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Abstract Methods of estimating unknown parameters of a
trend function for trend-renewal processes are investigated
in the case when the renewal distribution function is un-
known. If the renewal distribution is unknown, then the like-
lihood function of the trend-renewal process is unknown
and consequently the maximum likelihood method cannot
be used. In such a situation we propose three other meth-
ods of estimating the trend parameters. The methods pro-
posed can also be used to predict future occurrence times.
The performance of the estimators based on these methods
is illustrated numerically for some trend-renewal processes
for which the statistical inference is analytically intractable.

Keywords Parameter estimation · Trend-renewal process ·
Power-law process · Weibull-power-law trend-renewal
process

1 Introduction

We consider a class of estimation problems for the stochas-
tic model determined by the trend-renewal process (TRP)
which is defined to be a time-transformed renewal pro-
cess (time-transformed RP), where the time transforma-
tion is given by a trend function λ(·). It contains the non-
homogeneous Poisson process (NHPP) and RP as special
cases and serves as a useful reliability model for repairable
systems.

The TRP was introduced and investigated first by Lind-
qvist (1993) and by Lindqvist et al. (1994) (see also
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Lindqvist and Doksum (2003), and Lindqvist (2006)). Para-
metric inference on the parameters of the TRP was consid-
ered in the paper of Lindqvist et al. (2003), where the au-
thors also proposed corresponding models, called heteroge-
neous trend-renewal processes, that extend the TRP to cases
involving unobserved heterogeneity. Nonparametric maxi-
mum likelihood (ML) estimation of the trend function of a
TRP under the often natural condition that λ(·) is monotone
was considered by Heggland and Lindqvist (2007).

Peña and Hollander (2004) presented a general class of
models that allows the researcher to incorporate the effect
of interventions performed on a unit after each event occur-
rence, the impact of accumulating events on a unit, the effect
of unobservable random effects of frailties, and the effect of
covariates that could be time-dependent. The ML estimators
of this general models parameters were presented, and their
finite and asymptotic properties were ascertained by Stocker
and Peña (2007).

In the present paper we take up the problem of estimat-
ing unknown trend parameters of a TRP in the case when
its renewal distribution is unknown. If the renewal distribu-
tion is unknown, then the likelihood function of the TRP is
unknown and consequently the ML method cannot be used.
In this case we propose three possible methods of estimat-
ing the trend parameters. The problem of estimating trend
parameters of the TRP with unknown renewal distribution
may be of interest in the situation when we observe sev-
eral systems, of the same kind, working in different environ-
ments and we are interesting in examining and comparing
their trend functions, whatsoever their renewal distribution
is.

The article is organized as follows. In Sect. 2 we recall
the definition of the TRP and the form of its likelihood func-
tion. A special case of the TRP with a Weibull renewal dis-
tribution and power-law type trend function is considered in
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Sect. 3. The likelihood function and the likelihood equations
for estimating the parameters of that process are given. The
likelihood equations are also presented in the form which
is used in simulation study to obtain the ML estimators of
the TRP parameters. In Sect. 4 we propose three methods of
estimating the trend parameters in the case when the ML
methods can not be used. The estimation problem of the
trend parameters in some special case of the TRP is consid-
ered in Sect. 5. In Sect. 6 the estimators proposed are exam-
ined and compared with the ML estimators (obtained under
the additional assumption that the renewal distribution has
a known parametric form) through a computer simulation
study. Some real data are examined in Sect. 6.3. Section 7
contains conclusions and some prospects.

2 Definitions and preliminaries

Let N(t) denote the number of jumps (failures) in the time
interval (0, t] and let Ti be the time of the ith failure. De-
fine T0 = 0 and denote Xi = Ti − Ti−1—the time between
failure number i − 1 and failure number i. In the context
of failure-repair models it is assumed here that all repair
times are equal to 0. In practice this corresponds to the sit-
uation, when repair actions are conducted immediately or
the repair times can be neglected in comparison to the times
Xi between failures (the so called working times or waiting
times). The observed sequence {Ti, i = 1,2, . . .} of occur-
rence times T1, T2, . . . (failure times) forms a point process,
and {N(t), t ≥ 0} is the corresponding counting process.

Let λ(t) be a nonnegative function defined for t ≥ 0, and
let �(t) = ∫ t

0 λ(u)du. The process {N(t), t ≥ 0} is called a
trend renewal process TRP(F,λ(·)) if the time-transformed
process �(T1),�(T2), . . . is a renewal process RP(F ), i.e.
if the random variables �(Ti) − �(Ti−1), i = 1,2, . . . , are
i.i.d. with cdf F .

The cdf F is meant as the renewal distribution function,
and λ(t) is called the trend function. If for instance, F(t) =
1 − exp(−t), then the TRP(1 − exp(−t), λ(·)) becomes the
non-homogeneous Poisson process NHPP(λ(·)). Let us also
remark that in particular, the TRP(F,1) is the RP(F ).

Equivalently, the corresponding counting process {N(t),
t ≥ 0} can be considered, where N(t) = Ñ(�(t)) and
{Ñ(t), t ≥ 0} represents a RP.

Note that the representation TRP(F,λ(·)) is not unique.
For uniqueness we assume that the expected value of the
renewal distribution defined by F equals 1.

The conditional intensity function of a point process is
defined by

γ (t) = λ(t |Ft−)

= lim
�t→0

P(failure in point process in (t, t + �t)|Ft−)

�t
,

where Ft− = σ {N(u),u < t}. For a TRP(F,λ(·)) we have

γ (t) = lim
�t→0

P(failure in TRP in (t, t + �t)|Ft−)

�t

= lim
�t→0

P(failure in RP(F ) in (�(t),�(t + �t))|Ft−)

�t

= lim
�t→0

P(failure in RP(F ) in (�(t),�(t + �t))|Ft−)

��(t)

× ��(t)

�t
.

In the case of RP(F ) the conditional intensity is given by
γ (t) = z(t − TN(t−)), where z(t) is the hazard rate corre-
sponding to F : z(t) = f (t)

1−F(t)
, where f (t) = d

dt
F (t). Thus,

for a TRP(F,λ(·)),

γ (t) = z(�(t) − �(TN(t−))) lim
�t→0

�(t + �t) − �(t)

�t

= z(�(t) − �(TN(t−)))λ(t). (1)

For a point process N(t) observed in the interval time
[0, σ ] with the realizations t1, t2, . . . , tN(σ ) of the jump (fail-
ure) times T1, T2, . . . , TN(σ) and conditional intensity func-
tion γ (t), the likelihood function is of the form

L(σ) =
[

N(σ)∏

i=1

γ (ti)

]

exp

(

−
∫ σ

0
γ (u)du

)

(Andersen et al. 1993). For a random stopping time σ with
respect to the filtration Ft = σ {N(u) : u ≤ t}, this formula
follows from the fundamental identity of sequential analysis
as a consequence of the optional stopping theorem.

Taking into account formula (1), the likelihood function
of a TRP(F,λ(·)) takes the form

L(σ) =
[

N(σ)∏

i=1

z(�(ti) − �(ti−1))λ(ti)

× exp

(

−
∫ ti

ti−1

z(�(u) − �(ti−1))λ(u)du

)]

× exp

(

−
∫ σ

tN(σ)

z(�(u) − �(tN(σ)))λ(u)du

)

.

Consequently, for a TRP(F,λ(·)) observed in the time inter-
val [0, σ ], by applying the substitution v = �(u)−�(Ti−1),
the likelihood function takes the form

L(σ) =
[

N(σ)∏

i=1

z
(
�(ti) − �(ti−1)

)
λ(ti)

× exp

(

−
∫ �(ti )−�(ti−1)

0
z(v)dv

)]
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× exp

(

−
∫ �(σ)−�(tN(σ))

0
z(v)dv

)

(2)

(Lindqvist et al. (2003, formula (2), Chap. 2)) and the log-
likelihood function is defined by

�(σ ) := logL(σ)

=
N(σ)∑

i=1

[

log
(
z(�(ti) − �(ti−1))

)

+ log
(
λ(ti)

)−
∫ �(ti )−�(ti−1)

0
z(v)dv

]

−
∫ �(σ)−�(tN(σ))

0
z(v)dv. (3)

3 An example—the Weibull-Power-Law TRP

3.1 The likelihood function

Let us consider the TRP(F,λ(·)) with

λ(t;α,β) = αβtβ−1, α > 0, β > 0,

�(t;α,β) = αtβ

and

F(x) = F(x;γ )

= 1 − exp
[− (


(1 + 1/γ )x
)γ ]

(γ > 0),

studied by Lindqvist et al. (2003). The renewal distribu-
tion function F corresponds to the Weibull distribution
W e(γ,1/
(1 + 1/γ )) with the parametrization resulting in
the expectation 1. The hazard function corresponding to F is
z(x) = (
(1+ 1

γ
))γ γ xγ−1. This TRP(F,λ(·)) will be called

the Weibull-Power-Law TRP and will be denoted shortly by
WPLP(α,β, γ ).

For the WPLP(α,β, γ ) the likelihood function defined
by (2) takes the form

L(σ) = L(σ ;ϑ)

=
N(σ)∏

i=1

ϕβγ t
β−1
i (t

β
i − t

β

i−1)
γ−1

× exp

[

−
N(σ)∑

i=1

ϕ(t
β
i − t

β

i−1)
γ − ϕ(σβ − t

β

N(σ))
γ

]

,

where ϑ = (ϕ,β, γ ) and

ϕ = ϕ(α,γ ) = [α
(1 + 1/γ )]γ .

In the case γ = 1 the renewal distribution function F

corresponds to the exponential distribution E (1) and the

WPLP(α,β,1) becomes NHPP(λ(t)) with λ(t) = αβtβ−1,
i.e., the so called Power-Law Process. We denote this pro-
cess by PLP(α,β). Note that in this case ϕ = α.

If γ = 1 and β = 1, then the WPLP(α,1,1) is the
TRP(1 − exp(−t), α), i.e., it is the HPP(α).

The log-likelihood function for the WPLP(α,β, γ ) is

�(σ ;ϑ) := logL(σ ;ϑ)

= N(σ)(lnϕ + lnβ + lnγ )

+ (β − 1)

N(σ)∑

i=1

ln ti + (γ − 1)

N(σ)∑

i=1

ln(t
β
i − t

β

i−1)

− ϕ

[
N(σ)∑

i=1

(t
β
i − t

β

i−1)
γ + (σβ − t

β

N(σ))
γ

]

.

In the case when the observation is finished at the n-th
failure time point, i.e., σ = tN(σ ) and N(σ) = n, the likeli-
hood function is given by

L̃(n;ϑ) = (ϕβγ )n
n∏

i=1

t
β−1
i [tβi − t

β

i−1]γ−1

× exp

{

−ϕ

n∑

i=1

[tβi − t
β

i−1]γ
}

,

and the log-likelihood function is

�̃(n;ϑ) = n(lnϕ + lnβ + lnγ )

+
n∑

i=1

[
(β − 1) ln ti + (γ − 1) ln(t

β
i − t

β

i−1)

− ϕ[tβi − t
β

i−1]γ
]
.

In other words, the observation time is the random stopping
time σ = inf{t ≥ 0;N(t) = n} determining the so called in-
verse estimation plan.

3.2 The ML estimators

The solution to the equation ∂�/∂ϕ = 0 with respect to ϕ is

ϕ̃ = ϕ̃(β, γ ) = N(σ)
∑N(σ)

i=1 (t
β
i − t

β

i−1)
γ + (σβ − t

β

N(σ))
γ

. (4)

Performing the likelihood equations for the parameters β

and γ we have the following fact.

Fact 1 The ML estimators ϕ̂ML, β̂ML and γ̂ML of the pa-
rameters ϕ, β and γ , based on the observation up to any
stopping time σ , are determined as follows:

ϕ̂ML = N(σ)
∑N(σ)

i=1 (t
β̂ML
i − t

β̂ML
i−1 )γ̂ML + (σ β̂ML − t

β̂ML
N(σ)

)γ̂ML

,
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where β̂ML and γ̂ML are the solutions of the following system
of likelihood equations

N(σ)

β
+

N(σ)∑

i=1

{

(t
β
i ln ti − t

β

i−1 ln ti−1)

×
[

γ − 1

t
β
i − t

β

i−1

− ϕ̃γ (t
β
i − t

β

i−1)
γ−1

]

+ ln ti

}

− ϕ̃γ
(
σβ − t

β

N(σ)

)γ−1(
σβ lnσ − t

β

N(σ) ln tN(σ )

)= 0,

N(σ )

γ
+

N(σ)∑

i=1

ln(t
β
i − t

β

i−1)
[
1 − ϕ̃(t

β
i − t

β

i−1)
γ
]

− ϕ̃(σ β − t
β

N(σ))
γ ln(σβ − t

β

N(σ)) = 0,

where ϕ̃ = ϕ̃(β, γ ) is defined by (4).

In the inverse sequential estimation plan, the solution to
the equation ∂�̃/∂ϕ = 0 with respect to ϕ is

ϕ̃ = ϕ̃(β, γ ) = n
∑n

i=1(t
β
i − t

β

i−1)
γ

, (5)

and we have the following special case of Fact 1.

Fact 2 The ML estimators ϕ̂ML, β̂ML and γ̂ML of the param-
eters ϕ,β and γ in the inverse estimation plan are deter-
mined as follows:

ϕ̂ML = n
∑n

i=1[t β̂ML
i − t

β̂ML
i−1 ]γ̂ML

, (6)

where β̂ML and γ̂ML are the solutions of the following system
of likelihood equations

n

β
+

n∑

i=1

{

[tβi ln ti − t
β

i−1 ln ti−1]

×
[

γ − 1

t
β
i − t

β

i−1

− ϕ̃γ (t
β
i − t

β

i−1)
γ−1

]

+ ln ti

}

= 0, (7)

n

γ
+

n∑

i=1

ln(t
β
i − t

β

i−1)
[
1 − ϕ̃(t

β
i − t

β

i−1)
γ
]= 0,

where ϕ̃ = ϕ̃(β, γ ) is defined by (5).

The estimator α̂ of α is evaluated according to the for-
mula

α̂ = ϕ̂1/γ̂


(1 + 1/γ̂ )
, (8)

where ϕ̂ and γ̂ are estimators of ϕ and γ .

Regarding that t0 = 0, to avoid indeterminate expressions
0 · (−∞) in the numerical evaluations we express the for-
mula for the log-likelihood function in the following form

�̃(n;ϑ) = n(lnϕ + lnβ + lnγ )

+ (β − 1) ln t1 + (γ − 1) ln t
β

1 − ϕt
βγ

1

+
n∑

i=2

[
(β − 1) ln ti + (γ − 1) ln(t

β
i − t

β

i−1)

− ϕ(t
β
i − t

β

i−1)
γ
]
. (9)

The derivative ∂�̃/∂β is

∂�̃

∂β
= n

β
+ γ (1 − ϕt

βγ

1 ) ln t1

+
n∑

i=2

{

[tβi ln ti − t
β

i−1 ln ti−1]
[

γ − 1

t
β
i − t

β

i−1

− ϕγ (t
β
i − t

β

i−1)
γ−1

]

+ ln ti

}

and in the numerical computation we use the likelihood
equation

n

β
+ γ

(
1 − ϕ(β,γ )t

βγ

1

)
ln t1

+
n∑

i=2

{

[tβi ln ti − t
β

i−1 ln ti−1]
[

γ − 1

t
β
i − t

β

i−1

− ϕ(β,γ )γ (t
β
i − t

β

i−1)
γ−1

]

+ ln ti

}

= 0

instead of (7).
In particular, for the WPLP(α,β,1), i.e. for the

PLP(α,β), the ML estimators of α and β can be explicitly
determined (see e.g. Rigdon and Basu (2000, pp. 136–137)).

Fact 3 For the PLP(α,β) the ML estimators α̂ML and β̂ML

of α and β , based on the observation up to any stopping time
σ , are of the form

α̂ML = N(σ)

σ β̂ML
(10)

and

β̂ML = N(σ)

(

ln
σN(σ)

∏N(σ)
i=1 ti

)−1

. (11)

4 The alternative methods of estimating trend
parameters of a TRP

In the case when both the form of the renewal distribution
function F and the form of the trend function λ(·) of the
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TRP(F,λ(·)) are known one can estimate unknown param-
eters of this process using the maximum likelihood (ML)
method. The problem is to find the estimators of unknown
parameters of F and λ for which the likelihood function de-
fined by (2) or the log-likelihood defined by (3) takes its
maximum.

In the case where the form of F is unknown, we propose
in Sects. 4.1, 4.2 and 4.3 three methods for estimating un-
known parameters of the trend function of a TRP(F,λ(·)),
where λ(·) = λ(t;ϑ) and ϑ is a vector of unknown param-
eters. The problem of estimating trend parameters of the
TRP with unknown renewal distribution may be of inter-
est in the situation when we observe several systems, of the
same kind, working in different environments and we are in-
teresting in examining and comparing their trend functions,
whatsoever their renewal distribution is. Moreover, the fol-
lowing limit results for the TRP hold

V (t)

�(t)
→ 1, a.s.,

N(t)

�(t)
→ 1 as t → ∞,

where V (t) = E(N(t)) (see Lindqvist et al. (2003)). For
NHPP(λ(t)) the equality V (t) = �(t) holds for every t .
Thus we may, at least asymptotically, think of �(t) as the
expected number of failures until time t . Therefore, we can
use �̂(t0) = �(t0; ϑ̂) as an estimator of V (t0), for some t0

large enough, whatsoever renewal distribution of the TRP is.

4.1 The least squares method

The least squares (LS) method consists of determining the
value of ϑ̂LS that minimizes the quantity

S2
LS(ϑ) =

N(σ)∑

i=1

[�(ti;ϑ) − �(ti−1;ϑ) − 1]2, (12)

where ti are the realizations of random variables Ti , i =
1, . . . ,N(σ ), and �(t0) := 0. Let us note that Wi = �(Ti)−
�(Ti−1) are the observations from the distribution with the
expected value 1 (this is assumed for the uniqueness of the
representation of a TRP). Thus the LS method consists of
deriving such estimate of the unknown parameter ϑ (of the
trend function) which minimizes the sum of squares of devi-
ations of the random variables Wi from the expected value 1
(i.e. minimizes the sample variance).

4.2 The constrained least squares method

The constrained least squares (CLS) method consists of de-
termining the value of ϑ that minimizes the quantity S2

LS(ϑ)

defined by (12) subject to the constraint

1

N(σ)

N(σ)∑

i=1

[�(ti;ϑ) − �(ti−1;ϑ)] = 1,

i.e., under the condition

�(tN(σ);ϑ) = N(σ). (13)

Thus in the CLS method we assume additionally that the
sample mean

W = 1

N(σ)

N(σ)∑

i=1

Wi

is equal to the theoretical expected value 1 of the distribution
defined by F .

4.3 The method of moments

If the value of the variance of the renewal distribution F is
known, say s, then we can state the following condition on
the sample variance:

1

N(σ) − 1

N(σ)∑

i=1

[�(ti;ϑ) − �(ti−1;ϑ) − 1]2 = s.

Taking into account (13) we have the following first two
sample moment conditions:

⎧
⎨

⎩

�(tN(σ);ϑ) = N(σ),

∑N(σ)
i=1 [�(ti;ϑ) − �(ti−1;ϑ)]2 = (s + 1)N(σ) − s.

(14)

If ϑ = (ϑ1, ϑ2), then the method of moments (M method)
consists of determining any solution ϑ̂M to the system
of (14).

4.4 Some remarks

Remark 1 The LS, CLS and M methods can be useful when
we do not know the form of the cumulative distribution func-
tion F (the renewal distribution), and consequently, when
we do not know the likelihood function of the TRP(F,λ(·)).

Remark 2 The LS, CLS and M methods can be used to pre-
dict the next failure time. For example, we have T̂N(σ )+1 =
�̂−1[�̂(TN(σ)) + 1], where �̂(t) = �(t; ϑ̂).

Remark 3 The LS, CLS and M methods can be the alter-
native methods of obtaining the estimators of an unknown
parameter ϑ in the case when the maximum likelihood es-
timator does not exist. For example, in the case of k-stage
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Erlangian NHPP, which was first mentioned in Khoshgof-
taar (1988), the maximum likelihood estimator exists and is
unique if and only if some condition concerning the real-
izations of the process is satisfied (see Zhao and Xie (1996,
Theorem 2.1(ii)).

Remark 4 In the NHPP models for which the number of
failures is bounded there are no consistent estimators of the
unknown parameters (see Nayak et al. (2008, Theorem 1)).
Thus, in these cases of the TRP, the estimators obtained by
the ML, LS, CLS or M method are not consistent.

5 Estimation of trend parameters in special models of
the TRP

Consider a TRP(F,λ(·)), where λ(t) = αβtβ−1, α > 0,
β > 0. If the renewal distribution function F is not speci-
fied, we will call this process the Power TRP(F,λ(·)) and
denote it by PTRP(α,β).

5.1 The LS method

Using the LS method we denote

S2
LS(α,β) =

N(σ)∑

i=1

[�(ti;α,β) − �(ti−1;α,β) − 1]2,

and the optimization problem considered is to find

(̂αLS, β̂LS) = arg min
(α,β)∈R+×R+

S2
LS(α,β).

For the PTRP(α,β) considered, the equality
∑N(σ)

i=1 (t
β
i −

t
β

i−1) = t
β

N(σ) holds, and consequently

S2
LS(α,β) = α2

N(σ)∑

i=1

(t
β
i − t

β

i−1)
2 − 2αt

β

N(σ) + N(σ). (15)

Substituting the value

α = αLS(β) = t
β

N(σ)
∑N(σ)

i=1 (t
β
i − t

β

i−1)
2
, (16)

which minimizes the trinomial S2
LS(α,β), into formula (15)

we have

S2
LS(αLS(β),β) = N(σ) − t

2β

N(σ)
∑N(σ)

i=1 (t
β
i − t

β

i−1)
2
,

and the optimization problem reduces to the problem of find-
ing

β̂LS = arg min
β∈R+

S̃2
LS(β), (17)

where

S̃2
LS(β) = − t

2β

N(σ)
∑N(σ)

i=1 (t
β
i − t

β

i−1)
2
.

For numerical reasons (to avoid ln 0 in evaluating the es-
timator β̂LS), formula (15) is expressed in the form

S2
LS(α,β) = α2t

2β

1 + α2
N(σ)∑

i=2

(t
β
i − t

β

i−1)
2

− 2αt
β

N(σ) + N(σ).

The condition
∂S2

LS(α,β)

∂β
= 0 leads to the equation

2α

[

αt
2β

1 ln t1 − t
β

N(σ) ln tN(σ )

+ α

N(σ)∑

i=2

(t
β
i − t

β

i−1)(t
β
i ln ti − t

β

i−1 ln ti−1)

]

= 0.

Taking into account formula (16) gives

t
2β

1 ln t1 − ln tN(σ )

N(σ)∑

i=1

(t
β
i − t

β
t−i )

2

+
N(σ)∑

i=2

(t
β
i − t

β

i−1)(t
β
i ln ti − t

β

i−1 ln ti−1) = 0,

which can be rewritten in the form

t
2β

1 ln
t1

tN(σ )

+
N(σ)∑

i=2

(t
β
i − t

β

i−1)

×
(

t
β
i ln

ti

tN(σ )

− t
β

i−1 ln
ti−1

tN(σ )

)

= 0. (18)

Consequently, we have

Proposition 1 The LS estimators α̂LS and β̂LS of α and β

are determined by

α̂LS = t
β̂LS
N(σ)

∑N(σ)
i=1 (t

β̂LS
i − t

β̂LS
i−1)

2
(19)

and the β̂LS which is the solution to (18).

5.2 The CLS method

Using the CLS method we denote

C(σ) =
{
(α,β) : �(tN(σ);α,β) = N(σ)

}
, (20)
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and the optimization problem considered is to find

(̂αCLS, β̂CLS) = arg min
(α,β)∈C(σ)

S2
LS(α,β).

For the PTRP(α,β) considered the restriction set defined by
(20) takes the form

C(σ) =
{
(α,β) : αt

β

N(σ)
= N(σ)

}
.

Denote

αCLS = αCLS(β) = N(σ)

t
β

N(σ)

and

S2
CLS(β) = S2

LS(αCLS(β),β).

Thus, under the CLS criterion the optimization problem re-
duces to the problem of finding

β̂CLS = arg min
β∈R+

S2
CLS(β),

where

S2
CLS(β) = N2(σ )

t
2β

N(σ)

N(σ)∑

i=1

(t
β
i − t

β

i−1)
2 − 2

N(σ)

t
β

N(σ)

t
β

N(σ) + N(σ)

= N(σ)

(
N(σ)

t
2β

N(σ)

N(σ)∑

i=1

(t
β
i − t

β

i−1)
2 − 1

)

.

Hence, the problem of finding the estimator β̂CLS is equiva-
lent to the problem of finding

β̂CLS = arg min
β∈R+

S̃2
CLS(β), (21)

where

S̃2
CLS(β) = 1

t
2β

N(σ)

N(σ)∑

i=1

(t
β
i − t

β

i−1)
2.

Observe that

S̃2
CLS(β) = −

[
S̃2

LS(β)
]−1

and the extrema appear at the same points as in the LS
method, so β̂CLS = β̂LS.

The condition
∂S̃2

CLS(β)

∂β
= 0 leads to the equation

t
2β

1 ln
t1

tN(σ )

+
N(σ)∑

i=2

(t
β
i − t

β

i−1)

×
(

t
β
i ln

ti

tN(σ )

− t
β

i−1 ln
ti−1

tN(σ )

)

= 0, (22)

which has the same form as that one defined by (18) for
deriving β̂LS in the LS method.

Proposition 2 The CLS estimators α̂CLS and β̂CLS of α and
β are determined by

α̂CLS = N(σ)

t
β̂CLS
N(σ)

(23)

and the β̂CLS which is the solution to (22).

5.3 The M method

For the PTRP(α,β) considered, the system of equations of
(14) takes the form
⎧
⎨

⎩

αt
β

N(σ) = N(σ),

α2∑N(σ)
i=1 (t

β
i − t

β

i−1)
2 = (s + 1)N(σ) − s.

Thus we have the following

Proposition 3 The M estimators α̂M and β̂M of α and β are
determined by

α̂M = N(σ)

t
β̂M

N(σ)

(24)

and the β̂M which is the solution to the equation

N2(σ )

t
2β

N(σ)

N(σ)∑

i=1

(t
β
i − t

β

i−1)
2 − (s + 1)N(σ) + s = 0. (25)

For numerical computation reasons the following equivalent
form of (25)

N2(σ )

{(
t1

tN(σ )

)2β

+
N(σ)∑

i=2

[(
ti

tN(σ )

)β

−
(

ti−1

tN(σ )

)β]2
}

− (s + 1)N(σ) + s = 0 (26)

is more useful.
Note that for the WPLP(α,β, γ ) the variance s of the

renewal distribution defined by F is given by

s = 
(1 + 2/γ )


2(1 + 1/γ )
− 1. (27)

In particular, s = 1 for the PLP(α,β).

6 Numerical results

In this section we present some numerical results illustrat-
ing the accuracy of the LS, CLS and M estimators pro-
posed in the PTRP(α,β) model (with F unspecified) and
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in the WPLP(α,β, γ ). The samples of the PLP(α,β) and
the WPLP(α,β, γ ) were generated up to a fixed number n

of jumps is reached and for k = 500 samples for each cho-
sen combination of the parameters α,β and γ . The estimates
of the unknown parameters α,β and γ are evaluated as the
means of the estimates derived on the basis of individual re-
alizations of the process considered. The variability of an
estimator η̂ of an unknown parameter η was measured by
the root mean squared error (RMSE) which is expressed
by RMSE( η̂ ) = √

(sd( η̂ ))2 + (mean( η̂ ) − η)2, where sd
stands for the standard deviation. In the tables the abbre-
viation se( η̂ ) is used for this error.

In constructing the executable computer programs, pro-
cedures of the package Mathematica 8.0 were used.

6.1 The estimates in the PLP

The values of the estimators of α and β were evaluated nu-
merically using two numerical methods: constrained local
optimization through solving equations (CLOSE method)
and constrained global optimization (CGO method).

The CLOSE method in obtaining ML estimators relies
on using the explicit formulae for α̂ML and β̂ML given by
(10) and (11), respectively, in Fact 3. The CLOSE method
in evaluating the LS estimators relies on Proposition 1, i.e.
on solving numerically equation (18) with respect to β > 0
and then substituting the solution for the estimator β̂LS into
formula (19) for the estimator α̂LS. The CLOSE method in
evaluating the CLS estimators relies on Proposition 2, i.e.
on solving numerically equation (22) with respect to β >

0 and then substituting the solution for the estimator β̂CLS

into formula (23) for the estimator α̂CLS. The M estimators
were obtained by Proposition 3, i.e. by solving numerically
equation (26) (for s = 1) with respect to β > 0 and then
substituting the solution for the estimator β̂M into formula
(24) for the estimator α̂M .

To investigate the numerical results for those pro-
cesses for which the optimization problems can not
be even partially solved explicitly (in contrast to the

PLP(α,β)), we conducted analogous numerical investi-
gation by using CGO method. The CGO method in
evaluating ML estimators relies on solving the prob-
lem (̂αML, β̂ML) = arg max(α,β)∈R+×R+ L(σ ;α,β) or equiv-
alently (̂αML, β̂ML) = arg max(α,β)∈R+×R+ �(σ ;α,β) by us-
ing a constrained global optimization procedure with re-
spect to both variables α and β . The CGO method in eval-
uating LS and CLS estimators relies on solving the prob-
lems defined by (17) and (21), respectively, by using con-
strained global optimization procedures with respect to the
variable β , and then substituting the solutions into formu-
las (19) and (23), respectively. The results carried out by the
CGO numerical method have had the same accuracy as those
carried out by the CLOSE numerical method, and the latter
are not presented in the paper.

The estimates α̂LS, α̂CLS, β̂(C)LS , α̂M and β̂M proposed in
the PTRP(α,β) are evaluated on the basis of the realizations
(samples) of the generated PLP(α,β) and compared with
the ML estimates α̂ML and β̂ML for the latter model. The
values of the estimators and their measures of variability are
contained in Tables 1–4 for n = 50, n = 100 and for k = 500
samples for each pair (α,β).

6.2 The estimates in the WPLP

The WPLP(α,β, γ ) process is generated according to the
following formula for the jump times:

Ti =
[

T
β

i−1 + 1

α
(1 + 1/γ )

(

ln
1

1 − Ui

)1/γ ]1/β

,

i = 1,2, . . . , (28)

T0 = 0, where Ui are random numbers from uniform distri-
bution U (0,1). The generating formula is equivalent to

Ti =
[

T
β

i−1 − 1

α
(1 + 1/γ )
(lnUi)

1/γ

]1/β

, i = 1,2, . . . ,

but for numerical computation reasons formula (28) is more
useful.

Table 1 The ML estimates of α

and β in the PLP(α,β) and the
LS, CLS and M estimates of α

and β in the PTRP(α,β). The
number of jumps n = 50

No. α β T n α̂ML β̂ML α̂LS α̂CLS β̂(C)LS α̂M β̂M

1 20 0.8 3.20 19.7126 0.8305 11.2212 21.0444 0.7766 20.6414 0.8309

2 15 1 3.31 14.6992 1.0545 8.6936 16.3002 0.9714 15.8796 1.0459

3 5 2 3.15 4.7882 2.1119 3.0020 5.6651 1.9511 6.1284 2.0992

4 1 3 3.68 0.9896 3.1501 0.6486 1.2292 2.9107 1.9286 3.0972

5 0.5 4 3.15 0.5461 4.1386 0.3245 0.6139 3.9135 1.1481 4.0914

6 0.2 5 3.02 0.2144 5.2257 0.1276 0.2429 4.8894 0.5600 5.2572

7 5 1 9.98 4.8411 1.0507 3.1241 5.8862 0.9779 6.4392 1.0340

8 1 2 7.04 1.0137 2.0918 0.6966 1.3172 1.9453 1.8174 2.0593

9 0.5 3 4.64 0.4993 3.1460 0.3283 0.6205 2.9369 1.0099 3.1879

10 0.2 4 3.98 0.2279 4.1454 0.1310 0.2504 3.9148 0.5561 4.1892
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Table 2 The measures of
variability of the ML, LS, CLS
and M estimates of α and β .
The number of jumps n = 50

No. α β se(̂αML) se(β̂ML) se(̂αLS) se(̂αCLS) se(β̂(C)LS ) se(̂αM ) se(β̂M )

1 20 0.8 4.0017 0.1252 9.2031 4.6789 0.1547 6.7959 0.3138

2 15 1 3.3799 0.1700 6.6997 4.2260 0.1902 6.3619 0.3737

3 5 2 1.8023 0.3391 2.2577 1.9989 0.2823 4.2556 0.7833

4 1 3 0.6163 0.4766 0.4315 0.5171 0.3212 2.1844 1.2008

5 0.5 4 0.3527 0.6276 0.2203 0.2621 0.3520 1.4657 1.5090

6 0.2 5 0.1785 0.8114 0.0867 0.0975 0.3565 0.8084 2.0052

7 5 1 1.7517 0.1666 2.3094 2.6501 0.1955 4.5391 0.4048

8 1 2 0.6019 0.3200 0.4780 0.7487 0.2928 2.0740 0.7657

9 0.5 3 0.3317 0.4674 0.2288 0.3041 0.3247 1.3625 1.1364

10 0.2 4 0.1889 0.6537 0.0901 0.1183 0.3500 0.8735 1.5046

Table 3 The ML estimates of α

and β in the PLP(α,β) and the
LS, CLS and M estimates of α

and β in the PTRP(α,β). The
number of jumps n = 100

No. α β T n α̂ML β̂ML α̂LS α̂CLS β̂(C)LS α̂M β̂M

1 20 0.8 7.57 19.6564 0.8168 10.8982 21.0258 0.7890 21.4116 0.8138

2 15 1 6.64 14.8118 1.0243 8.4449 16.3125 0.9797 16.6752 1.0127

3 5 2 4.46 4.8790 2.0593 2.9003 5.6046 1.9758 6.4385 2.0319

4 1 3 4.63 0.9943 3.0943 0.6258 1.2199 2.9398 1.7474 3.0440

5 0.5 4 3.75 0.5424 4.0651 0.3144 0.6066 3.9344 1.1275 3.9990

6 0.2 5 3.47 0.2049 5.1247 0.1228 0.2384 4.9218 0.5083 5.0422

7 5 1 20.00 4.9431 1.0223 2.9833 5.7906 0.9820 6.5638 1.0126

8 1 2 9.93 1.0050 2.0583 0.6507 1.2635 1.9767 1.7931 2.0102

9 0.5 3 5.86 0.5024 3.0737 0.3193 0.6181 2.9465 0.9616 3.0427

10 0.2 4 4.73 0.2142 4.0854 0.1252 0.2430 3.9479 0.5168 4.0244

Table 4 The measures of
variability of the ML, LS, CLS
and M estimates of α and β .
The number of jumps n = 100

No. α β se(̂αML) se(β̂ML) se(̂αLS) se(̂αCLS) se(β̂(C)LS ) se(̂αM ) se(β̂M )

1 20 0.8 3.9049 0.0862 9.5037 5.0847 0.1182 8.9502 0.2311

2 15 1 3.2128 0.1090 6.9290 4.4487 0.1401 7.6363 0.2744

3 5 2 1.6100 0.2225 2.3639 2.1384 0.2453 4.5891 0.5753

4 1 3 0.5071 0.3460 0.4576 0.5521 0.2964 1.8783 0.8647

5 0.5 4 0.2913 0.4330 0.2266 0.2662 0.3281 1.4226 1.1547

6 0.2 5 0.1251 0.5209 0.0904 0.0980 0.3408 0.6981 1.4549

7 5 1 1.5318 0.1046 2.3453 2.4555 0.1438 4.8208 0.2934

8 1 2 0.4922 0.2230 0.5025 0.7488 0.2518 1.9405 0.5515

9 0.5 3 0.2680 0.3088 0.2341 0.3074 0.2909 1.1825 0.8043

10 0.2 4 0.1360 0.4353 0.0945 0.1174 0.3188 0.7747 1.1057

The ML estimates β̂ML and γ̂ML of β and γ are found by
maximizing the log-likelihood function in solving the opti-
mization problem

(β̂ML, γ̂ML) = arg max
(β,γ )

�̃(n; (ϕ,β, γ )),

by using a constrained global optimization (CGO) proce-
dure, where �̃(n; (ϕ,β, γ )) is given by (9) with ϕ = ϕ̃(β, γ )

defined by (5). The ML estimate α̂ML of α is evaluated using
formula (8) with ϕ̂ defined by (6). In the optimization prob-

lem the procedure NMaximize of Mathematica package is
used.

The tables provide the numerical results for the
WPLP(α,β, γ ) in comparison to a PTRP(α,β) (the TRP
with unknown F ). The CLS estimates α̂CLS and β̂CLS of the
parameters α and β are evaluated on the basis of the real-
izations of the generated WPLP(α,β, γ ) supposing that we
do know nothing about the renewal distribution function F ,
i.e., that we observe the PTRP(α,β). The estimates α̂CLS

and β̂CLS are evaluated using Proposition 2 and the CGO
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Table 5 The ML estimates of α, β and γ in the WPLP(α,β, γ ). The
number of jumps n = 50

No. α β γ T n α̂ML β̂ML γ̂ML

1 15 1 1 3.32962 15.1619 1.0368 1.0885

2 5 2 1 3.17269 5.3976 1.9964 1.0771

3 1 3 1 3.66570 1.3147 2.9155 1.0592

4 0.5 4 1 3.15200 0.7100 3.8705 1.0442

5 15 1 2 3.33842 15.0668 0.9969 2.2657

6 5 2 2 3.16118 5.2531 1.9725 2.1992

7 1 3 2 3.68059 1.1986 2.9013 2.1112

8 0.5 4 2 3.15758 0.6307 3.8560 2.0721

9 15 1 4 3.33383 14.8703 0.9926 4.8756

10 5 2 4 3.15973 5.1408 1.9724 4.5728

11 1 3 4 3.68595 1.0875 2.9454 4.1946

12 0.5 4 4 3.16234 0.5643 3.9147 4.0732

Table 6 The LS, CLS and M estimates of α and β in the PTRP(α,β).
The number of jumps n = 50

No. α β γ α̂LS α̂CLS β̂(C)LS α̂M β̂M

1 15 1 1 8.4899 15.5415 1.0099 15.9159 1.0466

2 5 2 1 2.9514 5.4646 1.9763 6.6879 1.9894

3 1 3 1 0.6510 1.2038 2.9419 1.8761 3.0830

4 0.5 4 1 0.3055 0.5710 3.9710 1.1167 4.1872

5 15 1 2 12.0570 14.9190 1.0128 15.1474 1.0136

6 5 2 2 4.0270 4.9722 2.0237 5.2634 2.0276

7 1 3 2 0.8286 1.0247 3.0201 1.2190 3.0156

8 0.5 4 2 0.4107 0.5075 4.0335 0.6213 4.0406

9 15 1 4 13.9616 14.7163 1.0182 15.0521 1.0038

10 5 2 4 4.5967 4.8461 2.0332 5.0424 2.0149

11 1 3 4 0.8883 0.9368 3.0594 1.0349 3.0255

12 0.5 4 4 0.4392 0.4625 4.0821 0.5365 4.0183

method. The estimates α̂M and β̂M were obtained by Propo-
sition 3 for s evaluated according to formula (27).

The values of the estimators and their measures of vari-
ability are contained in Tables 5–12. We assumed n = 50
and n = 100, and used k = 500 simulated realizations for
every combination of the three parameters α, β and γ .

6.3 Some real data

Let us take into account some real data of failure times,
namely the data set contained in the paper of Lindqvist et
al. (2003), given in Table 13. These data contain 41 failure
times of a gas compressor with time censoring at time 7571
(days).

Table 7 The measures of variability of the ML estimates of α, β and
γ in the WPLP(α,β, γ ). The number of jumps n = 50

No. α β γ se(̂αML) se(β̂ML) se(γ̂ML)

1 15 1 1 3.33457 0.15557 0.16199

2 5 2 1 1.78142 0.27868 0.93242

3 1 3 1 0.73484 0.39724 1.94492

4 0.5 4 1 0.45766 0.53774 2.95805

5 15 1 2 1.80166 0.07315 1.30066

6 5 2 2 0.97649 0.15192 0.34360

7 1 3 2 0.39435 0.23876 0.92567

8 0.5 4 2 0.23856 0.30699 1.94106

9 15 1 4 0.94914 0.04010 3.93850

10 5 2 4 0.50364 0.07720 2.63491

11 1 3 4 0.18483 0.12200 1.29288

12 0.5 4 4 0.11374 0.16595 0.46185

Table 8 The measures of variability of the LS, CLS and M estimates
of α and β in the PTRP(α,β). The number of jumps n = 50

No. α β γ se(̂αLS) se(̂αCLS) se(β̂(C)LS ) se(̂αM ) se(β̂M )

1 15 1 1 6.94033 4.13278 0.19882 6.72476 0.39719

2 5 2 1 2.30323 1.96049 0.29032 4.59692 0.73614

3 1 3 1 0.44004 0.52805 0.32762 2.22384 1.12291

4 0.5 4 1 0.22956 0.23550 0.34672 1.45936 1.57426

5 15 1 2 3.33391 1.96074 0.08493 3.31304 0.17297

6 5 2 2 1.25120 0.98412 0.16400 2.06921 0.35251

7 1 3 2 0.29908 0.31353 0.22921 0.78828 0.53535

8 0.5 4 2 0.15346 0.15749 0.25820 0.45190 0.66774

9 15 1 4 1.36704 1.02954 0.04660 1.85616 0.09534

10 5 2 4 0.60101 0.51363 0.08390 1.07829 0.18743

11 1 3 4 0.18418 0.17018 0.13490 0.38390 0.28681

12 0.5 4 4 0.09863 0.09214 0.17502 0.22913 0.37755

Supposing that the set of failure times of Table 13 forms a
TRP belonging to the class of WPLP(α,β, γ ), the ML esti-
mates α̂ML, β̂ML and γ̂ML of α,β and γ have been evaluated
and presented in Table 14. On the other hand, if no assump-
tions are made on the renewal distribution function F , the
estimates α̂CLS and β̂CLS of α and β are given as the param-
eters of the PTRP(α,β).

As the results of Table 14 show, the real data
of failure times considered can be recognized as the
WPLP(0.048,0.763,0.842) or the PTRP(0.028,0.823). In
both cases, the estimates of β are almost the same. In Ta-
ble 14 the relative errors re(̂αCLS) = |̂αCLS − α̂ML|/α̂ML and
re(β̂CLS) = |β̂CLS − β̂ML|/β̂ML are given too. For compar-
ison, in Table 14 there are also given the sum of squares
SSCLS := S2

LS(̂αCLS, β̂CLS) and SSML := S2
LS(̂αML, β̂ML),
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Table 9 The ML estimates of α, β and γ in the WPLP(α,β, γ ). The
number of jumps n = 100

No. α β γ T n α̂ML β̂ML γ̂ML

1 15 1 1 6.65959 15.2537 1.0106 1.0432

2 5 2 1 4.49654 5.3817 1.9808 1.0361

3 1 3 1 4.62962 1.2442 2.9300 1.0246

4 0.5 4 1 3.75459 0.6478 3.9004 1.0193

5 15 1 2 6.67911 15.1817 0.9957 2.1258

6 5 2 2 4.47066 5.2200 1.9805 2.0860

7 1 3 2 4.64077 1.1413 2.9350 2.0476

8 0.5 4 2 3.75763 0.5914 3.9068 2.0315

9 15 1 4 6.66444 15.0487 0.9947 4.3797

10 5 2 4 4.47187 5.1345 1.9817 4.2772

11 1 3 4 4.64240 1.0568 2.9697 4.0841

12 0.5 4 4 3.76311 0.5447 3.9437 4.0555

Table 10 The LS, CLS and M estimates of α and β in the PTRP(α,β).
The number of jumps n = 100

No. α β γ α̂LS α̂CLS β̂(C)LS α̂M β̂M

1 15 1 1 8.2955 15.8372 0.9962 16.6449 1.0165

2 5 2 1 2.8901 5.5234 1.9765 6.5350 2.0163

3 1 3 1 0.6340 1.2202 2.9356 1.7638 3.0461

4 0.5 4 1 0.3055 0.5885 3.9480 1.0603 4.0136

5 15 1 2 11.9492 14.9728 1.0050 15.5671 0.9975

6 5 2 2 3.9958 5.0149 2.0086 5.3982 2.0018

7 1 3 2 0.8237 1.0336 3.0002 1.2009 2.9886

8 0.5 4 2 0.4120 0.5169 4.0073 0.5902 4.0298

9 15 1 4 13.8816 14.8064 1.0082 15.0318 1.0047

10 5 2 4 4.6145 4.9207 2.0135 5.0642 2.0089

11 1 3 4 0.9025 0.9628 3.0300 1.0275 3.0194

12 0.5 4 4 0.4549 0.4850 4.0290 0.5416 4.0005

where S2
LS(ϑ) is defined by (12). Note that the sum of

squares SSCLS is somewhat smaller then SSML.
Let us denote by ENFML(t) = �(t; α̂ML, β̂ML) =

α̂MLt β̂ML the estimated number of failures up to time t eval-
uated on the basis of the ML estimators, and analogously by
ENFCLS(t) = �(t; α̂CLS, β̂CLS) = α̂CLSt

β̂CLS the estimated
number of failures up to time t evaluated on the basis of
the CLS estimators. In Table 15 we compare the estimated
numbers of failures with the observed number of failures
ONF(t) for some chosen values of t . The CLS method pro-
vides satisfactory estimates of the number of failures.

Table 11 The measures of variability of the ML estimates of α, β and
γ in the WPLP(α,β, γ ). The number of jumps n = 100

No. α β γ se(̂αML) se(β̂ML) se(γ̂ML)

1 15 1 1 3.14694 0.09949 0.09575

2 5 2 1 1.62619 0.19181 0.96731

3 1 3 1 0.59630 0.28980 1.97709

4 0.5 4 1 0.33198 0.37474 2.98187

5 15 1 2 1.77660 0.05361 1.14043

6 5 2 2 0.84431 0.10308 0.19245

7 1 3 2 0.29881 0.16427 0.96563

8 0.5 4 2 0.18406 0.22068 1.97425

9 15 1 4 0.90038 0.02865 3.40073

10 5 2 4 0.45525 0.05646 2.30391

11 1 3 4 0.14197 0.08341 1.13197

12 0.5 4 4 0.08742 0.11630 0.33783

Table 12 The measures of variability of the LS, CLS and M estimates
of α and β in the PTRP(α,β). The number of jumps n = 100

No. α β γ se(̂αLS) se(̂αCLS) se(β̂(C)LS ) se(̂αM ) se(β̂M )

1 15 1 1 7.11759 4.51018 0.14632 7.98056 0.28053

2 5 2 1 2.37319 2.12398 0.24919 4.68815 0.58681

3 1 3 1 0.44665 0.53891 0.28675 1.99083 0.85777

4 0.5 4 1 0.22869 0.24739 0.31908 1.25473 1.13285

5 15 1 2 3.40104 1.90465 0.05921 3.88282 0.13443

6 5 2 2 1.20606 0.84533 0.11109 2.09510 0.26953

7 1 3 2 0.26997 0.26255 0.16401 0.69686 0.38839

8 0.5 4 2 0.14504 0.14744 0.21073 0.37910 0.50564

9 15 1 4 1.40465 0.94442 0.03051 2.17527 0.07461

10 5 2 4 0.55396 0.44468 0.05755 1.13060 0.15219

11 1 3 4 0.15325 0.13267 0.08847 0.34732 0.22260

12 0.5 4 4 0.07923 0.07255 0.11161 0.22158 0.31295

7 Concluding remarks

We observe a good performance of the estimators α̂CLS and
β̂CLS obtained by the CLS method. This method leads to
satisfactory accuracy of these estimators in the TRP(F,λ(·))
model considered with unspecified F in comparison to the
ML estimators α̂ML and β̂ML for this model with specified F .

The CLS method leads in average to more accurate esti-
mators than the LS and M methods.

The LS method considerably underestimates the param-
eter α. In most cases considered we have RMSE(̂αCLS) <

RMSE(̂αLS), and in all cases, RMSE(̂αCLS) < RMSE(̂αM).
The RMSE(̂αM) is about two, or even more, times

greater than the RMSE(̂αCLS). A similar remark concerns
the RMSE(β̂M) and RMSE(β̂CLS).
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Table 13 The real data
1 4 305 330 651 856 996 1016 1155 1520 1597 1729

1758 1852 2070 2073 2093 2213 3197 3555 3558 3724 3768 4103

4124 4170 4270 4336 4416 4492 4534 4578 4762 5474 5573 5577

5715 6424 6692 6830 6999

Table 14 The ML and CLS
estimates applied to the real data
of Table 13

α̂ML β̂ML γ̂ML α̂CLS β̂CLS re(̂αCLS) re(β̂CLS) SSML SSCLS

0.047985 0.763104 0.842064 0.027980 0.823383 0.41690 0.078993 58.08 56.8

In some cases the RMSE(̂αCLS) is even less than
the RMSE(̂αML), and the RMSE(β̂CLS) is less than the
RMSE(β̂ML).

For a given number n of failures, the RMSE’s of all
the estimators in the WPLP(α,β, γ ) become significantly
smaller as the parameter γ increases. Remark that, accord-
ing to formula (27), the variance s of the renewal distri-
bution F decreases evidently as γ increases. For example,
s = 1 for γ = 1, s = 0.2732 for γ = 2, s = 0.0787 for
γ = 4. A smaller value of γ (a larger value of the vari-
ance s) causes larger variability of the estimators (recall
that the RMSE determines the mean squared deviation of
the estimate from the true value of the parameter—the risk).
In the WPLP(α,β,1), i.e. in the PLP(α,β), the variance
of F is equal to 1 and constitutes a great value in refer-
ence to the same value of the expectation of the renewal
distribution as well as in reference to the assumed value
1 of the sample mean of the transformed working times
Wi = �(Ti) − �(Ti−1), i = 1, . . . ,N(σ ).

A great value, such as 1, of the variance of the renewal
distribution causes larger variability and instability of the
RMSE’s of the LS, CLS and M estimators in the case of
relatively small sample sizes n. It may then happen that
in some cases for γ = 1 the RMSE(̂αLS), RMSE(̂αCLS)

and/or RMSE(̂αM) increase as n increases. Further simula-
tion study for γ = 1 and much greater than n = 100 numbers
of failures shows that these RMSE’s decrease as n increases.
They decrease much more slowly than the RMSE’s of the
parameter β .

For γ ≥ 2, the RMSE(̂αCLS) decreases as n increases.
If the number of jumps n increases then all the RMSE’s

of the parameter β , i.e. the RMSE(β̂ML), RMSE(β̂CLS) and
RMSE(β̂M) decrease.

If the renewal distribution function is unknown we rec-
ommend using the CLS method to obtain the estimators of
the unknown parameters of the trend function or the ex-
pected number of failures.

The CLS method can also be used to predict the next fail-
ure time. Examination of asymptotic properties of the CLS
estimators would be desirable, among others, for construct-
ing the confidence intervals for unknown parameters or for
the expected number of failures.

Table 15 Comparisons of estimated numbers of failures with the ob-
served number of failures for the real data

t ENFML(t) ENFCLS(t) ONF(t)

1000 9.341 8.260 7

2000 15.854 14.617 14

3000 21.603 20.410 18

4000 26.906 25.866 23

5000 31.901 31.083 33

6000 36.663 36.117 37

7000 41.240 41.005 41
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