the Nordsieck vector. The advantage of
this notation is that (4) simplifies to

dX̃t = BUq+1B−1X̃t dt + Beq dWt , (33)

where Ã(h) = P, the Pascal triangle matrix, and

(Q̃(h))i j = (BQ(h)Bᵀ)i j

= hi

i ! σ 2 h2q+1−i− j

(2q + 1 − i − j)(q − i)!(q − j)!
h j

j !
= σ 2h2q+1

(2q + 1 − i − j)(q − i)!(q − j)!i ! j ! (34)

which can be seen by inserting (33) into (6) and simplify-
ing. Furthermore, the observation matrices become H̃0 =
H0B−1 = e0 and H̃1 = H1B−1 = h−1e1. Rewriting the
filtering equations, we arrive at

C−
tn = PCtn−1P

ᵀ + Q̃(h), (35)

Kn = C−
tn H̃

ᵀ
1

[
H̃1C−

tn H̃
ᵀ
1

]−1
(36)

and

mtn = (I − KnH̃1)Pmtn−1 + Knz
(1)
n , (37)

Ctn = (I − KnH̃1)P
(
Ctn−1P

ᵀ + �̃12(h)ᵀ
)

. (38)

Choosing a prior covariance matrix with entries (C−
t−1

)i j =
σ 2h2q+1ci j , for some ci j ∈ R such thatC−

t−1
is a valid covari-

ance matrix, it can be shown by induction that all entries
of Ctn for all n have this structural form. As a by-product,
Kn = h (kn,0, 1, kn,2, . . . , kn,q)

ᵀ for some kn,i ∈ R which
follows from (36).

Given these invariants, Eq. (37) has the structure of a
multistep method written in Nordsieck form (28). The only
difference is the changing weight vector Kn (37) as com-
pared to the constant weights in (28).Multistepmethodswith
varying weights have been studied in the literature (Crouzeix
and Lisbona 1984; Brown et al. 1989). These works are
often in the context of variable step sizes hn �= h, but
variable-coefficient methods have also been studied for other
purposes, for example cyclicmethods (Albrecht 1978). These
works have in common that theweights are free variables that
are not limited through the choice of model class. As a con-
sequence, determining optimal weights can be algebraically
difficult (Hairer et al. 1987, §III.5).

Here, variable step sizes are easily obtained by working
with representation (4) instead of (33) and computing (8)
according to hn . In contrast to classical methods, the weights
Kn cannot be chosen freely, but are determined through the
choice of model (4) and the evolution of the underlying
uncertainty Ctn . While Kersting and Hennig (2016) pro-
vide some preliminary empirical evidence that these adaptive
weights Kn might actually improve the estimate, more rig-
orous analysis is required for theoretical guarantees.

In fact, Skeel (and Jackson) (1976, 1977) consider more
general propagation matrices S for xtn = Sxtn−1 in Eq. (28).
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Every model of form (4) implies such a general propaga-
tion matrix by identifying Sn = (I − KnH1)A(hn). Thus,
applying the Kalman filter to LTI SDE models is structurally
equivalent to a variable-coefficient multistep method. This
motivates the following definition and Algorithm 2 for the
probabilistic solution of initial value problems.

Definition 1 A probabilistic filtering ODE solver (PFOS) is
the Kalman filter applied to an initial value problem with
an underlying Gauss–Markov linear, time-invariant SDE and
Gaussian observation likelihood model.

Algorithm 2: Probabilistic filtering ODE solver

1: Define t−1 := t0, choose F,L, σ 2, initializem−
t−1

,C−
t−1

accordingly
2: K−1 ← C−

t−1
Hᵀ

0 [H0C
−
t−1

Hᵀ
0 ]−1

3: mt−1 ← m−
t−1

+ K−1[y0 − H0m
−
t−1

]
4: Ct−1 ← (I − KnH0)C

−
t−1

5: for n = 0 to N do
6: hn ← tn − tn−1
7: Compute A(hn), Q(hn)
8: m−

tn ← A(hn)mtn−1 {Predict}
9: C−

tn ← A(hn)Ctn−1A(hn)ᵀ + Q(hn)
10: zn ← f (tn,H0m

−
tn ) {Evaluate}

11: λn ← zn − H1m
−
tn {Update}

12: Kn ← C−
tnH

ᵀ
1 [H1C

−
tnH

ᵀ
1 ]−1

13: mtn ← m−
tn + Knλn

14: Ctn ← (I − KnH1)C
−
tn

15: end for
16: return {mtN ,CtN , n = −1, . . . , N }

Aswas the case inAlgorithm 1, the exact form of lines 10–
12 depend on the choice of likelihoodmodel (cf. Kersting and
Hennig 2016).

We will now study the long-term behavior of the PFOS.
In particular, we will ask what is the long-term behav-
ior for the sequence of Kalman gains (Kn)n=0,... and how
this will influence the solution quality. It can be shown
that its properties are linked to properties of the discrete
algebraic Riccati equation, of which the theory has largely
been developed (Lancaster and Rodman 1995). Denote by
γ : R

(q+1)×(q+1) → R
(q+1)×(q+1) the function that maps

the covariance matrix Ctn−1 of the previous knot tn−1 to the
covariance matrix Ctn at the current knot tn (Eq. (38)). If
there exists a (unique) fixed point C∗ of γ, it is called the
steady state of model (4). Associated with a fixed point C∗
is also a constant Kalman gain K∗ that is obtained at the
(numerical) convergence of C∗.

We will now show that there is a subset of model (4) that
converges to a steady state. This subsystem completely deter-
mines a constant Kalman gain K∗ at least in the case of the
IWP(1) and IWP(2). Thus, just like in the equivalence result
for the Runge–Kutta methods in Schober et al. (2014a), the

result of the PFOS is equivalent (in the sense of numerically
identical) after an initialization period to a corresponding
classical Nordsieck method defined by the weight vectorK∗
and we can apply all the known theory of multistep methods
to the mean of the PFOS.

Proposition 1 The PFOS arising from the once integrated
Wiener process IWP(1) is equivalent in its predictive poste-
rior mean to the P(EC)1 implementation of the trapezoidal
rule.

Proof The trapezoidal rule, written as in Eq. (26), is

ytn = ytn + h

2
( ftn−1 + ftn ). (39)

We will show that (mtn )0 = (mtn−1)0 + h/2[(mtn−1)1 +
(mtn )1)] for all n by induction. Let m−

t−1
= 0 and C−

t−1
∈

R
2×2 be an arbitrary covariance matrix. Applying the first

three lines of Algorithm 2 algebraically, the predicted values
are

mt−1 =
(

y0
m−

t0,1

)

, Ct−1 =
(
0 0
0 c−

t0,11

)

(40)

for somem−
t0,1

, c−
t0,11

. Continuing in this fashion yields z0 :=
f (t0, y0) andmt0 = (y0, z0)ᵀ,Ct0 = 0. Using (20) and (21)
to compute the predictions at t1, we arrive at

m−
t1 =

(
y0 + hz0

z0

)

, C−
t1 = Q(h) (41)

and we see that H0m
−
t0+h = y0 + hz0 = (P(y0, hz0)ᵀ)0.

Completing the Kalman step by applying Eqs. (22)–(25)
yields

mt1 =
(
y0 + h

2 [z0 + z1]
z1

)

, Ct1 = σ 2

(
h3
12 0
0 0

)

, (42)

where z1 := f (t1, y0 + hz0). Comparing with (30), we see
that z1 is of the desired form, which completes the start of
the induction. Finally, we observe that the second column
of Ct1 = 0 = Ct0 , i.e., this will be invariant and, as a con-
sequence, the second column of C−

tn is simply the second
column of Q(h), and the induction is completed. ��

The following Theorem 1 for the IWP(2) requires a bit
more algebra, but is based on the same principle.

Theorem 1 The predictive posteriormean of the IWP(2) with
fixed step size h is a third-order Nordsieck method, when the
predictive distribution has reached the steady state.

Proof The proof proceeds in two steps. First, we show that
the update equations induce a specific form for the covariance
matrix Ctn . Then, we will analyze individual entries.
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We proof by induction that Ctn is of the form

Ctn = σ 2h5

⎛

⎝
ctn ,00 0 ctn ,02
0 0 0

ctn ,02 0 ctn ,22

⎞

⎠ (43)

with coefficients ctn ,i j such that Ctn is a valid covariance
matrix. The base case is achieved after the first derivative
observation f (t0, y0) at t0 which can be checked by algebraic
computation. The inductive step can be verified by assuming
form 43 for tn−1 and compute one step ahead using Eqs. (36)
and (38) similar to the base case. Next, for the individual
entries we find

ctn+1,00 = σ 2h5
3840c00c22+320c00−3840c202+110c02+32c22+1

320(12c22+1)

ctn+1,02 = σ 2h5 −(48c02+24c22+1)
96(12c22+1) = (Ctn+1)20

ctn+1,22 = σ 2h5 16c22+1
16(12c22+1)

ctn+1,i j = 0, i, j = 0, 1, 2, i ∨ j = 1 (44)

where we put ci j := ctn ,i j on the respective right-hand sides
of Eq. 44 for brevity. We will now consider the behav-
ior of the coefficients ci j . Consider the dynamical system
γ̄22(c) = (16c + 1)[16(12c + 1)]−1 which maps the coef-
ficient of the last entry in Ctn to the next. The range and
image of γ̄22 are the nonnegative reals, since variances can-
not be negative. On this domain, γ̄22 has a continuous and
bounded derivative |γ̄ ′

22| ≤ 1
4 . In particular, γ̄22 is a contrac-

tion with Lipschitz constant 1
4 . Thus, the entries converge

to the fixpoint c∗
22 =

√
3

24 (which can be found with some
simple algebra). Similarly, one can either insert c∗

22 into the
respective form of γ̄02 or one considers the two-dimensional
mapping of both entries. In both cases, a similar argument
guarantees the convergence to a fixpoint, which is found

to be c∗
02 = −

√
3

144 . Inserting these into Eq. (36), we find

that Kn = K∗ = ( 3+
√
3

12 , 1, 3−√
3

2 )ᵀ is the static probabilis-
tic Nordsieck method of the IWP(2) filter. Inserting these
weights into (Skeel 1979, Theorem 4.2) yields the result. ��

Although Theorem 1 is only valid when the system has
reached its steady state, we find that the convergence (visu-
alized in Fig. 3) is rapid in practice. In the extreme case of
q = 1 (not shown), in fact it is instantaneous, and Proposi-
tion 1 is valid from the second step onwards. This limitation
could also be circumvented in practice by initializingCt−1 at
steady-state coefficients, but this possibility is not required to
achieve high-order convergence on the benchmark problems
we considered.

Figure 3 shows the situation for a constant value of the
diffusion amplitude σ 2. In Sect. 4, we will discuss error
estimation and step size adaptation. This process leads to
a continuous adaptation of this variable, which in turn means

Fig. 3 The weights (Kn)0 and (Kn)2 for n = 0, . . . , 5

that the convergence shown in the figure continues through-
out the run of the algorithm. So the practical algorithm
presented here and empirically evaluated in Sect. 5 is not
formally identical to Nordsieck methods, merely conceptu-
ally closely related.

Inspecting the weights of the IWP(2), we find that this
method has not been considered previously in the literature,
and, in particular, cannot be related to any of the typical
formulas, such as Adams–Moulton or backward differentia-
tion formulas. This is not surprising, since the result of this
method has been constructed to be twice continuously differ-
entiable, whereas there is no such guarantee for the solution
provided by the typical methods. In fact, the probabilistic
Nordsieckmethod ismuchcloser related to spline-basedmul-
tistep methods such as Loscalzo and Talbot (1967), Loscalzo
(1969), Byrne and Chi (1972) and Andria et al. (1973) since
Gaussian process regression models have a one-to-one cor-
respondence to spline smoothing in a reproducing kernel
Hilbert space of appropriate choice (Kimeldorf and Wahba
1970; Wahba 1990). This also justifies the application of a
full-support distribution, even though it is known that the
solution will remain in a compact set. In the former case,
the interpretation is one of average-case error, whereas in the
latter, the bound corresponds to the worst-case error (Paskov
1993).

The forms of Ctn found in Eqs. (42) and (44) also show

that the standard deviation std[Ytn ] = (Ctn )
1/2
00 can be mean-

ingfully, if weakly, interpreted as an approximation to the
expected error |ytn − y(tn)| of the numerical solution in the
following local, asymptotic sense: From our analysis of the
IWP(q), q ∈ {1, 2}, we have |ytn − y(tn)| ≤ Chq+1, whereas

(Ctn )
1/2
00 ∈ O(σhq+1/2). Estimating the intensity σ of the

stochastic process amounts to estimating the unknown con-
stant C .

Figure 4 displays the work-precision diagram for the
IWP(1) and IWP(2) applied to the examplary problem of
Sect. 2.4. The plot shows a good agreement between the the-
oretical rate and the observed rate of convergence.

We conclude this section by considering some implica-
tions of the probabilistic interpretation in contrast to other
classical multistep methods.

Keeping all hyperparameters (order q, prior diffusion
intensity σ 2 and step size h) fixed, the gainKn is completely
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Fig. 4 Work-precision diagram for the IWP(1) (green) and IWP(2)
(red) applied to the logistic growth problem from Sect. 2.4. Plotted are
the logarithms of the number of function evaluations (#FE) against the
logarithmic error at the end of the integration domain. Dotted linesmark
ideal convergence rates of orders two and three, respectively. (Color
figure online)

determined, and, as a consequence, we could have chosen to
fully solve implicit Eq. (29) for the generation of zn . Solving
(29) up to numerical precision can be interpreted as learn-
ing the true value of the model (4) at tn which gives another
justification for using R2

n = R2 = 0. Since the P(EC)∞ and
the P(EC)M have the same order for all M (Deuflhard and
Bornemann 2002), this argument can be extended to the case
of the PEC1 implementation which gives the most natural
connection to the Kalman filter.

In fact, a P(EC)M , M > 1, implementation would collect
and put aside the values z(1)n , . . . , z(M−1)

n , which seems unin-
tuitive from an inference point of view, where it is natural to
assume that more data should yield a better approximation.
A natural question would be whether this is a case of dimin-
ishing returns of approximation quality for computational
power, but this is beyond the scope of this paper.

One current limitation of the PFOS is its fixed integration
order q over the whole integration domain T. The reason for
this limitation is that it is conceptually not straight forward
to connect spline models of different orders at knots tn . How-
ever, the ability to adapt the integration order during runtime
has been key in improving the efficiency of modern solvers
(Byrne and Hindmarsh 1975). Furthermore, the method cor-
responding to the IWP(2) model has a rather small region of
stability which is depicted in Fig. 5, specially in comparison
with backward differentiation formulas (BDFs) (Deuflhard
and Bornemann 2002). This makes the method impractical
for stiff equations.

It is natural to ask what happens in the case of the IWP(q),
q > 2. Using techniques from the analysis of Kalman fil-
ters, one can show that these models also contain a stable
subsystem and that the weights Kn will converge to a fixed
point K∗, even for nonzero, but constant, R2. However, it
remains unclear whether they will be practical. In particular,
these methods might even be unstable for most spline mod-
els (Loscalzo and Talbot 1967). We have tested the IWP(q),
q ∈ {1, . . . , 4}, empirically on the Hull et al. benchmark (see

Fig. 5 Partial stability domain of the probabilistic Nordsieck method
using the IWP(2) in the negative real, positive imaginary quadrant. The
method converges for step sizes h on linear problems y′ = λy, if hλ :=
z ∈ C lies in the region of stability in the lower right corner. See
Deuflhard and Bornemann (2002) for details

Sect. 5) and have observed that these converge in practice on
these nonstiff problems.

3.2 Initialization via Runge–Kutta methods

Thus far, we have provided the analysis of the long-term
behavior of the algorithm, when several Kalman filter steps
have been computed and the steady state is reached. Cru-
cially, a necessary condition for this analysis is that enough
updates have been performed such that the observable space
spans the entire state space, which is q + 1 updates in the
case for the IWP(q).

Thus, the question remains how to initialize the filter.
Schober et al. (2014a) have shown that there areRunge–Kutta
steps that coincide with the maximum a posteriori (MAP) of
the IWP(q) for q ≤ 3. This requires q + 1 updates using a
diffuse prior with Ct−1 = limH→∞ Q(H). In practice, one
takes a Runge–Kutta step with the corresponding formula
and plugs the resulting values into the analytic expressions
for mt1 and Ct1 at t1. Additionally to the cases presented in
Schober et al. (2014a), we can report a match between a four-
step Runge–Kutta formula of order four and the IWP(4). This
match is obtained for the evaluation knots t0 + ci h with the
vector c = (0, 1/3, 1/2, 1)ᵀ. Details and exact expressions are
given in Appendix B. This approach is structurally similar to
an algorithm given by Gear (1980) for the case of classical
Runge–Kutta and Nordsieck methods.

However, we want to stress that the analysis by Schober
et al. (2014a) is done under exactly the same model and with
the same assumptions that have been presented here in dif-
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ferent notation. Therefore, the initialization does not require
a separate model and our requirement of a globally defined
solver still holds.

Finally, it should be pointed out that this is only one fea-
sible initialization. In cases where automatic differentiation
(Griewank and Walther 2008) is available, this can be used
to initialize the Nordsieck vector up to numerical precision
and set Ct−1 to 0. Nordsieck originally proposed (Nordsieck
1962) start with an initial vectormt−1 = 0, followed by q+1
steps with positive and q + 1 with negative direction (that is,
integrating backwards to the start). One interpretation is that
themethod usesmt−1 = E[Xt−1 | z̃−1, . . . , z̃q ], with tentative
z̃i computed out of this process.

4 Error estimation and hyperparameter
adaptation

While the general algorithm described in Sect. 3.1 can be
applied to any IVP at this stage, a modern ODE solver also
requires the ability to automatically select sensible values for
its hyperparameters. The filter has three remaining parame-
ters to choose: the dimensionality q of the state space, the
diffusion amplitude σ 2 and the step size h.

To obtain a globally consistent probability distribution,
we fix q = 2 throughout the integration to test the third-
order method presented in Sect. 3.1. For the remaining two
parameters, we first note that estimating σ 2 will lend itself
naturally to choose the step size. To see this, one needs to
make the connection to classical ODE solvers and the inter-
pretation of the state-space model. In classical ODE solvers,
hn is determined based on local error analysis, that is, hn is a
function of the error etn introduced from step tn−1 to step tn .
Then, hn is computed as a function of the allowed tolerance
and the expected error which is assumed to evolve similarly
to the current error.

As is common in solving IVPs, we base error estimation
on local errors. Assume that the predicted solution mtn−1 at
time tn−1 is error free, that is, Ctn−1 = 0. Then, by Eqs. (21)
and (22), we have

p(λn | σ 2) = N
(
λn; zn − H1m−

tn ,H1σ
2Q̄(h)Hᵀ

1

)
. (45)

One way to find the optimal σ 2 is to construct the maximum
likelihood estimator from Eq. (45) which is given by

σ̂ 2 =
(
zn − H1m−

tn−1

)ᵀ (
H1Q̄(h)Hᵀ

1

)−1
(
zn − H1m−

tn−1

)

=
(
zn − H1m

−
tn−1

)2

H1Q̄(h)Hᵀ
1

. (46)

For the last equation, we used the fact that all the involved
quantities are scalars.

To allow for a greater flexibility of the model, we allow
amplitude σ 2 to vary for different steps σ 2

tn . Note that the
mean values are then no longer independent of σ 2, because
the factor no longer cancels out in the computation of Kn

in Eq. (24). However, this situation is indeed intended: If
there was more diffusion in [tn−1, tn], we want a stronger
update to the mean solution as the observed value is more
informative. Additionally, Eq. (22) is independent of σ 2

tn or
any other covariance information P−

tn ,Q(h). Therefore, we
can apply Eq. (22) before (21), update σ 2

tn and then continue
to compute the rest of the Kalman step. This idea is similar in
spirit to (Jazwinski 1970, §11), but follows the general idea
of error estimation in numerical ODE solvers, where local
error information is available only.

At this point, the inference interpretation of numeri-
cal computation comes to bear: once the initial modeling
decision—modeling a deterministic object with a probabil-
ity measure to describe the uncertainty over the solution—is
accepted, everything else follows naturally from the proba-
bilistic description. Most importantly, there are no neglected
higher-order terms, as they are all incorporated in the diffu-
sion assumption.

This kind of lightweight error estimation is a key ingre-
dient to probabilistic numerical methods: one goal of a
probabilistic model is improved decisions under uncertainty.
This uncertainty is necessarily a crude approximation, since
a more accurate error estimator could be used to improve the
overall solution quality. However, the reduction in computa-
tional efforts up to a tolerated error is exactly what modern
numerical solvers try to achieve.

This error estimate can now be used in the conventional
way of adapting the step size which we will restate here to
give a complete description of the inference algorithm (see
also Byrne and Hindmarsh 1975). Given an error weight-
ing vector w, the algorithm computes the weighted expected
error

(Dtn )i =
(
H1σ

2
tn Q̄(hn)H1

ᵀ
)1/2

i
wi , (47)

where Q̄(hn) = [σ 2
tn ]−1Q(hn) is the normalized diffusion

matrix and checks whether some error tolerance with param-
eter ε is met

Dtn ≤ ε̄ := ε
hn
S

(48)

where hn is the step length and S can be either chosen to
be S = 1 (error per unit step) or S = hn (error per step). If
Eq. (48) holds, the step is accepted and integration continues.
Otherwise, the step is rejected as too inaccurate and the step
is repeated. In both cases, a new step length is computed
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which will likely satisfy Eq. (48) on the next step attempt.
The new step size is computed as

hn+1 = ρ

(
ε̄

Dtn

) 1
q+1

(49)

where ρ ∈ (0, 1), ρ ≈ 1 is a safety factor. Additionally,
we also follow best practices (Hairer et al. 1987) limit the
rate of change ηmin < hn+1/hn < ηmax. In our code, we set
ρ := 0.95, ηmin := 0.1 and ηmax := 5.

4.1 Global versus local error estimation

The results presented in preceding sections pertain to the esti-
mation of local extrapolation errors. It is awell-known aspect
of ODE solvers (Hairer et al. 1987, §III.5) that the global
error can be exponentially larger than the local error. More
precisely, to scale the stochastic process such that the vari-
ance of the resulting posterior measure relates to the square
global error, the intensity σ 2

n of the stochastic process must
be multiplied by a factor (Hairer et al. 1987, Thm III.5.8)
exp(L∗(T − t0)), where L∗ is a constant depending on the
problem. Although related, L∗ is not the same as the local
Lipschitz constant L and harder to estimate in practice (more
details in Hairer et al. 1987, §III.5). We stress that this issue
does not invalidate the probabilistic interpretation of the pos-
terior measure as such. It is just that the scale of the posterior
has to be estimated differently if the posterior is supposed
to capture global error instead of local error. In practice, the
global error estimate resulting from this re-scaling is often
very conservative.

5 Experiments

To evaluate the model, we provide two sets of experiments.
First, we qualitatively examine the uncertainty quantification
by visualizing the posterior distribution of two example prob-
lems.We also compare our proposed observation assumption
against the model described by Chkrebtii et al. (2016). Sec-
ond, we more rigorously evaluate the solver on a benchmark
and compare it to existing non-probabilistic codes. Our goal
in this work is to construct an algorithm that produces mean-
ingful probabilistic output at a computational cost that is
comparable to that of classic, non-probabilistic solvers. The
experiments will show that this is indeed possible. Other
probabilistic methods, in particular that of Chkrebtii et al.
(2016), aim for a more expressive, non-Gaussian posterior.
In exchange, the computational cost of these methods is at
least a large multiple of that of the method proposed here,
or even polynomially larger. These methods and ours differ
in their intended use cases: More elaborate but expensive

posteriors are valuable for tasks in which uncertainty quan-
tification is a central goal, while our solver aims to provide
a meaningful posterior as additional functionality in settings
where fast estimates are the principal objective.

5.1 Uncertainty quantification

We apply the probabilistic filtering ODE solver on two prob-
lems with attracting orbits: the Brusselator (Lefever and
Nicolis 1971) and van der Pol’s equation (1926). The fil-
ter is applied twice on each problem, once with a fixed step
size and once with the adaptive step size algorithm described
in Sect. 4. To get a visually interesting plot, the fixed step size
and the tolerance threshold were chosen as large as possible
without causing instability. Both cases are modeled with a
local diffusion parameter σ 2

n which is estimated using the
maximum likelihood estimator of Sect. 4. In the following
plots, the samples use the scale σ 2

n arising from the local error
estimate. Because these systems are attractive, the global
error correction mentioned in Sect. 4.1 would lead to sig-
nificantly more conservative uncertainty.

The Brusselator is the idealized and simplified model of
an autocatalytic multi-molecular chemical reaction (Lefever
andNicolis 1971). The rate equations for the oscillating reac-
tants are

y′
1 = A + y21 y2 − (B + 1)y1

y′
2 = By1 − y21 y2,

(50)

where A and B are positive constants describing the ini-
tial concentrations of two reactants. Following Hairer et al.
(1987), we set A = 1, B = 3 and (y1(0), y2(0))ᵀ =
(1.5, 3)ᵀ. The integration domain T = [0, 10] has been cho-
sen such that the solution completes one cycle on the attractor
after an initial convergence phase.

The results in Fig. 6 demonstrate the effectiveness of the
error estimator. This problem also demonstrates the quality
and utility of the step size adaptation algorithm, since on
the majority of the solution trajectory the algorithm is not
limited by stability constrains. In the right plot, it can be
seen how an increase in step size hn+1 > hn can also lead to
a reduction in posterior uncertainty. This is a consequence of
σ 2
tn+1

/σ 2
tn < 1.

Figure 10 inAppendix also displays the solution as a func-
tion of time.

Van der Pol’s equation (1926) describes an oscillationwith
a nonlinear damping factor α

0 = y′′ + αy′ + y

α = μ(y2 − 1)
(51)

with a positive constant μ > 0. Originally, this model has
been used to describe vacuum tube circuits. The limit cycle
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Fig. 6 Numerical solution of the Brusselator (50) using the proba-
bilistic filtering ODE solver. The plots show the solution computed
by ode45 using RelTol = AbsTol = 1 × 10−13 (black, back-
ground), the posterior mean (red, thick line), iso-contourlines of twice
the posterior standard deviation at a subsample of the knots (green) and

samples from the posterior distribution (red, dashed lines). Left: Using
a fixed step size of h = hn = 0.0834. The computation requires 120
steps. Right: Using the adaptive step size selection with error weighting
wi (y) = (τ yi + τ)−1, τ = 0.1. The computation requires 43 steps. See
Hairer et al. (1987, §1.6) for details. (Color figure online)

Fig. 7 Numerical solution of van der Pol’s equation (51) using the prob-
abilistic filtering ODE solver, integrated over one limit cycle period
T = [0, T ] with initial value y(0) = (A, 0)ᵀ, where T ≈ 6.6633
and A ≈ 2.0086. The plots show the solution computed by ode45
using RelTol = AbsTol = 1 × 10−13 (black, background), the
posterior mean (red, thick line), iso-contourlines of twice the posterior

standard deviation at a subsample of the knots (green) and samples
from the posterior distribution (red, dashed lines). Left: Using a fixed
step size of h = hn = 0.1667. The computation requires 40 steps.
Right: Using the adaptive step size selection with error weighting
wi (y) = (τ yi + τ)−1, τ = 0.1. The computation requires 41 steps.
See Hairer et al. (1987, §1.6) for details. (Color figure online)

alternates between a nonstiff phase of rapid change and a
stiff phase of slow decay. The largerμ, the more pronounced
both effects are. In our example, we set μ = 1 and integrate
over one period with the initial value on the graph of the

limit cycle. Exact values can be found in Hairer et al. (1987,
§I.16).

Figure 7 plots the filter results. Figure 11 displays the
solution as a function of time. In the case of van der Pol’s
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Fig. 8 Comparison of two different evaluation strategies on problems (50) and (51). Red: samples from the posterior as in Figs. 6 and 7. Green:
Similar, but evaluating at zn = f (tn, (utn )0), utn ∼ N (m−

tn ,C
−
tn ). This is similar to Chkrebtii et al. (2016). (Color figure online)

equation, the benefit of step size adaptation is essentially nil,
because conservative adaptation—in particular from a cau-
tious starting step size—consumes the gains on the nonstiff
parts. However, the example demonstrates the capability to
learn an anisotropic diffusion model for individual compo-
nents.

Finally, we compare two different strategies of quantify-
ing the uncertainty. To this end, we compare our proposed
model to the observation model proposed by Chkrebtii et
al. (2016, §3.1). In this case, we set zn = f (tn, (utn )0), utn ∼
N (m−

tn ,C
−
tn ). Figure 8 shows samples of the posterior dis-

tribution, computed with two different evaluation schemes.
This scheme is not exactly the same as the one proposed
by Chkrebtii et al.—their algorithm actually has cubic com-
plexity in the number of f -evaluations; thus, it is limited to a
relatively small number of evaluation steps. But our version
captures the principal difference between their algorithm and
the simpler filter proposed here: Their algorithm draws sep-
arate samples involving independent evaluations of f at per-
turbed locations, while ours draws samples from a single pos-
terior constructed from one single set of f -evaluations. As
expected, the model of Chkrebtii et al. provides a richer out-
put structure, for example, by identifying divergent solutions
(right subplot) if the solver leaves the region of attraction.
However, to obtain individual samples, the entire algorithm
has to run repeatedly, so the cost of producing S samples is
S times that of our algorithm, which produces all its sam-
ples in one run, without requiring additional evaluations
of f .

5.2 Benchmark evaluation

As is the case with many modern solvers, the theoretical
guarantees do not extend to the full implementation with
error estimation and step size control. Therefore, an empirical
assessment is necessary to compare against trusted imple-
mentations. We compare the proposed Kalman filter to a
representative set of standard algorithms on the DETEST
benchmark set (Hull et al. 1972). While other standardized
tests have been proposed (Crane and Fox 1969; Krogh 1973),
DETEST has repeatedly been described as representative
(Shampine et al. 1976; Deuflhard 1983). By choosing the
same comparison criteria across all test problems and tested
implementations, the benchmark provides the necessary data
to make predictions on the behavior on a large class of prob-
lems.

Two different dimensions of performance are considered
in Hull et al. (1972): the computational cost and the solution
quality. Computational cost is reported in execution time (in
seconds) and number of function evaluations (abbreviated as
#FE). Although the former is more relevant in practice, we
only report the latter here as the codes in Hull et al. (1972) are
outdated and our proof-of-concept code is not yet optimized
for speed. Nevertheless, since the execution times are propor-
tional to the #FE, this provides a reliable estimator of com-
putational efficiency. DETEST only considers methods with
automatic step size adaptation and thus measures the solu-
tion quality by comparing the local error with the requested
tolerance ε. A code is considered to produce high-quality
solutions if the results are within the requested tolerance,
but are also not of excessive unrequested higher accuracy.
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Table 2 Summary of DETEST results

Method Total fcn.
evals.

Avg. %
deceived

Max.
error

ε = 10−3

Extrapolation 16553 2.0 7.8

Adams (Krogh) 5394 1.1 5.3

Adams (Gear) 9498 0.9 1.5

RK (4th, Kutta) 8363 5.1 25.9

RK (6th, Butcher) 11105 5.1 1788.1

RK (8th, Shanks) 12355 6.3 1120.6

RK (3th, Shampine) 15085 5.9 2.4

RK (5th, Shampine) 5785 11.2 9.5

Adams (Shampine) 5692 6.5 7.7

PNM 19091 0.2 1.5

ε = 10−6

Extrapolation 26704 0.1 2.3

Adams (Krogh) 11353 1.4 7.3

Adams (Gear) 18155 0.8 2.6

RK (4th, Kutta) 30763 1.8 29.1

RK (6th, Butcher) 23540 1.6 142.5

RK (8th, Shanks) 20493 4.2 4.7

RK (3th, Shampine) 430975 0.0 1.9

RK (5th, Shampine) 19879 0.0 1.1

Adams (Shampine) 10777 3.6 6.3

PNM 405469 0.0 1.4

ε = 10−9

Extrapolation 43054 0.0 0.6

Adams (Krogh) 18984 0.5 4.0

Adams (Gear) 38439 2.3 2.7

RK (4th, Kutta) 146262 0.3 2.9

RK (6th, Butcher) 58634 0.9 443.4

RK (8th, Shanks) 39663 2.1 20.9

RK (3th, Shampine) 13587187 3.1 689.0

RK (5th, Shampine) 103345 0.1 2.4

Adams (Shampine) 18274 2.2 11.5

PNM 12731730 4.5 1938.0

Therefore, errors are reported per unit step. Reported are the
maximumerrormax{ξn[hnε]−1 | n = 1, . . . , N }per unit step
and the percentage of deceived steps |{ξn | ξn > hnε, n =
1, . . . , N }|/N , where the local errors ξn are defined as ||ytn −
y(tn; y(tn−1) = ytn−1)||∞ and y(tn; y(tn−1) = ytn−1) defines
the IVP y′ = f (t, y), y(tn−1) = ytn−1 , t ∈ [tn−1, tn].

Here, we report the results from the proposed solver orig-
inating from the IWP(2) model as well as the results from
the original Hull et al. paper 1972. We have not been able to
obtain a copy of the codes used in Hull et al. and only report
their numbers for sake of completeness. We also ran the tests
on the solvers provided in MATLAB. Table 2 lists the sum-

mary results for all methods and all tolerances. For detailed
results on individual problems, see Figs. 12, 13 and 14 in
Appendix section. For a complete and detailed description
of the benchmark, we refer to Hull et al. (1972). Our imple-
mentation is publicly available.2

In addition to the benchmark results, we analyze the error
estimation model from a probabilistic perspective. Figure 9
plots the cumulative distribution function (CDF) of the local
error ξn , as defined above, divided by the estimated local error
(Q(tn))

1/2
00 = (σ 2

n Q̄(hn))
1/2
00 for each set of five tasks (dif-

ferent blue colored lines) of each of the five problem classes
(figures from left to right). Under the algorithm’s internal
model, the error is assumed to be Gaussian distributed:

P(ytn | ŷtn ) = N (
ytn ; ŷtn , (Q(hn))00

)
, (52)

Hence, if that model were a perfect fit, the scaled absolute
error plotted in this figure would be χ -distributed:

P
(
|ytn − ŷtn|(Q(hn))

−1/2
00

)
= χ(1). (53)

The comparison with the CDF of χ(1) shows that the true
local error has weaker tails than the predicted χ -distribution.

So, as expected, the error estimator is typically a conser-
vative one.

While the probabilistic method does not achieve the same
high performance as modern higher-order codes, the perfor-
mancematches the results of a production Runge–Kutta code
of the same order. This is of particular interest since applica-
tions in the low-accuracy regime could benefit the most from
accurate error indicators (Gear 1981).

6 Conclusions

We proposed a probabilistic inference model for the numer-
ical solution of ODEs and showed the connections with
established methods. In particular, we showed how prob-
abilistic inference in Gauss–Markov systems given by a
linear time-invariant stochastic differential equations leads to
Nordsieck-typemethods. Themaximumaposteriori estimate
of the once integrated Wiener process IWP(1) is equivalent
to the trapezoidal rule. The twice integrated Wiener process
IWP(2) is equivalent to a third-order Nordsieck-type method
which can be thought of as a spline-based multistep method.
We demonstrated the practicality of this probabilistic IVP
solver by comparing against other state-of-the-art implemen-
tations.

The probabilistic formulation has already proven to be
beneficial in larger chains of computations involving bound-
ary value problems (Schober et al. 2014b; Hauberg et al.

2 https://pn.is.tuebingen.mpg.de/code/pfos.
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Fig. 9 Empirical cumulative distribution function (CDF) of true local
errors ξn divided by the estimated local errors (Q(tn))

1/2
00 . Ticks on the

y-axis are spaced at 0.1 intervals from0 to 1.Values less than 1 (red line)

are over-estimated leading to a conservative step size adaptation. Green
dashed line shows the CDF of the χ(1)-distribution which implies that
the empirical distribution has weaker tails. See text for more details.
(Color figure online)

2015). While the method presented in this paper is restricted
to IVPs, there has also beenwork on extending the formalism
of splines to boundary value problems (Mazzia et al. 2006,
2009). We expect that similar classical guarantees should be
transferable to probabilistic boundary value problem solvers
as well. Conversely, the probabilistic treatment of the IVP
may be beneficial in bigger pipelines as well (cf. Chkrebtii
et al. 2016).
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A Detailed results

Figures 10 and 11 in this section plot the solutions to the
problems presented in Sect. 5.1 as a function of time. For
details see Sect. 5.1.

Figures 12, 13 and 14 in this section present detailed
results from the DETEST test set. For a detailed description,
see Sect. 5 and Hull et al. (1972).

B A fourth-order four-step Runge–Kutta
formula expressed as LTI SDE filtering
solution

Runge–Kutta (RK) formulas are a family of one step solvers
for ODEs. At time tn+1, the numerical approximation is

defined

ytn+1 = ytn + h
s∑

i=1

bi ki,n

ki,n = f

⎛

⎝tn + hci , ytn + h
s∑

j=1

ai j k j,n

⎞

⎠

(54)

The parameters ai j , ci and bi are usually expressed as a
matrix A and two vectors b, c, written compactly in a so-
called Butcher tableau:

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass
b1 . . . bs

(55)

If thematrixA is strictly lower triangular and c1 = 0, Eq. (54)
simplifies to an iterative procedure of explicit equations

k1,n = f (tn, ytn ),

ki,n = f

⎛

⎝tn + ci h, ytn + h
i−1∑

j=1

ai j k j,n

⎞

⎠ , i = 2, . . . , s

ytn+1 = ytn + h
s∑

i=1

bi ki,n, (56)

and in this case, the formula is called an explicit RK method.
A RK method is said to be of order q, iff

|y(t0 + h) − yt1 | ≤ Chq+1, (57)

where C is a constant independent of h. In this case, the
global error is of order hq . It can be shown that there exist RK
methods for which the order q = s the number of vector field
evaluations up to and including q = s = 4. Furthermore,
there are no RK methods for which q = s, if q ≥ 5. For a
full description, we refer the reader to Hairer et al. (1987).
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Fig. 10 Numerical solution of theBrusselator (50) using the probabilis-
tic filtering ODE solver plotted against time. The plot shows the true
solution (black line), the mean of the filtering distribution (red dots),
the posterior mean (red, thick line) plusminus two times standard devi-

ation (light red, filled area) and samples from the posterior (red, dashed
line). Tickmarks in t indicate mesh points. Top: using a fixed step size.
Bottom: using adaptive step size selection (see Fig. 11). (Color figure
online)

Schober et al. (2014a) have presented probabilisticmodels
whose MAP at t0 + h = t1 is equivalent to an explicit RK
method of type Eq. (56) in the case of q ∈ {1, 2, 3}. The
corresponding probabilistic model is given by

dX = Uq+1X dt + eq dW , (58)

where (Uq+1)i j = δi, j+1, i, j = 0, . . . , q is the q + 1-
dimensional upper shiftmatrix and eq = (0, . . . , 0, 1)ᵀ is the
q+1th standard basis vector. Process (58) is known asq-times

integrated Wiener process IWP(q). The initial conditions are

mt−1 = 0, Ct−1 = lim
H→∞

Q(H). (59)

See Schober et al. (2014a) for details.
Assume that Algorithm 2 has been run until the loop has

been evaluated four times with hn such that (t0, . . . , t3) =
cᵀh = (0, uh, vh, 1), where u, v are two constant in [0, 1]
chosen by the user. Then, limH→∞mt3 for the IWP(4) is
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Fig. 11 Numerical solution of van der Pol’s equation (51) using the
probabilistic filtering ODE solver plotted against time. The plot shows
the true solution (black line), the mean of the filtering distribution (red
dots), the posterior mean (red, thick line) plusminus two times stan-

dard deviation (light red, filled area) and samples from the posterior
(red, dashed line). Tickmarks in t indicate mesh points. Top: using a
fixed step size. Bottom: using adaptive step size selection. (Color figure
online)

(mt3)0 = y0+h
1 − 2(u+v)+6uv

12uv
z0+h

2v − 1

12u(u − v)(u − 1)
z1

+ h
1 − 2u

12v(u − v)(v − 1)
z2 + h

3 − 4(u + v) + 6uv

12(u − 1)(v − 1)
z3

(mt3)1 = z3

(mt3)2 = 1

h

u + v − uv − 1

uv
z0 + 1

h

1 − v

u(u − v)(u − 1)
z1

+ 1

h

u − 1

v(u − v)(v − 1)
z2 + 1

h

3 − 2(u + v) + uv

(u − 1)(v − 1)
z3

(mt3)3 = 1

h2
2(u + v − 2)

uv
z0 + 1

h2
2(2 − v)

u(u − v)(u − 1)
z1

+ 1

h2
2(u − 2)

v(u − v)(v − 1)
z2 + 1

h2
2(3 − u − v)

(u − 1)(v − 1)
z3

(mt3)4 = 1

h3
−6

uv
z0 + 1

h3
6

u(u − v)(u − 1)
z1

+ 1

h3
−6

v(u − v)(v − 1)
z2 + 1

h3
6

(u − 1)(v − 1)
z3

Furthermore, we get the following algebraic equations for
the elements of the covariance matrix limH→∞Ct3 :

(Ct3)00 = σ 2h9
[
6u6v2−3u6v+6u5v3−27u5v2+20u5v

− 4u5 + 6u4v4 − 27u4v3 + 28u4v2 − 12u4v

+ 2u4 + 6u3v5 − 27u3v4 + 28u3v3 − 12u3v2

+ 2u3v + 6u2v6 − 27u2v5 + 28u2v4 + 68u2v3

− 78u2v2 + 20u2v − 9uv6 + 38uv5 − 42uv4

− 48uv3 + 70uv2 − 20uv + 3v6 − 13v5 + 17v4
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Fig. 12 log10(#FE), the number of function evaluations in logarithmic scale, for all tested methods and individual problems

Fig. 13 log10(|{ξn | ξn > ε, n = 1, . . . , N }|N−1), the percent of deceived steps in logarithmic scale, for all tested methods and individual problems

Fig. 14 log10(max{ξn[hnε]−1 | n = 1, . . . , N }), themaximumerror per unit step in logarithmic scale, for all testedmethods and individual problems
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+ 5v3 − 15v2 + 5v
][
725760v(1 − u)

]−1

(Ct3)01 = 0

(Ct3)02 = σ 2h7
[
(v − 1)(3u6v+3u5v2 − 16u5v+6u5+3u4v3

− 16u4v2 + 14u4v − 4u4 + 3u3v4 − 16u3v3

+ 14u3v2 − 4u3v + 3u2v5 − 16u2v4 + 14u2v3

+ 76u2v2 − 40u2v − 6uv5 + 29uv4 − 24uv3

− 85uv2 + 50uv + 3v5 − 14v4 + 15v3 + 20v2

− 15v)
][
120960v(u − 1)

]−1

(Ct3)03 = σ 2h6
[
3u6v2 − 6u6v + 3u5v3 − 18u5v2 + 32u5v

− 10u5 + 3u4v4 − 18u4v3 + 40u4v2 − 30u4v

+ 8u4 + 3u3v5 − 18u3v4 + 40u3v3 − 30u3v2

+ 8u3v + 3u2v6 − 18u2v5 + 40u2v4 + 50u2v3

− 192u2v2 + 80u2v − 9uv6 + 41uv5 − 69uv4

− 81uv3 + 271uv2 − 117uv + 6v6 − 28v5

+ 50v4 + 2v3 − 78v2 + 39v
][
60480v(u − 1)

]−1

(Ct3)04 = σ 2h5
[
3u6v + 3u5v2 − 12u5v + 4u5 + 3u4v3

− 12u4v2 + 12u4v − 4u4 + 3u3v4 − 12u3v3

+ 12u3v2 − 4u3v + 3u2v5 − 12u2v4 + 12u2v3

+ 76u2v2 − 40u2v + 3uv6 − 12uv5 + 12uv4

+ 16uv3 − 140uv2 + 72uv − 3v6 + 13v5 − 19v4

+ 5v3 + 45v2 − 27v
][
20160v(1 − u)

]−1

(Ct3)11 = 0

(Ct3)12 = 0

(Ct3)13 = 0

(Ct3)14 = 0.

The last four equations are a consequence of the noise-free
observation z3 at t0 + c4h = t0 + h = t3. The remaining
entries are given by the expressions

(Ct3)22 = σ 2h5[(v − 1)2(u4 + u3v + u2v2 + uv3 − 10uv

− 2v3 + 2v2 + 6v)][2520v]−1

(Ct3)23 = σ 2h4[(v − 1)(u5v − 3u5 + u4v2 − 5u4v + 4u4

+ u3v3 − 5u3v2 + 4u3v + u2v4 − 5u2v3

− 16u2v2+40u2v−5uv4+15uv3+37uv2

− 77uv + 5v4 − 15v3 − 11v2 + 33v)]
[2520v(u − 1)]−1

(Ct3)24 = σ 2h3[(v − 1)(−u5 − u4v + 2u4 − u3v2 + 2u3v

− u2v3 + 2u2v2 + 20u2v − uv4 + 2uv3

+ 5uv2 − 50uv + 2v4 − 5v3 + 25v)]
[840v(u − 1)]−1

(Ct3)33 = σ 2h3[u5v − 2u5 + 2u4v2 − 6u4v + 4u4 + 2u3v3

− 6u3v2 + 4u3v + 2u2v4 + 4u2v3 − 36u2v2

+ 40u2v + uv5 − 12uv4 − 12uv3 + 104uv2

− 96uv − 2v5 + 16v4 − 8v3 − 48v2 + 48v]
[630v(1 − u)]−1

(Ct3)34 = σ 2h2[u5 + 3u4v − 4u4 + 3u3v2 − 4u3v + 3u2v3

+ 16u2v2 − 40u2v + 3uv4 + uv3 − 95uv2

+ 135uv + v5 − 10v4 + 14v3 + 54v2 − 81v]
[420v(u − 1)]−1

(Ct3)44 = σ 2h[u4 + u3v + u2v2 + 10u2v + uv3 + 20uv2

− 60uv+v4−5v3−15v2+45v][70v(1 − u)]−1

which defines the entire matrix since Ct3 is a symmetric
matrix.

The proof that this specific choice of c is analogous to the
proofs given in Schober et al. (2014a) and can be checked
with laborious algebra.

We would like to point to one more detail: Although it
can easily be checked that (mt3)0 is of the required form
to produce the RK prediction, this does not suffice to show
that this choice of evaluation knots produces Runge–Kutta.
The space of suitable parameters to produce a qth-order
method is constrained by the expansion to match the Taylor
coefficients. In the case of the IWP(q), where each sub-
sequent evaluation increases the order of the polynomial
approximation, this entails that each partial RK-step needs
to be a RK method of its own right to produce an over-
all RK method of high order. One can think about this as
a bigger set of constraints that needs to be fulfilled. As a
consequence, this also entails that there is no meaningful
interpretation of RK methods with v �= 2/3 in the case of the
IWP(3) as has erroneously been conjectured in Schober et al.
(2014a).

For complete details, see Hairer et al. (1987) and Schober
et al. (2014a).
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