Skip to main content

Advertisement

Log in

Syntheses of valpromide dipeptide derivatives and interactions of derivatives with ctDNA

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Two types of valproamide dipeptides, i.e., valproic acid (VPA)-Tyr-Tyr and VPA-His-His, were synthesized via Fmoc solid-phase peptide synthesis, purified via reversed-phase HPLC, and characterized via 1H, 13C NMR and ESI–MS to promote the interaction of valproic acid derivative with biological molecular. The interactions of VPA-Tyr-Tyr and VPA-His-His with DNA were investigated via UV–Vis absorption spectroscopy, fluorescence spectroscopy, and gel electrophoresis. The results showed that both VPA-Tyr-Tyr and VPA-His-His interacted with ctDNA through the groove binding mode and exhibited higher affinity for ctDNA compared with free VPA. Therefore, the valpromide derivatives modified by dipeptides have significant practical value in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Rossi, Australian medicines handbook (Australian Medicines Handbook Unit Trust, Adelaide, 2013)

    Google Scholar 

  2. E. Perucca, CNS Drugs 16(10), 695 (2002)

    Article  CAS  Google Scholar 

  3. C.W. Hicks, I.F. Pandya, Parkinsonism Relat. Disord. 17(5), 379 (2011)

    Article  CAS  Google Scholar 

  4. L. Činčárová, Z. Zdráhal, J. Fajkus, Expert Opin. Investig. Drugs 22(12), 1535 (2013)

    Article  Google Scholar 

  5. C. Capet, V. Guichon, G. Bourdenet, L. Landrin, A. Jego, A. Marinari et al., Fundam. Clin. Pharmacol. 28, 51 (2014)

    Google Scholar 

  6. M.D. Sztajnkrycer, Clin. Toxicol. 40(6), 789 (2002)

    CAS  Google Scholar 

  7. C.M. Mock, K.H. Schwetschenau, Am. J. Health Syst. Pharm. 69(1), 35 (2011)

    Article  Google Scholar 

  8. A. Trecul, F. Morceau, A. Gaigneaux, M. Schnekenburger, M. Dicato, M. Diederich, Biochem. Pharmacol. 92(2), 299 (2014)

    Article  CAS  Google Scholar 

  9. W.J. Liu, X. Lu, Asian J. Pharm. Sci. 7(5), 287 (2012)

    Google Scholar 

  10. P.M. Wright, I.B. Seiple, A.G. Myers, Angew. Chem. Int. Edit. 53(34), 8840 (2014)

    Article  CAS  Google Scholar 

  11. C. Yang, G.S. Tirucherai, A.K. Mitra, Expert Opin. Biol. Ther. 1(2), 159 (2001)

    Article  CAS  Google Scholar 

  12. D. Webster, J. Wildgoose, Cochrane Database Syst. Rev. 8, CD001507 (2010)

    Google Scholar 

  13. X.Z. Chen, A. Steel, M.A. Hediger, Biochem. Biophys. Res. Commun. 272(3), 726 (2000)

    Article  CAS  Google Scholar 

  14. D.X. Zhao, J. Sun, Q.C. Zhu, K. Lu, Chem. J. Chin. Univ. 34(9), 2114 (2013)

    CAS  Google Scholar 

  15. M.W. Freyer, R. Buscaglia, D. Cashman, Biophys. Chem. 126, 186 (2007)

    Article  CAS  Google Scholar 

  16. Y. Iwasaki, M. Kimura, A. Yamada, Inorg. Chem. Commun. 14, 1461 (2011)

    Article  CAS  Google Scholar 

  17. J.H. Wu, L. Wei, M. Zhao, Med. Chem. Res. 21, 116 (2012)

    Article  CAS  Google Scholar 

  18. N. Li, Y. Ma, C. Yang, Biophys. Chem. 116, 199 (2005)

    Article  CAS  Google Scholar 

  19. C.Q. Cai, X.M. Chen, F. Ge, Spectrochim. Acta A 76, 202 (2010)

    Article  Google Scholar 

  20. H. Li, X.Y. Le, J.Z. Wu, Acta Chim. Sin. 61, 245 (2003)

    CAS  Google Scholar 

  21. C.Y. Zhou, Y. Zhao, Y.B. Wu, J. Inorg. Biochem. 101(1), 10 (2007)

    Article  CAS  Google Scholar 

  22. Q. Guo, L.Z. Li, J.F. Dong, Acta Chim. Sin. 70, 1617 (2012)

    Article  CAS  Google Scholar 

  23. E.J. Gao, M.C. Zhu, H.X. Yin, J. Inorg. Biochem. 102(10), 1958 (2008)

    Article  CAS  Google Scholar 

  24. D.D. Chen, Q. Wu, J. Wang, Q. Wang, H. Qiao, Spectrochim. Acta A. 135, 511 (2015)

    Article  CAS  Google Scholar 

  25. S.G. Geng, Y.R. Cui, Q.F. Liu, J. Lumin. 141, 144 (2013)

    Article  CAS  Google Scholar 

  26. P.D. Muro, M. Beltramini, P. Nikolov, I. Retkova, B. Salvato, F. Ricchelli, Z. Naturforsch. B. 57, 1084 (2002)

  27. S.G. Geng, Q. Wu, L. Shi, Int. J. Biol. Macromol. 60, 288 (2013)

    Article  CAS  Google Scholar 

  28. A. Airinei, R.I. Tigoianu, E. Rusu, Dig. J. Nanomater. Biostruct. 6(3), 1265 (2011)

    Google Scholar 

  29. N. Shahabadi, S. Mohammadi, Spectrochim. Acta A. 96, 723 (2012)

    Article  CAS  Google Scholar 

  30. H.L. Cheng, L. Ma, K. Lu, Chin. J. Anal. Chem. 37(4), 548 (2009)

    CAS  Google Scholar 

  31. S. Nahid, M. Maryam, Dyes Pigm. 96, 377 (2013)

    Article  Google Scholar 

  32. E. Gao, Y. Sun, Q. Liu, J. Coord. Chem. 59, 1295 (2006)

    Article  CAS  Google Scholar 

  33. A.K. Patra, S. Dhar, M. Nethaji, Dalton Trans. 5, 896 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (No. 21172054 and 21301050), the Innovation scientists and Technicians Troop construction projects of Zhengzhou city (No. 10LJRC174) and the Foundation of Education Department of Henan Province (No. 13B150947).

Conflict of interest

The authors confirm that this article content has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongxin Zhao or Kui Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Ma, L., Lu, K. et al. Syntheses of valpromide dipeptide derivatives and interactions of derivatives with ctDNA. Res Chem Intermed 41, 8591–8601 (2015). https://doi.org/10.1007/s11164-014-1913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1913-1

Keywords

Navigation