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Abstract A general expression based on the concepts of the progressive nucleation

mechanism is proposed in the form aðtÞ ¼ NðtÞ
C ¼ 1� exp � t

H

� �q� �� �
to describe the

growth behavior of items in an individual system and a collective of systems. In the above

relation, a(t) is the ratio of items N(t) at time t to the maximum number C of possible items

for the system, H is the corresponding time constant and q is the exponent. The above

relation is then used to analyze: (1) the growth behavior of cumulative number N(t) of

papers published by individual authors and cumulative citations L(t) of N(t) papers of an

author as a function of citation duration t, and (2) the relationship between cumulative

citations L(t) of papers and cumulative number N(t) of papers. The proposed approach

predicts that: (1) the fraction of items produced by successive systems is additive, (2) the

cumulative fraction asum(t) of maximum number of sites is the sum of contributions of

fractions of maximum number of items produced by different systems, and (3) the values

of time constants H and exponent q increase with the addition of fraction of items pro-

duced by subsequent systems, but their values are the lowest for individual systems. The

approach is applied to explain the growth behavior of cumulative N(t) papers and

L(t) citations of four selected Polish professors.

Keywords Cumulative citations � Cumulative papers � Growth behavior of items �
Individual authors � Progressive nucleation mechanism (PNM)

Introduction

It is well known that the growth of journals, articles and authors in different scientific fields

occurs at a relatively slow rate initially, followed by an exponential increase, and, in some

cases, finally the growth declines after a certain time, giving rise to a sigmoidal shaped

(S-shaped) curve. In order to analyze the above type of growth behavior a variety of
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models have been developed and applied over years. Among the different equations of

various models, power-law, exponential and logistic functions are commonly used (De

Solla Price 1963; Egghe and Ravichandra Rao 1992; Gupta et al. 1995, 2002, Ravichandra

Rao and Srivastava 2010, Wong and Goh 2010). Recently, Sangwal (2011a, b) applied a

new equation, based on progressive nucleation mechanism (PNM) of a solid phase during

its crystallization in a closed liquid system of fixed volume.

Using the new equation, the author analyzed the growth of the number of citations per

year, denoted hereafter as DL(t), of individual authors (Sangwal 2011a), the cumulative

growth of N(t) articles, in three randomly selected databases in humanities, social sciences

and science and technology (Sangwal 2011b) and the cumulative growth of J(t) journals,

N(t) papers and W(t) authors in malaria research (Sangwal 2011b). Analysis of the former

data revealed that: (1) PNM describes the data better than the power-law relation, (2) the

field of social sciences is saturated much earlier than science and technology but publi-

cation activity in humanities is saturated much later, and (3) that social sciences have the

maximum growth, followed by lower growth in humanities and the lowest growth in

science and technology. It was also observed that: (1) the data on J(t) journals, N(t) papers

and W(t) authors against publication year Y in malaria research can be described equally

well by equations of the power law and PNM, and (2) the growth of journals J(t) and

articles N(t) is intimately connected with the growth of authors W(t).
The basic concepts of the PNM are well developed in the field of crystallization of

a phase in crystallization medium (Kashchiev 2000). The basic idea of the PNM invovles

the formation of crystallites progressively in the crystallizing volume. However, while

analyzing different types of data using the PNM equation, the author (Sangwal 2011a, b)

assumed ad hoc that the number DL(t) of citations per year of individual authors and

cumulative growth of J(t) journals, N(t) papers and W(t) authors in a scientific field are the

analogs of crystallites. Despite the success of the equation based on PNM in describing the

above data, the similarity between growth of crystallites during crystallization and different

types of items in individual systems as well as collectives of systems remains unclear. For

example, one can imagine a similarity between crystallites in a crystallization medium and

J(t) journals in a research area, but it remains obscure why the number N(t) of papers

published in different J(t) journals of a research field should also follow the PNM equation.

The aim of the present study is twofold: (1) to develop the basic concepts of the

progressive nucleation mechanism to describe the growth behavior of items in an indi-

vidual system and a collective of systems, and (2) analyze the growth behavior of

cumulative number N(t) of papers L(t) citations of individual authors.

The structure of the paper is as follows. In the following section the basic concepts and

equations of the growth behavior of items, based on PNM described in Appendix, are

presented. Then the citation data of the total publication output of four arbitrarily selected

Polish professors are presented. These data are analyzed thereafter using the concepts and

equations based on the PNM. Finally, the main findings of the study and the unclear

aspects of the PNM as applied to the growth behavior of items are summarized.

Basic concepts and equations for growth behavior of items

Processes of the publication of articles by an author in journals, the citation of a particular

article of a given author by other authors, the number of authors engaged in a research

work in a given field or the number of cars produced by a factory since its inception are

basically similar. Here articles published by an author, citations of a particular article,
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researchers in a given field or cars produced by a factory are the analogs of crystallites

forming during crystallization in a closed system (see Appendix). In the above cases, an

author of the articles, an article fetching the citations, a research field and a car factory are

the individual closed systems. However, individual closed systems producing similar or

dissimilar items also constitute a closed group or collective of individual systems. For the

collective of systems the total number of items produced during a given duration is the sum

of items produced by all individual systems during that duration.

The process of growth of N items produced in a system is represented schematically in

Fig. 1 as a function of time t. If N1 and N2 are the number of items at t1 and t2, respectively,

from the change (N2 - N1) in the number of items during the time interval (t2 - t1) one

may define the production rate v of item as

v ¼ N2 � N1

t2 � t1

¼ DN

Dt
; ð1Þ

where v (items/time) is constant during Dt. From Eq. 1 one may define instantaneous rate

vins and average rate vav:

vins ¼ lim
Dt!0

DN

Dt
¼ dN

dt
; ð2Þ

vav ¼
Xn

i¼1
DNi

.Xn

i¼1
Dti; ð3Þ

where DNi is the number of items produced by an individual closed system i during Dti
and n is the sum of intervals. In the above equations

NðtÞ ¼
Xn

i¼1

DNi; ð4Þ

and when Dti = 1, vi = DNi. It should be noted that the units of N and v are: item and item/

time, respectively. With the above basic background well known in kinematics, we discuss

the growth behavior of items produced in individual systems and in collectives of systems.

In the case of growth of items (such as articles, citations, authors and cars in the above

examples) with time t in an individual system since the year Y0, we assume that each real

item has an imaginary volume such that the total volume of N(t) items is Vc(t) at time t and

C is the maximum number of items possible in the volume V of the system. Denoting the

Fig. 1 Schematic presentation
of growth of N items produced in
a system is as a function of time t
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number Ni of items produced by an individual closed system i at time t, the fraction ai(t) of

items Ni(t) at time t may be given by (cf. Eq. 12)

aiðtÞ ¼
NiðtÞ

Ci
¼ 1� exp � t

Hi

� 	qi

 �� 


; ð5Þ

where Ci is the maximum number of possible items for the system i, Hi the corresponding

time constant and qi is the exponent. The time constant Hi and the exponent qi are given

by Eqs. 22 and 14, respectively. As in the case of PNM for crystallization. Eq. 5 for

individual systems predicts that 1 \ q \ 2.5 and 1 \ q \ 4 when the items grow to three-

dimensional entities of visible size (i.e. when d = 3) by volume diffusion and mass

transfer, respectively. When the items are already of visible size at the time of their

nucleation, the exponent q = 1, which is the lowest limit for the validity of PNM.

In the case of a collective of n systems, the cumulative fraction a of items may be

written as

aðtÞ ¼
Xn

i¼1

aiðtÞ ¼
Xn

i¼1

NiðtÞ
Ci

; ð6Þ

where 1 \ i \ n. When a new individual system becomes active after a time lag D, the

cumulative fraction asum(t) of items may be given by

asumðtÞ ¼
Xn

i¼1

aiðtÞ ¼
Xn

i¼1

NiðtÞ
Ci
¼
Xn

i¼1

1� exp � t � ði� 1ÞD
Hi

� 	qi

 �� 


: ð7Þ

Equation 7 does not have a simple solution but can be solved numerically. This can be

done by summing up all data of items generated by using Eq. 5 for systems characterized

by different values of time constant Hi and exponent qi, which become active succes-

sively with time lag D, to obtain cumulative fraction asum(t). Examples of the time

dependence of the cumulative fraction asum(t) of items calculated in this way by adding

contributions from systems are shown in Figs. 2, 3 and 4 for different values of

parameters D, qi and Hi, respectively. The points represent the asum(t) data of items

produced as a function of time according to Eq. 7. The values of D and Hi are taken in

arbitrary units abbreviated hereafter as a.u.

Figure 2 presents the cumulative fraction asum(t) of items produced by n = 6 systems of

the same time constant Hi = 5 a.u. as a function of time t. Among the six systems, the first

five systems are considered to become active successively after equal time intervals D = 2

a.u., whereas the last system becomes active after time interval D = 4 a.u. Obviously, in
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Fig. 2 Dependence of
cumulative fraction asum(t) of
items from different active
systems as a function of time t for
different values of parameter D,
with qi = 2 and Hi = 5. See text
for details
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this case the time lags (i - 1)D when the systems 1, 2, 3, 4, 5 and 6 become active are 0, 2,

4, 6, 8 and 12 a.u. These values of (i - 1)D are indicated alongside the plots. Figure 3

presents the time dependence of cumulative fraction asum(t) of items from n = 4 systems

of the same time constant Hi = 5 a.u., which become active successively at time t equal to

0, 2, 4 and 6 a.u. and are characterized by the exponent qi equal to 1, 1.5, 2 and 2.5,

respectively. The values of qi for the cumulative data are given alongside the plots. Fig-

ure 4 illustrates the cumulative fraction asum(t) of items from n = 6 systems characterized

by the same time constant Hi = 5 a.u. and qi = 2 as a function of time t. The systems

i become active at t equal to 0, 2, 4, 6, 8 and 10 a.u., but the contributions a1, a2, a3, a4, a5

and a6 of successive 6 systems to the cumulative fraction asum(t) of items are different as

given in the inset whereas the values of D are given alongside the plots.

The data points generated above in Figs. 2, 3, 4 were fitted according to the relation

asumðtÞ ¼
Xn

i¼1

aiðtÞ ¼ a0 1� exp � t

H0

� 	q0

 �� 


; ð8Þ

where H0 and q0 are new time constant and exponent describing the resultant growth behavior

of the entire collective of systems, and the sum of all maximum fractions a0 is defined as

asumðtÞ
a0

¼ NsumðtÞ
C0

; ð9Þ

where the ratio Nsum(t) is the sum of items produced by the collective of n systems at time

t and C0 is sum of the maximum numbers of items in the collective. The plots of the data of
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Fig. 3 Dependence of
cumulative fraction asum(t) of
items from different active
systems as a function of time t for
different values of parameters qi

with D = 0 and Hi = 5. See text
for details
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the figures are drawn with the best-fit values of the constants of Eq. 8 for the data of the

above figures are given Table 1. The data were analyzed using Origin software (version

4.1); see next section.

From Figs. 2, 3, 4 and Table 1 the following features may be noted:

(1) The fraction of items produced by successive systems is additive.

(2) Cumulative fraction asum(t) of maximum number of sites is the sum of contributions

of fractions of maximum number of items produced by different systems.

(3) The fit of the generated data according to Eq. 8 is extremely good even in the case of

highly different combinations of parameters Dti, qi and Hi (see Table 1). This is due

to the fact that a positive deviation of asum(t) at low values of t is somewhat

compensated by a negative deviation of asum(t) at relatively high values of t. This

feature of the mutual compensation of positive and negative deviations of asum(t) at

low and high values of t may be noted from the plots for large values of asum(t) in

Figs. 3 and 4.

(4) The values of constants H0 and q0 increase with the addition of fraction of items

produced by subsequent systems.

From the above discussion it may be concluded that the growth of cumulative number

Ni of items produced by an individual source i and the cumulative number Nsum of items

produced by a collective of sources can be described by Eqs. 5 and 8, respectively. These

equations are identical in form and are characterized by three parameters: the maximum

number Ci or C0 of items likely to be produced by the individual system i or collective of

systems (cf. Eq. 9), and the corresponding time constant Hi or H0 and the exponents qi or

q0. This means that basically it is the same equation for the analysis of the growth behavior

of cumulative papers N, cumulative citations Li of an individual paper i and cumulative

citations Lsum of all papers of an author. The former two cases are examples of individual

systems, whereas the last one is an example of a collective of systems. This relation also

explains the growth and decay of the number DL of citations per year of individual papers

published by an author (Sangwal 2012).

Table 1 Best-fit values of constants of Eq. 8 for the data of Figs. 2, 3, 4

Figure Constants Variable a0 H0 q0

2 Hi = 5, qi = 2 D = 0 1 5 2

2 1.9992 ± 0.0008 6.1208 ± 0.0027 2.3074 ± 0.0072

4 3.0001 ± 0.0018 7.2682 ± 0.0099 2.4510 ± 0.0106

6 4.0048 ± 0.0049 8.4373 ± 0.0021 2.4801 ± 0.0194

8 5.0153 ± 0.0106 9.6235 ± 0.0371 2.4497 ± 0.0288

8 ? 4 6.0109 ± 0.0117 9.5114 ± 0.0336 2.5554 ± 0.0288

3 Hi = 5, D = 0 Dqi = 1 1 5 1

1, 1.5 1.9909 ± 0.0037 6.2790 ± 0.0345 1.5064 ± 0.0168

1, 1.5, 2 2.9958 ± 0.0107 7.5391 ± 0.0649 1.9254 ± 0.0415

1, 1.5, 2, 2.5 4.0107 ± 0.0225 8.7813 ± 0.0100 2.2142 ± 0.0707

4 Hi = 5, qi = 2 D = 0 1 5 2

2 1.9999 ± 0.0001 5.3789 ± 0.0018 2.0589 ± 0.0019

4 3.2012 ± 0.0060 8.0035 ± 0.0305 2.6488 ± 0.0343

8 8.2253 ± 0.0393 11.7298 ± 0.0778 3.2738 ± 0.0855

– 10 9.2275 ± 0.0449 12.2145 ± 0.0788 3.3467 ± 0.0861
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As described above, according to the PNM for crystallization in a given system defined

by nucleation event alone, q = 1 (see Appendix). Thus, a natural consequence of the above

observation that q [ 1 for a group of systems characterized by different parameters pro-

ducing items does not always mean that nuclei of items grow after their formation.

Citation data of selected authors

We used Thomson Reuters’ ISI Web of Knowledge (Web of Science) to collect and

analyze the citations of the publication output of four Polish professors: T. Dietl (affilia-

tions: Institute of Physics, Polish Academy of Sciences, Warsaw, and University of

Warsaw), J. Barnaś (affiliations: Adam Miśkiewicz University, Poznań, and Institute of

Molecular Physics, Polish Academy of Sciences, Poznań), M. Kosmulski (Lublin Uni-

versity of Technology) and K. Sangwal (Lublin University of Technology). The basic

bibliometric data involving the number of papers DN(t) published per year and the number

DL(t) of citations with self-citations per year collected from the above database are given

in Table 2 for the above authors. Here DN(t) and DL(t) are the increments in the values of

the cumulative number N of papers and the cumulative number L of citations in the time

interval between t and (t - 1). The data were collected on 19–20 December 2010.

The total number N of papers (N = RDN(t)) and their citations L (L = RDL(t)) are:

N = 289, L = 10398 for T. Dietl; N = 257, L = 2509 for Barnaś; N = 139, L = 1789 for

M. Kosmulski; whereas N = 149, L = 1505 for K. Sangwal. The publications of these

professors have spanned over a period t varying from 27 to 40 years. The publication

period t = Y - Y0, where Y0 is the year of publication of the first paper whereas Y is the

year of publication under consideration. The data were analyzed using Origin software

(version 4.1). The procedure followed for the analysis of the data is described elsewhere

(Sangwal 2011a). In cases when it was difficult to establish best fits, two different sets of

the values of the constants were recorded. Examples of this type of sets of the constants are

the N(t) and L(t) data of Barnaś given in Tables 3 and 4.

Results and discussion

Growth behavior of cumulative number N(t) of papers

The number of papers published by an author is a typical case of an individual system in

which the papers are the items produced in the system and Ci is the maximum number of

possible sites in the system i. Then the traditional relation Eq. 5 following from the

progressive nucleation mechanism may be applied. Figure 5 shows the data on the growth

behavior of cumulative number N(t) of papers published by the four authors whereas the

curves are drawn with the best-fit values of the constants given in Table 3.

It may be seen from Fig. 5 that the data on the cumulative number of papers for all of

the authors can be represented by Eq. 5 practically in the entire range. This smooth

increase in the publication of papers by the authors is associated with a steady rate of

publication of papers during their entire publication period.

According to PNM, the parameter qi is a measure of the sluggish or fast growth of

papers, time constant Hi is a measure of nucleation rate Js (see Eq. 22), whereas the

constant Ci defines the maximum possible number of papers for an author. Table 3 shows
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Table 2 Papers N and citations DL of different authors

Year T. Dietl J. Barnaś M. Kosmulski K. Sangwal

N DL N DL N DL N DL

2010 291 10,398 257 2,509 139 1,789 149 1,505

2009 278 9,314 240 2,130 130 1,570 145 1,384

2008 274 8,287 219 1,809 118 1,385 140 1,282

2007 260 6,978 192 1,415 117 1,195 139 1,189

2006 244 5,732 165 1,118 106 1,050 135 1,080

2005 227 4,670 133 931 101 930 134 1,000

2004 214 3,634 119 735 95 769 132 918

2003 197 2,907 109 626 86 658 126 814

2002 183 2,314 80 499 78 535 119 739

2001 170 1,825 68 391 68 458 115 661

2000 156 1,522 61 302 60 387 112 593

1999 147 1,399 55 240 57 326 106 525

1998 140 1,299 49 173 47 216 98 478

1997 126 1,176 42 123 46 179 94 435

1996 118 1,078 32 79 41 154 87 394

1995 108 954 24 43 37 122 81 355

1994 85 876 17 12 36 97 77 330

1993 76 810 10 1 33 74 74 315

1992 72 732 5 0 28 57 72 287

1991 66 650 3 0 24 47 70 273

1990 60 579 3 0 22 40 67 256

1989 50 506 3 0 16 29 63 212

1988 42 441 3 0 13 26 60 198

1987 36 325 3 0 12 24 57 176

1986 32 272 3 0 10 20 51 153

1985 24 194 3 0 8 12 46 135

1984 20 138 1 0 4 4 43 121

1983 17 108 – – 2 2 37 96

1982 11 66 – – 1 2 34 86

1981 10 48 – – 1 2 24 54

1980 8 29 – – 1 1 24 46

1979 8 21 – – 1 0 21 25

1978 8 15 – – 1 0 13 6

1977 4 5 – – – – 7 3

1976 4 2 – – – – 5 3

1975 1 0 – – – – 4 2

1974 – – – – – – 4 1

1973 – – – – – – 2 1

1972 – – – – – – 1 1

1971 – – – – – – 1 0
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Table 3 Best-fit values of the constants of Eq. 5 for Ni(t) data

Author Figures Y range Y0 (year) Ci (papers) Hi (year) qi (–)

T. Dietl 5a Entire 1975 824 ± 210 50.9 ± 8.1 2.155 ± 0.075

J. Barnaś 5b Entire 1988 1,134 ± 1,437 37.7 ± 23.5 2.509 ± 0.243

832 ± 845 32.9 ± 17.1 2.545 ± 0.281

M. Kosmulski 5c Entire 1977 531 ± 330 55.6 ± 18.9 2.306 ± 0.127

K. Sangwal 5d Entire 1971 276 ± 51 45.7 ± 8.6 1.493 ± 0.076

Table 4 Best-fit values of the constants of Eq. 8 for L(t) data

Author Figures Y range Y0 (year) C0 (papers) H0 (year) q0 (–)

T. Dietl 6a \2,000 1975 2,993 ± 590 29.1 ± 3.5 2.417 ± 0.109

[2,000 1975 13,940 ± 966 33.6 ± 0.5 7.851 ± 0.293

Entire 1975 1.01 9 105 52.5 ± 39.3 5.422 ± 0.582

J. Barnaś 6b Entire 1984 6,118 ± 3,192 30.1 ± 4.4 4.905 ± 0.375

1988 5,836 ± 2,391 25.4 ± 3.5 4.220 ± 0.293

M. Kosmulski 6c Entire 1977 6155 ± 1388 41.5 ± 2.6 4.676 ± 0.103

K. Sangwal 6d Entire 1971 4,523 ± 3,187 53.2 ± 16.0 3.077 ± 0.244
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Fig. 5 Growth behavior of cumulative number N(t) of papers published by four authors: a Dietl, b Barnaś,
c Kosmulski and d Sangwal
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that the highest growth of papers occurs for Barnaś, the slowest for Sangwal and inter-

mediate for Dietl and Kosmulski. These trends are also reflected by the constant Ci for

different authors.

The value of qi lies between 1.5 and 2.55 for different authors. The value of qi indicates

that the growth of papers involves dissemination of information contained in them. The

value of Hi lies between 33 and 56 years, indicating that the nucleation rate Js for the

papers of different authors differs among themselves by a factor of about 1.7. Using Eq. 22

one finds that Js lies between 1.9�10-10 and 3.3�10-10 s-1 (assuming that the citation

nuclei are spherical i.e. the shape factor j = 4p/3, and the term q1/q = 1.42; see

Appendix).

Growth behavior of cumulative number L(t) of citations

Figure 6 shows the growth behavior of cumulative number L(t) of citations of papers

published by the four authors while the best-fit values of the parameters of Eq. 8 for the

data are listed in Table 4. As in the case of the steady increase in the cumulative number

N(t) of papers, the time dependence of the cumulative number L(t) of papers published by

Barnaś (Fig. 6b), Kosmulski (Fig. 6c) and Sangwal (Fig. 6d) as a function of publication

time can be represented by Eq. 8 practically in the entire range. The values of the constants

q0 and H0 of Eq. 8 for the data of these authors, shown in Fig. 6, are listed in Table 4. The

value of the exponent q0 lies between 2.3 and 4.9 whereas H0 lies between 25 and 56 years

for these authors.
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Fig. 6 Growth behavior of cumulative number L(t) of citations of papers published by four authors: a Dietl,
b Barnaś, c Kosmulski and d Sangwal. Curves are drawn with the best-fit values of parameters listed in
Table 4. In a solid curves describe data before and after 2000 whereas dashed curve represent entire data.
See text for details
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In contrast to the data of the above three authors, it may be noted from that the data for

Dietl can be interpreted in different ways (see Fig. 6a). For example, one can easily discern

two different citation periods: before and after 2000, when the data are satisfactorily

described by Eq. 8, as shown by the solid curves in Fig. 6a. The best-fit values of q0 and H0

are different in the two regions (Table 4). The value of q0 increases from 2.42 for the data

before 2000 to 7.85 after 2000, but the value of H0 in the two citation regions remains

essentially unchanged at about 30 years. However, one can equally attempt to describe the

entire data by Eq. 8 with a single set of parameters C0, q0 and H0 (dashed curve; Table 4).

In this case, the data covering the period between about 1984 and 2005 are poorly rep-

resented by the best-fit curve. Now the exponent q0 takes a value of 5.42, which is in

between the values given above for the citation regions before and after 2000. The time

constant increases to 52.5 years. This example of Dietl indicates that cumulative citations

L(t) of an author can have different well-defined citation periods.

It may be noted that the values of q0 for the above collectives of systems are relatively

high in comparison with those of qi for individual systems (see Tables 3 and 4) These high

values of q0 are consistent with the prediction of the proposed PNM for the collectives of

systems. In contrast to this, the values of H0 are similar to those of Hi observed the case of

cumulative number N(t) of papers. The similar values of H0 and Hi imply the nucleation

rate Js in the case of individual systems and collectives of systems are comparable. This

also implies that the nucleation rate in the case of collectives of systems behaves as if

it were an ‘‘effective’’ rate Js(eff) of nucleation and lies between 1.9 9 10-10 and

3.3 9 10-10 s-1.

The smooth increase in the citations of papers published by Barnaś, Kosmulski and

Sangwal is associated with a steady citation rate during their entire publication period.

However, two different citation regions for the best fit of the data for Dietl are due to two

different steady rates of citations before and after 2000. Obviously, the rate of citations of

the papers published before 2000 is much lower than that of the papers published after

2000. The high rate of citations after 2000 is due to the high citability (i.e. more attrac-

tiveness) of some of the papers published by Dietl in the area of magnetic materials.

Comprehensive review papers, as in the case of Sangwal, as well as more publications due

to collaborations with other research groups can also lead to abrupt high rate of citations.

Relationship between cumulative number of papers and citations

As seen from Figs. 5 and 6, both the cumulative number L(t) of citations of papers of an

author and the cumulative number N(t) of published papers increase with time t. Thus, one

expects a relationship between cumulative citations L(t) and cumulative papers N(t) of an

author. In this case, instead of time dependence of growth of cumulative citations or papers

of an author as described by (5) of PNM, one may consider the dependence of citations L(t)
on the cumulative number N(t) of papers, where N(t) is an independent parameter, written

in the form

LðtÞ ¼ Lmax 1� exp � NðtÞ
HN

� 	q�
 �� 

; ð10Þ

where Lmax is the maximum value of L(N), HN is a constant when Lmax is attained, and the

exponent q* describes the steepness of the curve of L(t) against N(t). Equation 10 can be

derived from Eq. 8 for the dependence of L(t) on t and when the dependence of N(t) on t in

Eq. 5 follows the approximation
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NðtÞ ¼ Nmax 1� exp � t

HN

� 	q�
 �� 

� Nmax

t

HN

� 	q�
: ð11Þ

The above approximation holds for (t/H)q � 1 when exp[- (t/H)q*] = 1 - (t/H)q*. As

seen from the plots of Fig. 5, this approximation is indeed realistic. A similar behavior of

N(t) data was reported earlier (Sangwal 2011b).

Figures 7 and 8 show the cumulative number L(t) of citations and cumulative number

N(t) of papers of different authors, whereas the curves are drawn with the best-fit values of

the constants of Eq. 10 given in Table 5. As seen from Fig. 7, the data for Barnaś (Fig. 7a)

and Kosmulski (Fig. 7b) can be described satisfactorily by Eq. 10 in the entire N(t) range

but those for Dietl (Fig. 8a) and Sangwal (Fig. 8b) follow two different dependences below

and above 120 and 110 papers, respectively. The high rates of cumulative citations of Dietl

and Sangwal after 120 and 110 papers, respectively, are due to comparatively very high

citations of some of the papers published by them after 120 and 110 papers. These high

rates are reflected by the high values of q* in these regions of papers.

Summary and conclusions

For individual systems of items, the time dependence of the fraction a(t) of items, based on

the concepts of PNM during crystallization, may be described by Eq. 5. The PNM as
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applied to describe the growth behavior of items in an individual system postulates that

items are nucleated progressively during their formation (production) and, after their

nucleation, they grow to visible size. In the case of items produced in a collective of

systems, an equation (i.e.Eq. 8) similar in the form of Eq. 5 holds.

As in the case of PNM for crystallization, Eq. 5 for individual systems predicts that

1 \ q \ 2.5 and 1 \ q \ 4 when the items grow to three-dimensional entities of visible

size (i.e. when d = 3) by volume diffusion and mass transfer, respectively. When the items

are already of visible size at the time of nucleation, the exponent q = 1, which is the

lowest limit for the validity of PNM.

An expression similar to that of Eq. 8 in the form of Eq. 10 is proposed to describe the

relationship between the cumulative number L(t) of citations and the cumulative number

N(t) of papers.

Equations 5 and 8, based on the concepts of PNM predict that: (1) the fraction of items

produced by successive systems is additive, (2) the cumulative fraction asum(t) of maxi-

mum number of sites is the sum of contributions of fractions of maximum number of items

produced by different systems, and (3) the values of time constants H0 and exponent q0

increase with the addition of fraction of items produced by subsequent systems, but their

values are the lowest for individual systems.

Analysis of the growth behavior of cumulative number N(t) of papers published by

individual authors as a function of citation duration t revealed that the exponent qi lies

between 1.5 and 2.5 whereas that of the growth behavior of cumulative citations L(t) of

individual papers of an author shows that q0 lies between 2.3 and 7.9. These values of qi for

individual system and q0 for collectives of systems are consistent with the prediction of the

proposed PNM. The values of the time constant Hi for papers and H0 for citations lie

between 30 and 60 years in the two cases. These values of the time constants give the

nucleation rate Js between 1.9 � 10-10 and 3.3 � 10-10 s-1. However, two different regions

of citations observed in some cases are associated with differences in the attractiveness of

the papers in these regions.

Analysis of the dependence of L(t) on N(t) for the four authors reveals that the value of

the exponent q* of Eq. 10 lies between 1.2 and 3.8 whereas that of the constant HN related

to the saturation limit of citations lies between 178 and 634 papers. In these plots different

regions of citations associated with the attractiveness of the published papers are clearly

revealed.

Finally, it should be mentioned that the process of citations of an article published by an

author is associated with its attractiveness or novelty, as recognized by its readers and future

authors. The attractiveness of an article as recognized by its readers is the driving force for

its citations. The greater the attractiveness of the article, the higher is the driving force for its

citation. However, the probability of citations of an article is intimately connected with its

Table 5 Best-fit values of the constants of Eq. 11 for L(N) data

Author Figures N range Lmax (citations) HN (papers) q* (–)

T. Dietl 8a \120 2,529 ± 671 178.1 ± 59.2 1.237 ± 0.096

[120 51,123 ± 105,260 467.0 ± 362.4 3.204 ± 0.404

J. Barnaś 7a Entire 11,222 ± 16,920 633.9 ± 718.6 1.615 ± 0.161

M. Kosmulski 7b Entire 12,460 ± 16,724 338.9 ± 250.8 2.098 ± 0.120

K. Sangwal 8b \110 2,195 ± 1,217 217.0 ± 82.7 1.834 ± 0.093

– [110 4,374 ± 7,511 189.0 ± 118.3 3.749 ± 0.984
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accessibility to its potential readers. The higher the accessibility of an article to its readers,

the higher is the probability of its citations. In Eq. 17 the parameter Dc represents the driving

force for citation of an article and the parameter B1 describes the probability of its citation.

The above concepts of citations of articles are in line with the results of a recent study by

Stremersch et al. (2007), who found that the number of citations of an article in the mar-

keting discipline depends on its quality and domain as well as on author visibility and

personal promotion. However, more work is necessary in this direction.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix: Progressive nucleation mechanism for overall crystallization

Overall crystallization of a melt or homogeneous solution involves simultaneous nucleation

and growth of individual nuclei to crystallites of visible size. In the progressive nucleation

mechanism, crystallites are nucleated progressively during crystallization. In the case when

the nucleation rate Js is time-independent (i.e. when nucleation is stationary), the fraction

a(t) of the crystallized volume Vc(t) at time t may be given by (Kashchiev 2000)

aðtÞ ¼ VcðtÞ
V
¼ 1� exp � t

H

� �qn oh i
; ð12Þ

where V is the initial volume of the crystallizing phase, the time constant

H ¼ q

jGq�1Js

� 	1=q

; ð13Þ

and the exponent

q ¼ 1þ md: ð14Þ
In Eqs. 13 and 14, Js is the rate of stationary nucleation, j is the shape factor for the

nuclei (for example, j = 4p/3 for spherical nuclei) and the growth constant G is defined by

G ¼ r1=m

t
; ð15Þ

where r is the radius of the growing nucleus and the constant m[ 0. In Eq. 14 the

parameter d denotes the dimensionality of growing nuclei. For nuclei growing in one-, two-

and three-dimensions, d = 1, 2 and 3, respectively. Equation 15 describes the dependence

of the radius r of the growth of individual nucleus on time t according to the traditional

power-law relation

rðtÞ ¼ Atm; ð16Þ

where the growth constant G = A1/m and the exponent m can have values between 0 and ?.

From Eq. 14 it follows that the exponent q = 1 when m = 0, and q ? ? when m ? ?.

After their formation to a stable size, the nuclei do not grow at all in the former case,

whereas they grow to infinite size immediately in the latter case. Thus, it is possible that

1 \ q \? but, in reality, q can have finite values only because m is a number equal to 1

and 1/2 for growth controlled by mass transfer and volume diffusion, respectively

(Kashchiev 2000). This means that 1 \ q \ 2.5 and 1 \ q \ 4 when crystal nuclei grow to
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three-dimensional crystallites of visible size (i.e. when d = 3) by volume diffusion and

mass transfer, respectively. When d = 0, q = 1, which represents particles (crystallites) as

points (see Eq. 14),

In the above treatment the stationary nucleation rate Js involves the formation of stable

three-dimensional nuclei of critical size as a result of aggregation of growth units in the

crystallization medium, and these stable nuclei subsequently grow into crystallites by the

addition of more growth units (atoms/molecules). The nucleation rate may be given by

(Kashchiev 2000; Mullin 2001)

Js ¼ A1 exp½�B1=ðDcÞ2�; ð17Þ

where, at a given temperature, the constant A1 is associated with the processes of aggre-

gation of growth units, the constant

B1 ¼ j1c2
0

cX2=3

kBT

 !3

; ð18Þ

and the excess solute concentration Dc (i.e. Dc = c - c0, where c is the actual solute

concentration) above equilibrium concentration c0 is related to the chemical potential

difference Dl by

Dl ¼ l� l0 ¼ kBT Dc=c0ð Þ: ð19Þ

In Eqs. 18 and 19, c is the nucleus—medium interfacial tension, X is the molecular

volume, kB is the Boltzmann constant, T is the temperature in Kelvin, j1 is a factor related

to the shape of the three-dimensional nuclei, and l and l0 are the actual and equilibrium

chemical potentials of the solute atoms/molecules, respectively. Equation 17 is used to

describe the kinetics of homogeneous and heterogeneous three-dimensional nucleation. In

heterogeneous nucleation, foreign particles in the medium or on the vessel surface catalyze

the formation of stable nuclei. Nucleation described by Eq. 17 is frequently referred to as

primary nucleation.

After the formation of three-dimensional stable nuclei, they grow larger by the addition

of growth units on their surfaces. When the growth of stable nuclei to larger, visible sizes

occurs by two-dimensional multiple nucleation, the growth rate constant G is given by

(Mullin 2001)

G ¼ r1=m

t
¼ A2 expðB2=DcÞ; ð20Þ

where A2 is a new constant related to integration of growth units and B2 is another constant

related to the nucleus—medium interfacial tension c, given by

B2 ¼ j2c0

chX1=2

kBT

 !2

: ð21Þ

In Eq. 21, h is the height of the two-dimensional nuclei, j2 is a factor related to their shape,

whereas all other symbols have been defined above.

In Eqs. 17 and 21 the excess solute concentration Dc is the driving force for crystal-

lization. The quantity Dc is related to the chemical potential difference Dl as well as to the

thermodynamic potential difference DF (Kashchiev 2000). Both of these quantities are

measures of deviations of the crystallizing system from the equilibrium state.
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According to Eq. 13, when q = 1, the nucleation rate Js alone determines the value of

the time constant H. When q [ 1, the dependence of H on nucleation and growth pro-

cesses is relatively complex because it depends on three parameters: the nucleation rate Js,

the growth constant G and the exponent q. However, Eq. 13 of the time constant H may be

written in the form

H ¼ q1=q

jJs

; ð22Þ

when jJs = G. The condition for the validity of this equality may be obtained from Eqs. 17

and 20 by solving them for Dc, i.e.

ln
jA1

A2

� 	
Dcð Þ2�B2Dcþ B1 ¼ 0: ð23Þ

Equation 23 has a single real root

Dc� ¼ B2

2 ln jA1=A2ð Þ ; ð24Þ

when

B2
2 ¼ 4B1 ln jA1=A2ð Þ: ð25Þ

According to Eq. 22, the time constant H is inversely proportional to the nucleation rate Js

whereas it is a complex function of the exponent q. The factor q1/q initially increases

steeply from 1 at q = 1–1.414 at q = 2 and then for q [ 4 decreases slowly and

approaches a value of unity at q & 104, as shown in Fig. 9. This implies that the factor q1/q

is practically constant at 1.42 for the growing three-dimensional crystallites when

2 C q C 4.
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