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Abstract The oxidative reactions of bisphenol A (BPA) with radiolytically gen-

erated hydroxyl radicals were studied in both deionized water and tertiary treated

wastewaters. In deionized water, bisphenol A reacts with the hydroxyl radical by

addition to the aromatic ring, k = 6.9 9 109 (±0.2) M-1 s-1, to eventually form

the prominent, long-lived, hydroxylated intermediate product. In contrast, in tertiary

treated water solutions, although the initial hydroxyl radical addition reaction

occurs, the hydroxylation is averted, and a different mechanistic pathway ensues.

The removal constant for the hydroxyl radical reaction with BPA is

0.45 ± 0.04 lmol/kGy, corresponding to an overall degradation efficiency of 76%.

Keywords Bisphenol A � Deionized water � Hydroxyl radical reaction �
Tertiary treated wastewaters

Introduction

Bisphenol A (2,2-bis-(4-hydroxyphenyl)propane, BPA) is an industrial chemical

that is currently receiving a great deal of attention as an environmental contaminant.

BPA is the key chemical used in the manufacture of polycarbonates and epoxy

J. R. Peller (&)

Department of Chemistry, Indiana University Northwest, 3400 Broadway, Gary, IN 46408, USA

e-mail: jpeller@iun.edu

S. P. Mezyk

Department of Chemistry and Biochemistry, California State University at Long Beach,

1250 Bellflower Blvd, Long Beach, CA 90840, USA

W. J. Cooper

Urban Water Research Center, Department of Civil and Environmental Engineering,

University of California, Irvine, Irvine, CA 92697-2175, USA

123

Res Chem Intermed (2009) 35:21–34

DOI 10.1007/s11164-008-0012-6



resins, materials that are utilized in a number of applications such as optical

recording media, sports equipment, medical equipment, and beverage containers.

Due to the massive quantities of BPA utilized in industry, measurable amounts of

the compound have been reported in various water supplies and wastewaters [1–5].

The mixing of industrial wastewaters with sewage effluent and other bodies of water

is the most likely means for BPA contamination of natural water systems.

Bisphenol A is classified as an endocrine disruptor, a compound which mimics

natural hormones, leading to disruptive development and reproduction. The

presence of endocrine disrupting compounds in natural waters is believed to cause

sexual disruption in aquatic organisms [6, 7]. Human exposure is most likely the

result of the consumption of tainted water or from the leaching of plastic consumer

products. Even very low level exposure of bisphenol A has been suspected in

abnormal development in many different organisms [8–10].

Investigations into the removal of bisphenol A from aqueous environments have

studied the use of carbon adsorption [11], electrochemical treatments [12], oxidative

coupling mediated by horseradish peroxidase [13], as well as photocatalytic

oxidation [14–16], sonochemical oxidation [17], ozone oxidation [18], and

enzymatic oxidation [19]. While each process offers some degree of effectiveness

in the breakdown or removal of BPA in aqueous solutions, advanced oxidation

processes (AOPs) such as radiolysis, photocatalysis, sonolysis, and UV-peroxide are

often considered the best choice for the removal of recalcitrant compounds. These

systems rely on the in-situ production of hydroxyl radicals (�OH), which

destructively react with many chemical moieties [20].

Phenolic compounds, such as bisphenol A, are readily oxidized by the hydroxyl

radical [21–24]. The typical reaction between an aromatic compound and the

hydroxyl radical consists of �OH addition to the electron rich ring. The hydroxylated

intermediates often react more rapidly in subsequent reactions with the hydroxyl

radical, but can also be more resistant to further oxidation. Therefore, to ensure

quantitative removal of contaminants by this methodology, it is necessary to

understand all of the chemical pathways involved in these hydroxyl radical

reactions.

Typical laboratory investigations into the chemical details of AOP remediation

techniques employ deionized water as the reaction solvent. While this allows for

unambiguous measurements for the compound of interest with the reactive oxidant,

real water conditions can be significantly different. In this study, the chemistry

involved in the oxidative degradation of BPA, in both deionized water and in

tertiary treated wastewater matrices, was investigated using radiolysis techniques.

Secondary or tertiary treatment of wastewater is often the final treatment step before

disinfection (chlorination, UV, or ozonation). Tertiary treatment may involve sand

filtration, activated carbon, and/or other processes, but most tertiary treatment

processes are not capable of removing all of the dissolved organics, which may

include pharmaceuticals, pesticides, and other household and industrial chemicals.

Many wastewater treatment plants incorporate post-tertiary treatments such as

membrane filtration and/or reverse osmosis to eliminate these dissolved compounds.

Six different treated wastewater samples from two different water treatment plants

were used in this study (Tables 1 and 2).
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By exposing bisphenol A solutions to ionizing radiation, we have determined the

kinetics of its hydroxyl radical degradation and identified different reaction

pathways for deionized and treated wastewaters solvents.

Experimental

The chemicals used in this study were obtained from the Aldrich Chemical

Company and of the highest purity available, and used as received. Solutions were

made using water filtered by a Millipore Milli-Q system or in treated wastewater.

All solutions were completely saturated with high purity N2O, for hydroxyl radical

experiments, to remove dissolved oxygen, ensuring only oxidizing conditions.

Treated wastewater samples used in this study were provided by Orange County,

CA, Sanitation District, Interim Water Factory 21 and by the City of Scottsdale,

Arizona, Water Treatment Plant. Selected water quality parameters are shown in

Tables 1 and 2.

Electron pulse radiolysis

The linear accelerator (LINAC) electron pulse radiolysis system at the Radiation

Laboratory, University of Notre Dame, was used for the reaction rate constant and

Table 1 Selected water quality values for the three different water samples from Scottsdale, Arizona,

Wastewater Treatment Plant used in the experiments

Parameters Before membrane filtration Membrane effluent RO effluent

TOC (mg/L) 7.8 6.8 \0.2

Total alkalinity (mg/L) 158 160 \10

Bicarbonate 158 160 \10

Chloride (mg/L) 340 340 4.7

pH 7.5 7.3 5.6

Total hardness 364 361 2.1

Sulfates 270 270 1.2

Nitrates 4.9 4.8 0.16

Table 2 Selected water quality values for the three different water samples from the Orange County,

CA, Wastewater Treatment Pilot Plant used in the experiments

Parameters Q1 ROA ROB Deionized

TOC (mg/L) 15 11.9 0.3 \0.2

Total alkalinity (mg/L) 287 – 12.3 0

Bicarbonate 158 – 15 0

Chloride (mg/L) 223 4.5 4.4 0

pH 7.8 6.9 6.9 7.0

Organic N (mg/L) 2.9 – 0.5 0

Sulfates (mg/L) 279 130 3.2 0
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transient spectra determinations. This system has previously been described in detail

[25].

During rate constant measurements, the solution vessels were continuously

sparged with nitrous oxide gas. Solution flow rates in these experiments were

adjusted so that each irradiation was performed on a fresh sample. Dosimetry [26]

was performed using N2O-saturated, 1.00 9 10-2 M KSCN solutions at

k = 475 nm, (Ge = 5.2 9 10-4 m2 J-1) with average doses of 3–5 Gy per 2–3 ns

pulse. Throughout this article, G is defined in lmol J-1, and e is in units of

M-1 cm-1. All kinetics and transient experiments were performed at ambient

temperature (21 ± 1 �C) and in natural, unadjusted pH solution.

Steady state experiments

The 60Co c irradiators used were also at the Radiation Laboratory, and consisted of:

a Shepherd 109, with a dose rate of 0.889 kGy min-1; a Shepherd 109 with a dose

rate of 0.153 kGy min-1; and a Gammacell 220, with a dose rate of

0.0501 kGy min-1. For purely oxidative conditions, aqueous solutions were again

pre-saturated with N2O(g) before irradiation.

The loss of the bisphenol A and the formation of intermediates were followed

using a Waters HPLC system (Millennium 2010, Waters 717 plus Autosampler,

Waters 600 Controller Solvent Pump) equipped with a Supelco Discovery� C18

column, 5lm (250 9 4.6 mm). A gradient solvent flow utilized water and methanol

and acetic acid solution (1%), where the initial solvent mixture was 70% methanol

and 30% water. At the 13-min mark, the solvent flow changed to 30% methanol,

68% water, and 2% acetic acid solution. The solvent switched back to the original

flow by 17 min. A photodiode array detector monitored the 200–400 nm range.

Identification of intermediates

Intermediates were identified by GC/MS (UCI) and LC/MS analyses.

Results and discussion

For both the electron pulse and c-radiolysis experiments of this study, the irradiation

of water solutions forms free radicals according to the reaction [20]:

H2O --\/\/\/\/\/  [0.28]•OH + [0.06]•H + [0.27] eaq + [0.05]H2  + [0.07]H2O2 + [0.27]H+

The numbers in brackets are the G-values (yields) in lmol/Gy of energy.

To establish oxidizing conditions involving only the hydroxyl radical, the water

solutions were saturated with N2O(g), which quantitatively converts the hydrated

electrons, eaq
- , and hydrogen atoms, •H, to hydroxyl radicals [20]

e�aq þ N2Oþ H2O! N2 þ OH� þ� OH k ¼ 9:1� 109 M�1s�1

�H þ N2O !� OH þ N2 k ¼ 2:1� 106 M�1 s�1
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Gamma radiolysis

Aqueous solutions of BPA were subjected to increasing doses of 60Co gamma

radiation and subsequently analyzed for parent compound loss and stable

degradation products using HPLC. The initial concentration of BPA varied from

0.01 to 1.4 mM in the deionized water solutions, and was typically 0.5–0.8 mM in

treated wastewaters. To determine the removal constant [27], defined as the initial

slope of the change in concentration of the compound versus the dose (kGy), only

early degradation changes (15–20% loss) were considered. When solutions of

0.5 mM BPA or greater were utilized, a removal constant of 0.45 ± 0.04 lmol/kGy

was determined. At these relatively high concentrations of BPA, the dissolved

substances in the treated wastewaters are simply not competitive with BPA.

Therefore, in the early stages of the oxidative degradation in both deionized water

solution and treated wastewaters, the removal constant is reflective of the hydroxyl

radical’s reaction with only bisphenol A. Figure 1 shows the changes in BPA

concentrations plotted against the applied doses in kGy for deionized water and for

the treated wastewater described as before membrane filtration (BMF) (Table 1).

When the BPA degradation proceeds beyond 20%, the dissolved substances in the

treated wastewaters begin to affect the rate of hydroxyl radical-induced removal of

BPA. As the quality of the water decreases, the rate of BPA degradation also

diminishes. Figure 2 is a plot of the ln Ct/Co (Ct = concentration at time t;

Co = original concentration) against applied dose using the treated wastewaters from

Orange County’s pilot plant: Q1, ROA, and ROB, in addition to deionized and local

tap water. Selected water quality parameters for the three post-secondary treated

wastewaters are shown in Table 2. These results shown in the figure demonstrate that
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Fig. 1 Dose dependence of concentration change determined for bisphenol A, 0.80 mM in Milli-Q
deionized water (h) and in treated wastewater, 0.80 mM in BMF water ( ). Solid lines are fitted
quadratic equations, with intercepts fixed at zero. The initial slopes (dashed lines) of these two curves are
the corresponding removal constants
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the �OH scavengers present in wastewaters and tap water affect the rate of breakdown

of BPA. The lowest quality wastewater (Q1), which contains the greatest amount of

hydroxyl radical scavengers, undergoes the slowest BPA breakdown.

In order to further investigate differences in the hydroxyl radical-mediated

breakdown of BPA associated with water quality, HPLC analyses of the stable

degradation products were performed. The chromatograms of the irradiated BPA

deionized water solutions were markedly different from the chromatograms of the

irradiated BPA dissolved in BMF treated wastewater, as shown in Fig. 3. The first

chromatogram shows a prominent intermediate formed in the hydroxyl radical-

mediated oxidation pathways when deionized water was used as the solvent with a

radiation dose of 1.3 kGy. This intermediate accumulates in the solution and is

readily detected throughout most of the irradiation. For the irradiation experiments

of BPA in BMF wastewater, this particular stable product is missing, implying that

the hydroxyl radical-mediated reaction pathway generates different intermediates

which are more competitive with BPA. The HPLC chromatogram for BPA in BMF

is displayed as Fig. 3b.

The prominent intermediate formed in the gamma irradiation of BPA in

deionized water was identified using LC/MS as the hydroxylated BPA, as expected.

This product is consistent with common hydroxyl radical reactions with aromatic

compounds, where hydroxyl radical addition to the ring occurs [20, 21, 28, 29]. In

deionized water, this is clearly a major pathway. Since the hydroxylated BPA

accumulates over a period of time before it decreases in concentration, it displays a

considerable degree of irradiation stability in the aqueous solution. Other

degradation products identified by GC/MS techniques in the hydroxyl radical

oxidation include 4-isopropenyl phenol and hydroxylated ring-opened products.

These findings correspond to the product analyses reported by Gozmen et al. [30] in
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Fig. 2 Plot of ln (Ct/Co) against applied radiation dose (kGy) for bisphenol A removal by hydroxyl
radicals in waters of different quality. (h = deionized; = tap water; = ROB; = ROA;

= Q1)
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the Fenton reagent oxidation of BPA and to the products reported from the

peroxidase-mediated oxidation of BPA by Weber and Huang [13]

Solutions of the BPA in BMF wastewater irradiated with different doses were

analyzed, but none showed any presence of the hydroxylated bisphenol A. This

different reaction pathway is attributed to the presence of other dissolved species in

the treated wastewater, which interfere with the BPA hydroxylation reaction. While

the hydroxylated BPA accumulates and competes for the hydroxyl radical in the

deionized water solution, no such competition takes place in the lower quality

treated wastewater solutions.

Pulse radiolysis measurements

To help resolve the different reaction pathways, experiments were conducted using

the technique of pulse radiolysis to determine the absolute kinetics of the hydroxyl

radical reactions, both in deionized water and in the treated BMF wastewater. Pulse

radiolysis experiments using a 0.5 mM bisphenol A solution saturated with nitrous

oxide gas in deionized water produced a broad, strongly absorbing transient species

centered around 305 nm, as shown in Fig. 4. The maximum absorption for the

transient generated from the reaction between the hydroxyl radical and bisphenol A

was found to occur at *6 ls. From analyses at 305 nm, pseudo-first-order rate

constants were obtained by fitting exponential curves to the pseudo first order

Fig. 3 HPLC chromatograms from irradiated BPA solutions. a Irradiated BPA dissolved in deionized
water, dose = 1.3 kGy. b Irradiated BPA dissolved in BMF treated wastewater, dose = 1.8 kGy. The
peak just beyond 7 min in both chromatograms is BPA. The peak on the top chromatogram (a) at 6.2 min
is the prominent intermediate
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growth of the transient. These pseudo-first-order rate constant values were plotted

for five different concentrations of BPA, and a second order rate constant,

(6.9 ± 0.2) 9 109 M-1 s-1, was determined from the slope of the line.

The kinetics for an N2O-saturated solution of 0.8 mM bisphenol A prepared in

the BMF treated wastewater showed the same transient absorption at short times

(see Fig. 5), but gave a very different transient absorption at longer times. Figure 4b

displays the transient intensities at 1.5, 6, and 16 ls after the electron pulse for the

hydroxyl radical reaction of BPA in BMF. At 1.5 ls, the difference transient

absorption profile looks similar to the one generated in high purity water. Consistent

with the temporal behavior of the spectrum of BPA in DI water at 6 ls, the
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Fig. 4 a Difference transient absorption spectrum formed from the reaction between bisphenol A and the
hydroxyl radical in deionized water, recorded at 0.6 ls (h), 6 ls ( ) and 16 ls ( ). b Difference
transient absorption spectrum formed from the reaction between bisphenol A and the hydroxyl radical in
BMF treated wastewater, recorded at 1.5 ls (black square), 6 ls (red circle) and 16 ls (green triangle)
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absorption at 305 nm continues to increase for the irradiated wastewater solution.

However, over the 6–16 ls period, the transient spectrum for �OH ? BPA in BMF

water changes noticeably in comparison to the BPA in deionized water. Instead of

the slow decrease in absorption seen in Fig. 4a for the BPA in deionized water, the

absorption at 305 nm continues to increase (Fig. 4b) and the peak width narrows.

An additional transient growth is noted in the BPA/BMF in the 395-nm region

during this period. Transient profiles at 305 nm were also different over a longer,

16-ls, period, as shown in Fig. 6. The transient species detected in the BPA/BMF

solution continues to grow on this timescale (Fig. 6a), while the transient at 305 nm

in the BPA/DI solution (Fig. 6b) shows a slight decay.

An even greater discrepancy in the transient absorptions is noted at 347 nm at

longer times. The decay profile at 347 nm for the bisphenol A transient in DI water

is shown in Fig. 7a, and is distinctly different from the growth profile at 347 nm

(Fig. 7b) for the BPA in BMF water. The decay of the pure water solution transient

follows the same basic decay pattern seen at the high absorption wavelengths and is

typical of transients formed from hydroxyl radical additions to aromatic rings.

The pulse radiolysis data and steady state gamma radiolysis data suggest that the

initial oxidative hydroxyl radical reactions are the same for both qualities of water,

but that the subsequent chemical pathways involved are distinctly different. The

typical clean water pathway for hydroxyl radical reaction with phenolic compounds

involves addition of the radical to the aromatic ring to form a transient

cyclohexadienyl species [31–33]. This transient has a lifetime on the microsecond

timescale and is completely transformed to the stable hydroxylated product by

0.5 ms (Fig. 7a). This stable hydroxylated intermediate forms and shows some

degree of resistance to subsequent hydroxyl radical reactions, since it accumulates

as a stable, detectable, intermediate during the oxidation of the bisphenol A.

Addition of the hydroxyl radical to bisphenol A and the resultant compound which

forms in deionized water are shown in Scheme 1.
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Fig. 5 Difference transient absorption spectra from BPA ? �OH at 0.6 ls in DI water (h) overlayed
with the spectrum of BPA ? �OH in BMF water at 1.5 ls ( )
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In the lower quality wastewater, BMF, subsequent conversion of the transient

cyclohexadienyl radical to the stable hydroxylated product is inhibited by a

dissolved substance or substances in the treated wastewater. Presently, investiga-

tions into the specific substances and the mechanisms involved in the lower quality

water solutions which prevent the expected hydroxylated product are in progress.

Conclusions

The chemical pathways involved in the hydroxyl radical reactions with bisphenol A

are significantly affected by the presence of the dissolved substances in typical
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Fig. 6 a Growth profile for BPA (0.8 mM) ? �OH in BMF treated wastewater at 305 nm over 20 ls. b
Growth and decay profile for BPA (0.5 mM) ? �OH in deionized water at 305 nm over same period
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tertiary treated wastewaters. The expected hydroxyl radical addition product was

not formed when the reaction was conducted in the tertiary treated wastewaters

which contain considerable amounts of dissolved substances. The removal constant

for the reaction of BPA with the hydroxyl radical was determined at short radiation

times, with an overall reaction efficiency for the reaction of BPA ? �OH of 76%.

The longer irradiation ([20% loss) experiments clearly showed the effects of

dissolved substances, where the lowest quality water inhibited the oxidative

breakdown of BPA to the greatest extent. Pulse radiolysis results point to a

mechanism where the hydroxyl radical attacks the BPA in both pure water and in

treated wastewaters to form the cyclohexadienyl radical; however, subsequent
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formation of the hydroxylated product only takes place in pure or very highly

treated wastewaters.
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