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ABSTRACT

The coupling–ray–theory tensor Green function for electromagnetic waves or elas-
tic S waves is frequency dependent, and is usually calculated for many frequencies.
This frequency dependence represents no problem in calculating the Green function,
but may represent a great problem in storing the Green function at the nodes of
dense grids, typical for applications such as the Born approximation. This paper
is devoted to the approximation of the coupling–ray–theory tensor Green function,
which practically eliminates this frequency dependence within a reasonably broad
frequency band.

In the vicinity of a given prevailing frequency, we approximate the frequency–
dependent frequency–domain coupling–ray–theory tensor Green function by two
dyadic Green functions corresponding to two waves described by their travel times
and amplitudes calculated for the prevailing frequency. We refer to these travel times
and amplitudes as the coupling–ray–theory travel times and the coupling–ray–theory
amplitudes. This “prevailing–frequency approximation” of the coupling ray theory
for electromagnetic waves or elastic S waves allows us to process the coupling–ray–
theory wave field in the same way as the anisotropic–ray–theory wave field. This
simplification may be decisive when storing the tensor Green function at the nodes
of dense grids, which is typical for applications such as the Born approximation.

We test the accuracy of the proposed prevailing–frequency approximation of
the coupling ray theory numerically using elastic S waves in eight anisotropic
velocity models. The additional inaccuracy introduced by the prevailing–frequency
approximation is smaller than the inaccuracy of the standard frequency–domain
coupling ray theory, and smaller than the additional inaccuracy introduced by many
other approximations of the coupling ray theory.

Keywords : electromagnetic waves, elastic S waves, wave coupling, tensor Green
function, travel time, amplitude, anisotropy, bianisotropy, heterogeneous media,
prevailing frequency
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1. INTRODUCTION

There are two different high–frequency asymptotic ray theories for electromag-
netic waves or elastic S waves with frequency–independent amplitudes: the isotropic
ray theory based on the assumption of equal velocities of both electromagnetic waves
or both elastic S waves, and the anisotropic ray theory assuming both waves are
strictly decoupled. Here the term “different” means that the isotropic ray theory is
not a special case of the anisotropic ray theory for decreasing anisotropy, and that
both theories yield different electromagnetic waves or elastic S waves in equal media.

This paper is equally applicable to electromagnetic waves and elastic S waves.
For electromagnetic waves, we consider the ray theory developed for the magnetic
vector potential with the Weyl gauge (zero electric potential) according to Klimeš
(2010a, 2016a). In this case, the Kelvin–Christoffel matrix is a 3×3 matrix, with
two eigenvalues which may equal zero. These two eigenvalues correspond to the
two polarizations of electromagnetic waves. Hereinafter we shall refer to these
eigenvalues as the first two eigenvalues, and to the corresponding eigenvectors as the
first two eigenvectors. The third eigenvalue of the 3×3 Kelvin–Christoffel matrix
for electromagnetic waves cannot equal zero and does not correspond to any wave.
We shall refer to this eigenvalue as the third eigenvalue, and to the corresponding
eigenvector as the third eigenvector.

For elastic waves, the Kelvin–Christoffel matrix is represented by the difference
of the 3×3 Christoffel matrix and the 3×3 identity matrix. We shall refer to the S–
wave eigenvalues as the first two eigenvalues, and to the corresponding eigenvectors
as the first two eigenvectors. We shall refer to the P–wave eigenvalue as the third
eigenvalue, and to the corresponding eigenvector as the third eigenvector. In the
elastic case, we consider just S waves, hereinafter referred to simply as waves.

In the isotropic ray theory, the polarization vectors of waves do not rotate about
the third eigenvector of the Kelvin–Christoffel matrix, whereas in the anisotropic
ray theory they coincide with the first two eigenvectors of the Kelvin–Christoffel
matrix which may rotate rapidly. Thomson et al. (1992) demonstrated analytically
that the high–frequency asymptotic error of the anisotropic–ray–theory wave field is
inversely proportional to the second or higher root of the frequency, if the ray passes
through the point of the first two equal eigenvalues of the Kelvin–Christoffel matrix
even in otherwise strongly anisotropic media.

In “weakly anisotropic” media, at moderate frequencies, the actual wave po-
larization tends to remain unrotated about the third eigenvector of the Kelvin–
Christoffel matrix, but is partly attracted by the rotation of the first two eigenvectors
of the Christoffel matrix. The intensity of the attraction increases with frequency.
This behaviour of the actual wave polarization is described by the coupling ray
theory proposed, e.g., by Kravtsov (1968), Naida (1977, 1979) or Fuki et al.
(1998) for electromagnetic waves, and by Coates and Chapman (1990) for elastic
S waves. The frequency–dependent coupling ray theory is the generalization of
both the zero–order isotropic and anisotropic ray theories and provides continuous
transition between them. The coupling ray theory is applicable to coupled waves
at all degrees of anisotropy, from isotropic to considerably anisotropic media. The
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numerical algorithm for calculating the frequency–dependent coupling–ray–theory
tensor Green function has been designed by Bulant and Klimeš (2002).

The coupling ray theory can be derived from the asymptotic ray series referred to
as the coupling ray series (Klimeš, 2013 ). This derivation demonstrates that there
are many possible forms of the coupling ray theory of varying accuracy, and that
the currently used coupling ray theory need not represent the most accurate option.
Moreover, there are many more or less accurate approximations of this coupling
ray theory (Bulant and Klimeš, 2002 ; Farra and Pšenč́ık, 2008, 2010 ; Pšenč́ık
et al., 2012 ). Note that the anisotropic–common–ray approximation (Klimeš,
2006 ; Klimeš and Bulant, 2006 ) usually preserves the accuracy of the coupling
ray theory and simultaneously simplifies ray tracing considerably by eliminating the
slowness surface singularities. However, in approximately uniaxial (approximately
transversely isotropic) media (Klimeš, 2015, 2016c), we may also use the reference
ordinary (SH) and extraordinary (SV) rays (Klimeš and Bulant, 2015 ).

The coupling–ray–theory tensor Green function is frequency dependent, and is
usually calculated for many frequencies. This frequency dependence represents no
problem in calculating the Green function, but may represent a great problem in
storing the Green function at the nodes of dense grids (Klimeš and Bulant, 2013 ),
typical for applications such as the Born approximation. This paper is devoted to the
approximation of the coupling–ray–theory tensor Green function, which practically
eliminates this frequency dependence within a limited frequency band.

In this paper, we approximate the frequency–dependent frequency–domain cou-
pling–ray–theory tensor Green function in the vicinity of a given prevailing frequency
by two dyadic Green functions corresponding to the two coupled waves described
by their travel times and amplitudes calculated for the prevailing frequency. We
refer to these travel times and amplitudes as the coupling–ray–theory travel times
and the coupling–ray–theory amplitudes. The presented numerical examples suggest
that the coupling–ray–theory travel times are usually close to the anisotropic–ray–
theory travel times. However, if the rays pass close to a conical or similar slowness
surface singularity, the singularity acts as an interface and smoothly but very rapidly
converts the actual wave polarizations from the approximately first anisotropic–
ray–theory polarization (S1) to the approximately second anisotropic–ray–theory
polarization (S2), and vice versa. In this case, the coupling–ray–theory travel times
correspond approximately to the anisotropic–ray–theory travel times of the S1S2
and S2S1 waves converted at the slowness surface singularity.

2. COUPLING RAY THEORY

For electromagnetic waves, the time–domain tensor Green function Gij(x,x0, t)
represents the ith component of the magnetic vector potential at point x due to
the unit electric current at point x0 oriented along the jth coordinate axis and
having the Dirac–distribution time dependence (Klimeš, 2016a). For elastic waves,
the time–domain tensor Green function Gij(x,x0, t) represents the ith displacement
component at point x due to the unit force at point x0 oriented along the jth
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coordinate axis and having the Dirac–distribution time dependence (Červený, 2001,
Eq. 2.5.37 ).

The coupling–ray–theory approximation of its Fourier transform Gij(x,x0, ω) is
given in Section 2.1. It is calculated along reference rays and is expressed in terms of
the 2×2 complex–valued coupling–equation propagator matrix ΠKL(x,x0, ω) which
is given in Section 2.2.

2 . 1 . C o u p l i n g – r a y – t h e o r y t e n s o r G r e e n f u n c t i o n

We consider the frequency–domain coupling–ray–theory tensor Green function
which can be expressed as (Červený, 2001, Eq. 5.4.103 )

Gij(x,x0, ω) =

2∑

K,L=1

A(x,x0) g
(K)
i (x) g

(L)
j (x0)ΠKL(x,x0, ω) exp[iωτ (x,x0)] . (1)

Here ω = 2πf is the circular frequency, and

τ = 1
2

(
τ (1) + τ (2)

)
, (2)

where τ (1) and τ (2) are the anisotropic–ray–theory travel times corresponding to the

first two eigenvectors g
(1)
i and g

(2)
i of the Kelvin–Christoffel matrix. Eigenvectors g

(1)
i

and g
(2)
i can be ordered arbitrarily, but they must be continuous along the reference

ray. Note that eigenvectors g
(1)
i and g

(2)
i are not orthogonal in general, because

the slowness vectors of the corresponding anisotropic–ray–theory waves may differ.

However, eigenvectors g
(1)
i and g

(2)
i are often approximated by the eigenvectors of the

common reference Kelvin–Christoffel matrix, which are orthogonal. The accuracy
of the coupling ray theory is affected considerably by the accuracy of the calculation

of τ (1), τ (2), g
(1)
i and g

(2)
i .

The 2×2 complex–valued matrix Π is the propagator matrix of the coupling
equation given below.

Reference amplitude A serves here as a substitute for the correct individual am-
plitudes. Reference amplitude A is usually calculated for the reference Hamiltonian
function along the reference ray.

2 . 2 . C o u p l i n g e q u a t i o n

The coupling equation is solved along a reference ray, and thus depends slightly
on the selection of the reference ray. The reference ray is usually represented by the
ray calculated using a reference Hamiltonian function.

There are various more or less accurate forms of the coupling equation. We
consider here the frequency–domain coupling equation (Bulant and Klimeš, 2002,
Eq. 11 )

Π′ =

[ (
0 1
−1 0

)
ϕ′ −

(
i 0
0 −i

)
ε′

]
Π (3)

for the 2×2 propagator matrix Π with initial identity conditions. Here the prime ′

denotes the derivative along the reference ray with respect to an arbitrary monotonic
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parameter. The wave splitting is characterized by quantity

ε = 1
2 ω

(
τ (2) − τ (1)

)
. (4)

The angular velocity of rotation of the first two eigenvectors of the Kelvin–Christoffel
matrix about the third eigenvector is characterized by quantity

ϕ′ = sgn(ϕ′

(12))
√
|ϕ′

(12)ϕ
′

(21)| = −sgn(ϕ′

(21))
√

|ϕ′

(12)ϕ
′

(21)| , (5)

where
ϕ′

(KL) = −g
(K)
i

(
g
(L)
i

)
′

. (6)

This definition of ϕ′ is a generalization of the definition of Bulant and Klimeš (2002,

Eq. 5) to non–orthogonal vectors g
(1)
i and g

(2)
i . Note that coupling equation (3) has

been derived for orthogonal vectors g
(1)
i and g

(2)
i , and is only approximate otherwise.

There may exist more accurate forms of the coupling equation (Klimeš, 2013 ).
At slowness surface singularities, where ε′ = 0, coupling equation (3) renders two

vectors
∑2

K=1 g
(K)
i ΠKL unrotated in their respective polarization plane if vectors

g
(1)
i and g

(2)
i are orthogonal. This behaviour is analogous to the isotropic ray theory.

The presented formulation of the coupling ray theory is thus stable at slowness

surface singularities if vectors g
(1)
i and g

(2)
i are orthogonal and if the numerical

algorithm used to integrate coupling equation (3) is stable and accurate with respect
to the singular behaviour of ϕ′, see Bulant and Klimeš (2002).

The resulting matrix Π is unitary, Π−1 = Π+, where + denotes conjugate
transpose, and unimodular, det(Π) = 1. These properties directly follow from
coupling equation (3).

3. PREVAILING–FREQUENCY APPROXIMATION
OF THE COUPLING RAY THEORY

Analogously to the anisotropic ray theory, we wish to approximate the frequency–
dependent coupling–ray–theory tensor Green function by two dyadic Green functions
corresponding to two waves described by their travel times and amplitudes. In
the vicinity of the prevailing circular frequency ω0, we thus wish to approximate
propagator matrix Π = Π(ω) by matrix

Π̃(ω) = Π(1)(ω0) exp[−i∆ω D(ω0)] + Π(2)(ω0) exp[i∆ω D(ω0)] , (7)

where
∆ω = ω − ω0 , (8)

D = D(ω0) is real–valued, Π(1) = Π(1)(ω0) and Π(2) = Π(2)(ω0) are complex–
valued. This decomposition represents the approximation of propagator matrix
Π = Π(ω) by two waves with travel times τ − D and τ + D.

We require that
Π̃(ω0) = Π(ω0) (9)

and
∂Π̃

∂ω
(ω0) = D(ω0) , (10)
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where

D(ω) =
∂Π

∂ω
(ω) . (11)

Analogously to the anisotropic ray theory (Klimeš, 2012, Eq. 55 ), we shall assume
that the 2×2 matrices Π(1) and Π(2) are dyadic products of vectors,

det
(
Π(1)

)
= 0 and det

(
Π(2)

)
= 0 . (12)

In the Appendix, we demonstrate that assumption (12) does not contradict the
above requirements (9) and (10).

3 . 1 . D e t e r m i n i n g t h e c o e f f i c i e n t s
o f p r e va i l i n g – f r e q u e n c y a p p r o x i m a t i o n ( 7 )

We now determine coefficients D, Π(1) and Π(2) of the prevailing–frequency
approximation (7) of the coupling ray theory from conditions (9), (10) and (12).

We differentiate definition (7) and obtain

∂Π̃(ω)

∂ω
=

[
− Π(1) exp(−i∆ω D) + Π(2) exp(i∆ω D)

]
i D . (13)

Equations (9) and (10) then read

Π(1) + Π(2) = Π(ω0) (14)

and [
− Π(1) + Π(2)

]
i D = D(ω0) . (15)

All 2×2 matrices satisfying identities (12) satisfy relation

det
(
Π(1)−Π(2)

)
= − det

(
Π(1)+Π(2)

)
. (16)

Since matrix Π(ω0) in relation (14) is unimodular,

det
(
Π(1)−Π(2)

)
= −1 . (17)

The determinants of both sides of matrix relation (15) then yield

D2 = det[D(ω0)] . (18)

The right–hand side of this equation is real-valued and non–negative, see the
elements of matrix (A-8). Without loss of generality, we may choose non–negative
solution

D =
√

det[D(ω0)] . (19)

Equations (14) and (15) then yield

Π(1) =
1

2

[
Π(ω0) + i

D(ω0)

D

]
(20)

and

Π(2) =
1

2

[
Π(ω0) − i

D(ω0)

D

]
. (21)

The prevailing–frequency approximation (7) of the coupling ray theory is determined
by coefficients (19)–(21). The right–hand sides of Eqs (20) and (21) are well defined
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even for very small D, see matrix (A-8) and definition (19). If D = 0, matrices Π(1)

and Π(2) satisfying condition (14) may be chosen arbitrarily.
Note that if we insert matrices (20) and (21) into the approximate propagator

matrix (7), we obtain relation

Π̃(ω) = Π(ω0) cos(D ∆ω) +
D(ω0)

D
sin(D ∆ω) . (22)

However, here we prefer decomposition (7) into two waves over mixed expres-
sion (22).

3 . 2 . P r e va i l i n g – f r e q u e n c y a p p r o x i m a t i o n
o f t h e t e n s o r G r e e n f u n c t i o n

We now approximate propagator matrix ΠKL(x,x0, ω) in tensor Green function
(1) by prevailing–frequency approximation (7). After this insertion, the coupling–
ray–theory tensor Green function (1) may be approximated by the superposition

Gij(x,x0, ω) ≈ G
(1)
ij (x,x0, ω) + G

(2)
ij (x,x0, ω) (23)

of two dyadic Green functions

G
(J)
ij (x,x0, ω) = A

(J)
ij (x,x0, ω0) exp

[
iωT (J)(x,x0, ω0)

]
, J = 1, 2 . (24)

The corresponding two waves have coupling–ray–theory travel times

T (1)(x,x0, ω0) = τ (x,x0) − D(x,x0, ω0) (25)

and
T (2)(x,x0, ω0) = τ(x,x0) + D(x,x0, ω0) . (26)

The complex–valued vectorial amplitudes of these two waves are

A
(1)
ij (x,x0, ω

0)

=

2∑

K,L=1

A(x,x0) g
(K)
i (x) g

(L)
j (x0)Π

(1)
KL(x,x0, ω0) exp[iω0D(x,x0, ω0)]

(27)

and

A
(2)
ij (x,x0, ω

0)

=

2∑

K,L=1

A(x,x0) g
(K)
i (x)g

(L)
j (x0)Π

(2)
KL(x,x0, ω0) exp[−iω0D(x,x0, ω0)] .

(28)

Whereas propagator matrix Π = Π(ω) in tensor Green function (1) is strongly
frequency dependent at high frequencies, the frequency dependence of the coupling–
ray–theory travel times (25)–(26) and corresponding amplitudes (27)–(28) is likely
to be moderate. Refer to Section 5.7 for the examples of the frequency dependence
of the coupling–ray–theory travel times (25)–(26). The demonstrated frequency
dependence is very moderate in all cases considered.
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3 . 3 . D i f f e r e n c e b e t w e e n
t h e c o u p l i n g – r a y – t h e o r y p o l a r i z a t i o n v e c t o r s

a n d t h e a n i s o t r o p i c – r a y – t h e o r y p o l a r i z a t i o n v e c t o r s

The complex–valued coupling–ray–theory polarization vectors determined by
complex–valued vectorial amplitudes (27) and (28) may differ considerably from
both the isotropic–ray–theory polarization vectors and the anisotropic–ray–theory
polarization vectors, depending on the heterogeneity and on the degree of anisotropy
or bianisotropy. The possible differences in the polarization of elastic S waves are
well visible in three–component synthetic seismograms.

Coupling–ray–theory synthetic seismograms have been compared with isotropic–
ray–theory synthetic seismograms by Zillmer et al. (1998, Fig. 3), Pšenč́ık and
Dellinger (2001, Figs 5, 8) and Červený et al. (2007, Figs 18, 20). The demonstrated
differences have proved to be significant.

Coupling–ray–theory synthetic seismograms have been compared with aniso-
tropic–ray–theory synthetic seismograms by Zillmer et al. (1998, Figs 2–4), Pšenč́ık
and Dellinger (2001, Figs 5, 8), Červený et al. (2007, Figs 19, 20) and Pšenč́ık et al.
(2012, Figs 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18–20). The demonstrated differences
have proved to be significant.

4. NUMERICAL ALGORITHM

We calculate propagator matrix Π = Π(ω) as the product of propagator matrices
∆Πk along short ray segments indexed k = 1, 2, ..., K (Bulant and Klimeš, 2002,
Sec. 3 ):

Π = ∆ΠK ∆ΠK−1 · · · ∆Π2 ∆Π1 . (29)

In the standard coupling ray theory, this multiplication is calculated for many fre-
quencies. In the prevailing–frequency approximation, the multiplication is calculated
just for circular frequency ω = ω0. The simple algorithm of multiplication (29) reads

Π0 = 1 , (30)

Πk = ∆ΠkΠk−1 , k = 1, 2, ..., K , (31)

Π = ΠK . (32)

The individual propagator matrices are approximated by the method of mean
coefficients (Červený, 2001, Eq. 5.4.86 ; Bulant and Klimeš, 2002, Eq. 17 ),

∆Πk = 1 cos(αk) + Ak sin(αk) , (33)

where (Bulant and Klimeš, 2002, Eq. 14 )

Ak =

(
0 1
−1 0

)
∆ϕk

αk

−

(
i 0
0 −i

)
∆εk

αk

(34)

with (Bulant and Klimeš, 2002, Eq. 15 )

αk =
√

(∆ϕk)2 + (∆εk)2 . (35)
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Quantities ∆ϕk and ∆εk are calculated according to Bulant and Klimeš (2002,
Eqs 18 and 21), but often using the second–order perturbations of travel times
instead of the first–order perturbations (Klimeš and Bulant, 2006 ).

We obtain the algorithm of calculating the frequency derivative D of propagator
matrix Π by differentiating algorithm (30)–(32) with respect to frequency ω:

D0 = 0 , (36)

Dk = ∆ΠkDk−1 + ∆DkΠk−1 , k = 1, 2, ..., K , (37)

D = DK . (38)

The derivatives

∆Dk =
∂∆Πk

∂ω
(39)

of matrices (33) read

∆Dk =

{[
−1 sin(αk)+Ak cos(αk)−Ak

sin(αk)

αk

]
∆εk

αk

−

(
i 0
0 −i

)
sin(αk)

αk

}
∆εk

ω
. (40)

5. ELASTIC S–WAVE NUMERICAL EXAMPLES

The prevailing–frequency approximation of the coupling ray theory for elastic
S waves has been coded as a new option of program green.for of package CRT
(Bucha and Bulant, 2012 ) using the numerical algorithm described in Section 4.
Program green.for now allows synthetic seismograms of coupled elastic S–waves
in heterogeneous weakly anisotropic velocity models to be calculated using either
the standard frequency–domain coupling ray theory with propagator matrix (29)
calculated for all frequencies, or its prevailing–frequency approximation according
to Section 4. In this paper, the prevailing–frequency approximation of the coupling
ray theory is numerically tested in eight weakly anisotropic velocity models. These
anisotropic velocity models with related input data can be found in package DATA
(Bucha and Bulant, 2012 ).

5 . 1 . R e f e r e n c e a n d p e r t u r b a t i o n H a m i l t o n i a n f u n c t i o n s

The reference ray is the same for the standard frequency–domain coupling ray
theory and for the prevailing–frequency approximation. The reference ray for
the coupling equation is calculated using the reference Hamiltonian function. We
consider reference Hamiltonian function

H(xm, pn) = 1
N

{
1
2

[
[G1(xm, pn)]

M

2 + [G2(xm, pn)]
M

2

]}N

M

. (41)

The resulting anisotropic common reference ray depends on exponent M which
controls the averaging of the S–wave eigenvalues G1 and G2 of the Christoffel matrix.
The reference ray is independent of exponent N which controls the perturbation
approximation of anisotropic–ray–theory travel times τ (1) and τ (2). Refer to Klimeš
(2006) for the calculation of the reference ray and other reference quantities.
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Anisotropic–ray–theory travel times τ (1) and τ (2) with corresponding S–wave

eigenvectors g
(1)
i and g

(2)
i of the Christoffel matrix are usually approximated by

various perturbation expansions along the reference rays (Klimeš, 2002, 2010b,
2016b). The perturbation approximation of the anisotropic–ray–theory travel times
depends on the reference ray and on degree N of the perturbation Hamiltonian
function homogeneous with respect to the slowness vector. We choose perturbation
Hamiltonian function

H(xm, pn, fK)= 1
N

[G1(xm, pn)]
N

2f1+
1
N

[G2(xm, pn)]
N

2f2+H(xm, pn)(1−f1−f2) (42)

which is linear with respect to perturbation parameters f1 and f2, because we
believe that this linearity results in a more accurate perturbation expansion than
the expansions resulting from nonlinear Hamiltonian functions, but other authors
may choose other perturbation Hamiltonian functions. The same exponent N must
be used in definitions (41) and (42). Different perturbation Hamiltonian functions
yield different anisotropic–ray–theory travel times τ (1), τ (2) and Christoffel matrices

of varying accuracy with their eigenvectors g
(1)
i , g

(2)
i .

The perturbation usually yields the best results for the homogeneous perturbation
Hamiltonian function of degree N = −1 with respect to the slowness vector,
which was theoretically explained by Klimeš (2002, Sec. 4.4), and numerically
demonstrated by Vavryčuk (2012) in examples of perturbations from real–valued
reference rays to the complex–valued travel time in two isotropic attenuating media.

To calculate the reference ray, we use the reference Hamiltonian function, which
is the average of the homogeneous Hamiltonian functions of degree M = −1 with
respect to the slowness vector. Note that the perturbation expansions along reference
rays, calculated with M = −1 and M = 2, have been compared for N = −1 by
Bulant and Klimeš (2008, Tables 7–9 and 10–12).

5 . 2 . N u m e r i c a l m e t h o d s b e i n g c o m p a r e d

In the numerical examples presented here, we follow the work of Pšenč́ık et al.
(2012), who compared the synthetic seismograms calculated by their approximation
of the coupling ray theory with the synthetic seismograms generated by the Fourier
pseudospectral method. Bulant et al. (2011) then numerically compared three
different approximations of the coupling ray theory with the Fourier pseudospectral
method.

In this paper, we compare the synthetic seismograms calculated by three
numerical methods: (a) the proposed prevailing–frequency approximation of the
coupling ray theory; (b) the standard coupling ray theory calculated for all frequencies
according to the algorithm of Bulant and Klimeš (2002); (c) the Fourier pseudospec-
tral method which is considered here as a nearly exact reference. Refer to Pšenč́ık
et al. (2012) for the description of the Fourier pseudospectral method used here.

Both the coupling ray theory and its prevailing–frequency approximation are
calculated along anisotropic common reference rays (Klimeš, 2006 ). To calculate
the reference rays, we use reference Hamiltonian function (41) which is the average
of the homogeneous Hamiltonian functions of degree M = −1 with respect to the
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slowness vector. For perturbations, we use perturbation Hamiltonian function (42)
which is a homogeneous function of degree N = −1 with respect to the slowness
vector. We approximate the anisotropic–ray–theory travel times τ (1) and τ (2) in the
coupling equation by the second–order perturbation expansion according to Klimeš

and Bulant (2006). We approximate eigenvectors g
(1)
i and g

(2)
i of the Christoffel

matrix by the unperturbed reference eigenvectors calculated using the Christoffel
matrix with the unperturbed reference slowness vector.

5 . 3 . A n i s o t r o p i c v e l o c i t y m o d e l s

We consider eight weakly anisotropic velocity models referred to as QIH, QI,
QI2, QI4, SC1 I, SC1 II, KISS and ORT. All these velocity models are laterally
homogeneous. The density–reduced elastic moduli are linear functions of depth in
all these velocity models. The density is constant.

A vertically heterogeneous 1–D anisotropic velocity model QI was provided
by Pšenč́ık and Dellinger (2001, model WA rotated by 45◦), who performed the
coupling–ray–theory calculations using the programs of package ANRAY (Pšenč́ık,
1998 ) and compared the results with the reflectivity method. The same velocity
model has been used by Bulant and Klimeš (2002) and Klimeš and Bulant (2004)
to demonstrate the coupling ray theory and its quasi–isotropic approximations. For
comparison with the isotropic–ray–theory and anisotropic–ray–theory seismograms
in velocity model QI and for a more detailed discussion and description of this
velocity model refer to Pšenč́ık and Dellinger (2001). Velocity model QI is
approximately transversely isotropic (Klimeš, 2015, 2016c) in a vertical plane which
forms a 45◦ angle with the source–receiver vertical plane and is situated between
the positive radial and positive transverse seismogram components. The reference
symmetry axis is thus horizontal and is situated right in the middle between the
positive radial and negative transverse seismogram components.

Velocity models QIH, QI2 and QI4 are derived from velocity model QI and
mutually differ by their degrees of anisotropy. The differences of the elastic moduli
in velocity models QIH, QI, QI2 and QI4 from the elastic moduli in the reference
isotropic velocity model are determined by ratio 0.5 : 1 : 2 : 4. For the elastic moduli
in velocity models QI, QI2 and QI4 refer to Bulant and Klimeš (2008).

For the description of velocity models SC1 I, SC1 II, KISS and ORT and for the
comparison with the anisotropic–ray–theory seismograms in these velocity models
refer to Pšenč́ık et al. (2012).

At the depth of 0 km, velocity model SC1 I is approximately transversely
isotropic and its reference symmetry axis is horizontal (Klimeš, 2015, 2016c). At this
depth, the slowness surface contains a split intersection singularity, whereas velocity
models QIH, QI, QI2 and QI4 display no exact nor split intersection singularity
(Pšenč́ık et al., 2012 ). At the depth of 1.5 km, velocity model SC1 I is very close to
isotropic, but is slightly cubic and its symmetry axes coincide with the coordinate
axes. This means that, at depths between 0 km and 1.5 km, velocity model SC1 I
is very close to transversely isotropic, but is slightly tetragonal. Whereas the
transversely isotropic medium contains the intersection singularity through which
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the rays pass without rotation of the eigenvectors of the Christoffel matrix (Vavryčuk,
2001, Sec. 4.3 ; Klimeš and Bulant, 2014a), in the approximately transversely
isotropic medium, the S–wave slowness surface is split at this unstable singularity
(Crampin, 1981 ) and the eigenvectors of the Christoffel matrix rapidly rotate by
90◦ there. This split intersection singularity then acts as an interface and smoothly
but very rapidly converts the actual S–wave polarizations from the approximately
anisotropic–ray–theory polarization S1 to the approximately anisotropic–ray–theory
polarization S2, and vice versa.

Note that the anisotropic–ray–theory geometrical spreading and the phase shift
due to caustics cannot often be calculated numerically through the split intersection
singularity (Bulant and Klimeš, 2014 ).

Velocity model SC1 II is analogous to SC1 I, but the reference symmetry axis
of its approximately transversely isotropic component is tilted, refer to Pšenč́ık
et al. (2012). The symmetry axes of its weak cubic component coincide with
the coordinate axes. The split intersection singularity in velocity model SC1 II
is thus positioned differently in comparison with velocity model SC1 I. In the
source–receiver plane, the split intersection singularity is close to the horizontal
slowness vectors. When the slowness vector of a ray passes smoothly through this
split intersection singularity, the ray–velocity vector rapidly changes its direction
and creates a sharp bend in the anisotropic–ray–theory ray. The deviation of the
anisotropic–ray–theory rays from the anisotropic common reference rays is much
greater in velocity model SC1 II than in velocity model SC1 I (Pšenč́ık et al., 2012 ).
However, the actual wave paths in velocity model SC1 II are considerably different
from both the anisotropic common reference rays and the anisotropic–ray–theory
rays. The actual wave paths in velocity model SC1 II are close to the SH and SV
reference rays defined by Klimeš and Bulant (2015).

Velocity model KISS represents velocity model QI described above, rotated by
−44◦ in order to position the reference symmetry axis, corresponding to the kiss
slowness surface singularity, just 1◦ from the source–receiver plane.

In the weakly orthorhombic velocity model ORT, the slowness surface contains
four conical singularities. The rays leading from the source to the middle part of
the receiver profile pass close to one of these singularities. This conical singularity
then acts as an interface and smoothly but very rapidly converts the actual S–wave
polarizations from the approximately anisotropic–ray–theory polarization S1 to the
approximately anisotropic–ray–theory polarization S2, and vice versa.

5 . 4 . M e a s u r e m e n t c o n f i g u r a t i o n

The synthetic seismograms generated by a vertical force are calculated at the
receivers located in a vertical well at a distance of 1 km from the source. The source–
receiver configuration in velocity models QIH, QI, QI2, QI4 and KISS is displayed
in Fig. 1. The source–receiver configuration in velocity models SC1 I, SC1 II and
ORT is similar except for different receiver positions in the vertical well.

The source time function is the Gabor signal cos(2πft) exp[−(2πft/4)2] with
reference frequency f = 50 Hz, bandpass filtered by a cosine filter specified by

430 Stud. Geophys. Geod., 60 (2016)



Prevailing-frequency approximation of the coupling ray theory

VERTICAL
FORCE EARTH SURFACE RECEIVERS

SOURCE-VSP HORIZONTAL DISTANCE = 1.00 km

Fig. 1. The source–receiver configuration for the calculation of synthetic seismograms,
with a sketch of the reference rays. The source is located at the Earth’s surface, the
receivers are placed in the vertical well. The numbers and depths of the receivers differ for
the individual velocity models and are presented in the figures with seismograms.

frequencies 0 Hz, 5 Hz, 60 Hz and 100 Hz. The numbers and depths of the receivers
differ for the individual velocity models and are displayed in the plots of seismograms.
The receivers record the following 3 components of displacement: radial component
(along the line connecting the source and the top of the well, positive away from
the source), transverse component (perpendicular to the source–receiver plane), and
vertical component (positive downwards). The recording system is right–handed.
For the prevailing–frequency approximation of the coupling ray theory, we naturally
use the prevailing frequency f0 = 50 Hz.

5 . 5 . C o m p a r i s o n o f n a r r o w – b a n d s y n t h e t i c s e i s m o g r a m s

The synthetic seismograms in velocity models QIH, QI, QI2, QI4, SC1 I, SC1 II,
KISS and ORT are displayed in Figs 2–9. In each figure, the synthetic seismograms
calculated by the standard coupling ray theory and by the Fourier pseudospectral
method are displayed in different colours. In each velocity model, the amplitude
scaling is equal for all components and all receivers.

Note that the second (transverse) component would vanish in the isotropic–ray–
theory seismograms in all these velocity models. This second component would also
be quite different in the anisotropic–ray–theory seismograms in velocity models QIH
(Červený et al., 2007, Fig. 19 ), QI (Pšenč́ık and Dellinger, 2001, Fig. 8 ), SC1 I,
SC1 II, KISS and ORT (Pšenč́ık et al., 2012, Figs 10, 13, 16, 19 ).

In all eight velocity models, the additional inaccuracy introduced by the
prevailing–frequency approximation is generally smaller than the inaccuracy of
the standard frequency–domain coupling ray theory. The synthetic seismograms
calculated by the prevailing–frequency approximation of the coupling ray theory
are plotted in red, and are often obscured by the standard–coupling–ray–theory
seismograms plotted in green. The additional inaccuracy introduced by the
prevailing–frequency approximation is most pronounced in velocity model QI2
(Fig. 4) and is mostly invisible or even completely invisible in the other seven velocity
models.
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In velocity model QIH (Fig. 2), we have only the results of the standard coupling
ray theory and of its prevailing–frequency approximation. We can observe very good
agreement between the prevailing–frequency approximation seismograms and the
standard–coupling–ray–theory seismograms. The dependence between the strength
of the anisotropy and the differences of both the coupling–ray–theory seismograms
from the Fourier pseudospectral seismograms can be observed in Figs 3–5. From this
dependence, we may estimate that the accuracy of both the coupling–ray–theory
seismograms in velocity model QIH is very good.

In velocity model QI (Fig. 3) whose anisotropy is twice stronger than in model
QIH, we can again observe the good overall fit between the prevailing–frequency
approximation seismograms and the standard–coupling–ray–theory seismograms.
Both these coupling–ray–theory seismograms differ from the Fourier pseudospectral
seismograms only negligibly.

In velocity model QI2 (Fig. 4) whose anisotropy is twice stronger than in model
QI, we can observe slight differences between the prevailing–frequency approximation
seismograms and the standard–coupling–ray–theory seismograms in the second
(transverse) component. This component also displays the development of S–wave
splitting. We may thus conclude that the coupling of the two S waves plays an
important role in this velocity model and is also related to the slight inaccuracy of the
prevailing–frequency approximation. However, the additional inaccuracy, introduced
by the prevailing–frequency approximation, is smaller than the inaccuracy of the
standard coupling ray theory. Note that the differences of both the coupling–
ray–theory seismograms from the Fourier pseudospectral seismograms increase with
increasing anisotropy, see Figs 3–5.

In velocity model QI4 (Fig. 5) whose anisotropy is 4 times stronger than in
model QI, we can see that both the prevailing–frequency approximation and the
standard coupling ray theory perform equally well, even though the velocity model
is considerably anisotropic, and the separation of the two S waves is about 0.06 s
which corresponds approximately to three S–wave periods.

The slowness surface in velocity model SC1 I contains the split intersection sin-
gularity. In Fig. 6, the prevailing–frequency approximation seismograms are mostly
obscured by the standard coupling ray theory seismograms. Both the coupling–ray–
theory seismograms are close to the Fourier pseudospectral seismograms despite the
existence of the above–mentioned split intersection singularity in this velocity model.

The slowness surface in velocity model SC1 II contains the split intersection
singularity analogous to velocity model SC1 I, but with a tilted reference symmetry
axis. In the source–receiver plane, the split intersection singularity is close to the
horizontal slowness vectors. When the slowness vector of a ray passes smoothly
through this split intersection singularity, the ray–velocity vector rapidly changes
its direction and creates a sharp bend of the anisotropic–ray–theory ray (Bulant and
Klimeš, 2014 ; Klimeš and Bulant, 2014b). This sharp bend is connected with a rapid
rotation of the eigenvectors of the Christoffel matrix. The sharply bent anisotropic–
ray–theory rays thus cannot describe the correct wave propagation. The actual wave
paths in velocity model SC1 II are close to the SH and SV reference rays (Klimeš,
2015, 2016c; Klimeš and Bulant, 2015 ) which tunnel smoothly through a split
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Fig. 2. Radial, transverse and vertical components of the seismograms calculated in
velocity model QIH. All seismograms are scaled equally. In this velocity model, we
have only the results of the standard coupling ray theory and of its prevailing–frequency
approximation. The seismograms calculated by the prevailing–frequency approximation
are plotted in red, and they are overlaid by the seismograms calculated by the standard–
coupling–ray–theory seismograms plotted in green. The seismograms are in good
agreement; the prevailing–frequency approximation seismograms are obscured by the
standard–coupling–ray–theory seismograms.

Stud. Geophys. Geod., 60 (2016) 433
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intersection singularity. The actual wave paths leading to the shallow receivers are
significantly different from the anisotropic common reference rays. The differences
between the Fourier pseudospectral method and the coupling ray theory at the
shallow receivers in Fig. 7 are mostly caused by the inaccurate reference geometrical
spreading and by the deviation of the actual polarization vectors of the two S waves
from the reference polarization plane given by the reference S–wave eigenvectors
corresponding to the reference Christoffel matrix (Klimeš and Bulant, 2015 ). The
prevailing–frequency approximation is nearly identical to the standard coupling ray
theory even in this situation.

The slowness surface in velocity model KISS contains a kiss singularity analogous
to velocity model QI, but deviated by only 1◦ from the source–receiver plane, instead
of 45◦ in velocity model QI. As a consequence, the vertical force generates almost
no energy in the second (transverse) component. Fig. 8 shows that the differences of
both the coupling–ray–theory methods from the Fourier pseudospectral method are
negligible, and that the differences of the prevailing–frequency approximation from
the standard coupling ray theory are invisible.

The slowness surface in velocity model ORT contains four conical singularities.
The rays leading from the source to the receivers at depths from 0.72 km to 0.92 km
pass close to one of these singularities. This conical singularity then acts as an
interface and smoothly but very rapidly converts the actual S–wave polarizations
from the approximately anisotropic–ray–theory polarization S1 to the approximately
anisotropic–ray–theory polarization S2, and vice versa. In Fig. 9, we can see the
very good overall fit of both the prevailing–frequency approximation seismograms
and the standard–coupling–ray–theory seismograms with the Fourier pseudospectral
seismograms, except for the slight differences in the singular region around the
depth of 0.8 km. The differences of the prevailing–frequency approximation from
the standard coupling ray theory are invisible.

5 . 6 . C o m p a r i s o n o f b r o a d – b a n d s y n t h e t i c s e i s m o g r a m s

In the previous section, we tested the prevailing–frequency approximation of the
coupling ray theory in eight velocity models for narrow–band synthetic seismograms.
The source time function was the Gabor signal cos(2πft) exp[−(2πft/4)2] with refer-
ence frequency f = 50 Hz, bandpass filtered by a cosine filter specified by frequencies
0 Hz, 5 Hz, 60 Hz and 100 Hz. We observed the most pronounced differences between
the prevailing–frequency approximation and the standard coupling ray theory in
velocity model QI2 (Fig. 4), in which the frequency–dependent coupling of the two
S waves is strong.

We thus test the prevailing–frequency approximation of the coupling ray theory
in velocity model QI2 also for broad–band synthetic seismograms. The source
time function is the Gabor signal cos(2πft) exp[−(2πft)2] with reference frequency
f = 50 Hz, bandpass filtered by a cosine filter specified by frequencies 0 Hz, 5 Hz,
200 Hz and 250 Hz.

In this case, we have the results of the standard coupling ray theory and of its
prevailing–frequency approximation only. The synthetic seismograms are displayed
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Fig. 3. Radial, transverse and vertical components of the seismograms calculated in
velocity model QI. The results of the prevailing–frequency approximation are plotted
in red, the standard–coupling–ray–theory seismograms are then plotted in green, and
they are overlaid by the seismograms calculated by the Fourier pseudospectral method
plotted in black. All seismograms are in good agreement, with the prevailing–frequency
approximation seismograms obscured by the standard–coupling–ray–theory seismograms.
The wave arriving at the shallowest receivers at about time 0.53 s is an artifact of the
Fourier pseudospectral method.
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Fig. 4. Radial, transverse and vertical components of the seismograms calculated in
velocity model QI2. The seismograms are plotted in order red (prevailing–frequency
approximation), green (standard coupling ray theory) and black (Fourier pseudospectral
method). All seismograms are in overall good agreement, with the prevailing–frequency
approximation seismograms mostly obscured by the standard–coupling–ray–theory seismo-
grams. Slight differences between the prevailing–frequency approximation seismograms
and the standard–coupling–ray–theory seismograms appear in the second (transverse)
component. The second component also displays the development of S–wave splitting.
We may thus conclude that the frequency–dependent coupling of the two S waves plays
an important role in this velocity model and is also related to the slight inaccuracy of the
prevailing–frequency approximation.
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Fig. 5. Radial, transverse and vertical components of the seismograms calculated in
velocity model QI4. The seismograms are plotted in order red (prevailing–frequency
approximation), green (standard coupling ray theory) and black (Fourier pseudospectral
method). The prevailing–frequency approximation seismograms are mostly obscured by the
standard–coupling–ray–theory seismograms. The velocity model is considerably anisotropic
and the two S waves are fully separated. The coupling effects are thus less pronounced,
and the prevailing–frequency approximation seismograms are in good agreement with the
standard–coupling–ray–theory seismograms. The differences between both the coupling–
ray–theory seismograms and the Fourier pseudospectral method are slightly higher than in
the previous velocity models.
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Fig. 6. Radial, transverse and vertical components of the seismograms calculated in
velocity model SC1 I. The seismograms are plotted in order red (prevailing–frequency
approximation), green (standard coupling ray theory) and black (Fourier pseudospectral
method). The prevailing–frequency approximation seismograms are mostly obscured by the
standard–coupling–ray–theory seismograms. Both the coupling–ray–theory seismograms
are close to the Fourier pseudospectral seismograms.
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Fig. 7. Radial, transverse and vertical components of the seismograms calculated in
velocity model SC1 II. The seismograms are plotted in order red (prevailing–frequency
approximation), green (standard coupling ray theory) and black (Fourier pseudospectral
method). The prevailing–frequency approximation seismograms are mostly obscured by the
standard–coupling–ray–theory seismograms. The seismograms from the shallow receivers
indicate problems with the inaccurate reference polarization vectors and the inaccurate ref-
erence geometrical spreading. However, the prevailing–frequency approximation represents
a very good approximation to the standard coupling ray theory even in this situation.
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Fig. 8. Radial, transverse and vertical components of the seismograms calculated in
velocity model KISS. The seismograms are plotted in order red (prevailing–frequency
approximation), green (standard coupling ray theory) and black (Fourier pseudospectral
method). The prevailing–frequency approximation seismograms are obscured by the
standard–coupling–ray–theory seismograms. All seismograms are in good agreement,
similarly as in Fig. 3.
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Fig. 9. Radial, transverse and vertical components of the seismograms calculated in
velocity model ORT. The seismograms are plotted in order red (prevailing–frequency
approximation), green (standard coupling ray theory) and black (Fourier pseudospectral
method). The prevailing–frequency approximation seismograms are obscured by the
standard–coupling–ray–theory seismograms. Both the coupling–ray–theory seismograms
are close to the Fourier pseudospectral seismograms despite the existence of conical
singularities in this velocity model.
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Fig. 10.Radial, transverse and vertical components of the seismograms calculated in
velocity model QI2 for a broad–band signal. In this case, we have only the results of
the standard coupling ray theory and of its prevailing–frequency approximation. The
seismograms are plotted in order red (prevailing–frequency approximation) and green

(standard coupling ray theory). The differences in the polarization due to the strong
frequency–dependent coupling of the two S waves are visible in the second (transverse)
component.

442 Stud. Geophys. Geod., 60 (2016)



Prevailing-frequency approximation of the coupling ray theory

in Fig. 10. The differences visible in the second (transverse) component are mostly
caused by the inaccurate approximation of the coupling–ray–theory seismograms by
the prevailing frequency approximation at low frequencies, for which the coupling–
ray–theory polarization approaches the isotropic–ray–theory polarization. There
are also differences in the second (transverse) component at the shallow receivers
caused by inaccurate approximation of the coupling–ray–theory seismograms by
the prevailing frequency approximation at high frequencies. These high–frequency
differences vanish at the deep receivers, where the two S waves are split at the
prevailing frequency (Fig. 4).

5 . 7 . C o u p l i n g – r a y – t h e o r y t r a v e l t i m e s

The coupling–ray–theory travel times (25) and (26) are often close to the
anisotropic–ray–theory travel times τ (1) and τ (2). The most important exception
is observed in velocity model ORT, at the receivers at depths from 0.72 km to
0.92 km. The rays leading from the source to these receivers pass close to the
conical singularity at the slowness surface, and the eigenvectors of the Christoffel
matrix smoothly but very rapidly rotate by 90◦ (Vavryčuk, 2005, Fig. 1 ). This
conical singularity then acts as an interface and smoothly but very rapidly converts
the actual S–wave polarizations from the approximately anisotropic–ray–theory
polarization S1 to the approximately anisotropic–ray–theory polarization S2, and
vice versa. The coupling–ray–theory travel times then correspond approximately to
the S1S2 and S2S1 anisotropic–ray–theory travel times of the converted waves, rather
than to the S1 and S2 anisotropic–ray–theory travel times. This behaviour of the
coupling–ray–theory travel times is evident in Table 1, where the differences of the

Table 1. Receivers in velocity model ORT influenced by the conical singularity at
the slowness surface. Differences D of the coupling–ray–theory travel times from the
mean travel time in seconds at the frequency of 50 Hz are compared with the differences
1
2 |τ

(2)−τ
(1)| of the anisotropic–ray–theory travel times from the mean travel time in

seconds. The anisotropic–ray–theory travel times are calculated by the second–order
perturbation expansion along the reference rays traced in steps of 0.01 s. The unknown
error of the perturbation expansion cannot influence the comparison because differences D

are calculated using differences 1
2 |τ

(2)−τ
(1)|. The rounding errors should not influence the

displayed differences.

Depth D
1
2 |τ

(2)−τ
(1)|

0.72 0.003616 0.003638

0.76 0.002210 0.002536

0.80 0.000883 0.001915

0.84 0.000362 0.001748

0.88 0.001515 0.002000

0.92 0.002581 0.002634
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L. Klimeš and P. Bulant

coupling–ray–theory travel times (25) and (26) from the mean travel time (2) at the
frequency of 50 Hz are compared with the differences of the anisotropic–ray–theory
travel times τ (1) and τ (2) from the mean travel time (2). The coupling–ray–theory
travel times at these receivers are practically frequency independent between 10 Hz
and 100 Hz.

Analogous behaviour of the coupling–ray–theory travel times is also observed in
velocity model SC1 I, at the deepest receivers at depths from 1.12 km to 1.32 km.
The rays leading from the source to these receivers pass through the split intersection
singularity at the slowness surface, and the eigenvectors of the Christoffel matrix
smoothly but very rapidly rotate by 90◦. This split intersection singularity then
acts as an interface and smoothly but very rapidly converts the actual S–wave
polarizations from the approximately anisotropic–ray–theory polarization S1 to
the approximately anisotropic–ray–theory polarization S2, and vice versa. The
coupling–ray–theory travel times then correspond approximately to the S1S2 and
S2S1 anisotropic–ray–theory travel times of the converted waves, rather than to the
S1 and S2 anisotropic–ray–theory travel times. This behaviour of the coupling–ray–
theory travel times is evident in Table 2, where the differences of the coupling–ray–
theory travel times (25) and (26) from the mean travel time (2) at the frequency of
50 Hz are compared with the differences of the anisotropic–ray–theory travel times
τ (1) and τ (2) from the mean travel time (2). The coupling–ray–theory travel times
at these receivers are again practically frequency independent between 10 Hz and
100 Hz.

Apart from the above mentioned singularities at the slowness surface, there are
also less pronounced differences between the coupling–ray–theory travel times and
the anisotropic–ray–theory travel times. As a rule, these “soft” differences approach

Table 2. Receivers in velocity model SC1 I influenced by the split intersection singularity
at the slowness surface. Differences D of the coupling–ray–theory travel times from the
mean travel time in seconds at the frequency of 50 Hz are compared with the differences
1
2 |τ

(2)−τ
(1)| of the anisotropic–ray–theory travel times from the mean travel time in

seconds. The anisotropic–ray–theory travel times are calculated by the second–order
perturbation expansion along the reference rays traced in steps of 0.001 s. The unknown
error of the perturbation expansion cannot influence the comparison because differences D

are calculated using differences 1
2 |τ

(2)−τ
(1)|. The rounding errors should not influence the

displayed differences.

Depth D
1
2 |τ

(2)−τ
(1)|

1.12 0.001754 0.001786

1.16 0.001104 0.001388

1.20 0.000475 0.001220

1.24 0.000130 0.001235

1.28 0.000709 0.001392

1.32 0.001262 0.001657
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zero with increasing frequency ω. The importance of these soft differences can be
evaluated in terms of expression

ω
(

1
2

∣∣τ (2) − τ (1)
∣∣ − D

)
. (43)

The most important soft differences between the coupling–ray–theory travel times
and the anisotropic–ray–theory travel times are observed in velocity model SC1 II,
around the receiver at the depth of 0.96 km and around the frequency of 80 Hz, where
the difference of the coupling–ray–theory travel time from the mean travel time is

D = 0.003572 s , (44)

whereas the difference of the anisotropic–ray–theory travel time from the mean travel
time is

1
2

∣∣τ (2) − τ (1)
∣∣ = 0.003767 s . (45)

The rays leading to these receivers do not pass close to any slowness surface
singularity (Pšenč́ık et al., 2012 ; Klimeš and Bulant, 2014b). The coupling–ray–
theory travel times in velocity model SC1 II approach the anisotropic–ray–theory
travel times with increasing frequency.

The next most important soft differences between the coupling–ray–theory travel
times and the anisotropic–ray–theory travel times are observed in velocity model
SC1 I, around the receiver at the depth of 0.04 km and around the frequency of
40 Hz, where the difference of the coupling–ray–theory travel time from the mean
travel time is

D = 0.007136 s , (46)

whereas the difference of the anisotropic–ray–theory travel time from the mean travel
time is

1
2

∣∣τ (2) − τ (1)
∣∣ = 0.007488 s . (47)

The coupling–ray–theory travel times at the shallow receivers in velocity model
SC1 I approach the anisotropic–ray–theory travel times with increasing frequency.

Within frequency band 10 Hz to 100 Hz, the differences between the coupling–ray–
theory travel times and the anisotropic–ray–theory travel times in velocity models
QIH, QI, QI2 and QI4 are an order of magnitude less important than those in
velocity model SC1 II, or at the shallow receivers in velocity model SC1 I. The
coupling–ray–theory travel times approach the anisotropic–ray–theory travel times
with increasing frequency.

The differences between the coupling–ray–theory travel times and the aniso-
tropic–ray–theory travel times in velocity model ORT at the receivers outside the
singular region, which extends from the depth of 0.72 km to 0.92 km, are even much
smaller within the 10 Hz to 100 Hz frequency band. These coupling–ray–theory travel
times approach the anisotropic–ray–theory travel times with increasing frequency.

The coupling–ray–theory travel times in velocity model KISS are equal to
the anisotropic–ray–theory travel times up to rounding errors, independently of
frequency within the 10 Hz to 100 Hz band.
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6. CONCLUSIONS

Within a limited frequency band, we may efficiently approximate the frequency–
dependent frequency–domain coupling–ray–theory tensor Green function by two
dyadic Green functions corresponding to two waves, described by their coupling–ray–
theory travel times and the corresponding vectorial amplitudes calculated for the pre-
vailing frequency. The additional inaccuracy introduced by this prevailing–frequency
approximation is usually smaller than the inaccuracy of the standard frequency–
domain coupling ray theory, and smaller than the additional inaccuracy introduced
by many other approximations of the coupling ray theory. The prevailing–frequency
approximation of the coupling ray theory is accurately applicable in all situations we
have tested numerically. The prevailing–frequency approximation is very accurate
at both very weak anisotropy (Fig. 2) and strong anisotropy (Fig. 5), but it should
further be tested with respect to stronger heterogeneities and broader frequency
bands.

We have noticed no limitation of the applicability of the prevailing–frequency
approximation of the coupling ray theory for electromagnetic waves or elastic
S waves. On the other hand, before the prevailing–frequency approximation is
applied in a particular medium, its accuracy should be tested there. If the results
of the tests are satisfactory, we can apply the prevailing–frequency approximation.

The prevailing–frequency approximation of the coupling ray theory for electro-
magnetic waves or elastic S waves allows us to process the coupling–ray–theory wave
field in the same way as the anisotropic–ray–theory wave field. This simplification
may be decisive when storing the tensor Green function at the nodes of dense
grids (Klimeš and Bulant, 2013 ), which is typical for applications such as the
Born approximation. The prevailing–frequency approximation with its coupling–
ray–theory travel times also offers a new way of understanding the results of the
coupling ray theory.

APPENDIX
PAULI MATRICES AND ASSUMPTION (12)

In this section, we propose a convenient numerical representation of matrices Π,
D, Π(1) or Π(2). We also employ this representation in demonstrating that the 2×2
matrices (20) and (21) satisfy our assumption (12).

The Pauli matrices are 2×2 matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A-1)

They satisfy relations

σ1σ2 = −σ2σ1 = iσ3 , σ2σ3 = −σ3σ2 = iσ1 , σ3σ1 = −σ1σ3 = iσ2 (A-2)

and

σ1σ1 = σ2σ2 = σ3σ3 = 1 . (A-3)
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The coefficient matrix of coupling equation (3) is a linear combination of matrices
iσ2 and iσ3 with real–valued coefficients. The initial value of propagator matrix Π

is 1. Because of relations (A-2) and (A-3), matrix Π can then be expressed as the
linear combination

Π = Π0 1 + i

3∑

k=1

Πk σk (A-4)

of the Pauli matrices (A-1) and identity matrix 1, with real–valued coefficients Π0

and Πk. We insert the Pauli matrices (A-1) into linear combination (A-4) and obtain

Π =

(
Π0 + iΠ3 Π2 + iΠ1

−Π2 + iΠ1 Π0 − iΠ3

)
. (A-5)

The determinant of this matrix reads

det(Π) = Π2
0 + Π2

1 + Π2
2 + Π2

3 . (A-6)

Since matrix Π is unimodular, the real–valued coefficients satisfy identity

Π2
0 + Π2

1 + Π2
2 + Π2

3 = 1 . (A-7)

We now prove that our assumption (12) holds. The derivative (11) of matrix (A-5)
reads

D =

(
D0 + iD3 D2 + iD1

−D2 + iD1 D0 − iD3

)
, (A-8)

where

Dk =
∂Πk

∂ω
, k = 0, 1, 2, 3 . (A-9)

The differentiation of identity (A-7) with respect to ω yields identity

Π0D0 + Π1D1 + Π2D2 + Π3D3 = 0 . (A-10)

We insert matrices (A-5) and (A-8) into the right–hand sides of Eqs (20) and (21),
respectively. Analogously to Eq. (A-6), the determinants of matrices (20) and (21)
then read

det
(
Π(1,2)

)
=

1

4

[(
Π0±i

D0

D

)2

+

(
Π1±i

D1

D

)2

+

(
Π2±i

D2

D

)2

+

(
Π3±i

D3

D

)2]
. (A-11)

Equation (A-11) with identity (A-10) yields

det
(
Π(1,2)

)
= 1

4

[
Π2

0 + Π2
1 + Π2

2 + Π2
3 − (D2

0 + D2
1 + D2

2 + D2
3)/D2

]
, (A-12)

which is equivalent to relation

det
(
Π(1,2)

)
= 1

4

[
det(Π) − det(D/D)

]
. (A-13)

Since both matrices Π and D/D are unimodular, we see that

det
(
Π(1,2)

)
= 0 (A-14)

as we have assumed.
Note that we need to calculate just one column of matrices (A-5) or (A-8). This

column simultaneously determines the other column. Note also that Eqs (A-5) and
(A-8) are useful numerical representations of matrices Π and D in terms of real–
valued coefficients Π0, Πk and D0, Dk.
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Klimeš L., 2016a. Ray series for electromagnetic waves in static heterogeneous bianisotropic
dielectric media. Seismic Waves in Complex 3–D Structures, 26, 167–182 (http:/
/sw3d.cz).
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