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Abstract We consider a memoryless single station service system with servers S =
{m1, . . . ,mK }, and with job types C = {a, b, . . .}. Service is skill-based, so that server
mi can serve a subset of job types C(mi). Waiting jobs are served on a first-come-first-
served basis, while arriving jobs that find several idle servers are assigned to a feasible
server randomly. We show that there exist assignment probabilities under which the
system has a product-form stationary distribution, and obtain explicit expressions for
it. We also derive waiting time distributions in steady state.

Keywords Service system · First-come-first-served policy · Multi-type jobs ·
Multi-type servers · Partial balance · Product form solution
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1 Introduction

In this paper we study a service (typically manufacturing) system which serves sev-
eral types of jobs, labeled a, b, c, . . . , and we denote the set of job types by C . Service
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is provided by K servers (machines), labeled m1, . . . ,mK . We denote the set of ma-
chines by M. Jobs arrive at the system in independent Poisson streams with rates
λi , i ∈ C , and have independent service requirements which are exponentially dis-
tributed with rate 1. Each machine is capable of handling a specific subset of job
types. Machine mi can only handle jobs from the set C(mi) ⊂ C . The union of these
is C . Machine mi works at rate μmi

.
The service discipline in the system is a combination of First-Come-First-Served

(FCFS) and random assignment. Arriving jobs which find no feasible available ma-
chine wait in a single queue, and are processed in an FCFS order as long as it is
possible. This means that as soon as a machine finishes a job it takes the first job in
the queue that it can process, possibly skipping several jobs that it cannot process.
Jobs which upon arrival find some available feasible machines, are assigned to one of
them randomly and go into service immediately. Else they join the end of the queue.

To fully specify the system we need to specify the random assignment: we assume
that an arriving job of type i will choose a feasible machine from those which are idle
according to a specified probability distribution which depends on i and on the set
of idle machines. We call these distributions the assignment probability distributions.
There is one assignment probability distribution for each type of job and for each
subset of idle machines which contains at least one feasible machine for that type
of job. We treat these assignment probability distributions as control parameters for
the system. Figure 1 shows two examples of such systems, which we will refer to as
System A and System B.

A full Markovian description of the system is to list all the jobs in the system
in their order of arrivals, including jobs which are being processed, and to imagine
that the machines are situated in the queue on the position of the job that they are
processing. To illustrate we consider System B in Fig. 1, in which there are three job
types a, b, c and three machines with C(m1) = {a, b}, C(m2) = {a, c}, C(m3) = {a}.

In Fig. 2, a possible situation of System B is depicted. The jobs are denoted by
circles and the machines by rectangles. Jobs in service have a rectangle drawn around
them with the identity of the machine inside. There are 12 jobs in the system, all
the machines are busy. Machine m1 is processing the first job in line, which must
therefore be either of types a or b. Following the line, machine m2 is processing
the first job in the line which it can process, which is job 5 in the line, and must
therefore be either of types a or c. Machine m3 is processing the first job in the
line (apart from jobs 1 and 5) which it can process, which must be of type a. There
are three jobs waiting between machines m1 and m2. These cannot be processed by

Fig. 1 Some service systems with multi-type jobs and multi-type servers



Queueing Syst (2012) 70:269–298 271

Fig. 2 A possible state for System B

either machine m2 or by machine m3, so they must be type-b jobs. There are four
jobs waiting between m2 and m3. Those cannot be processed by machine m3, so they
must be of types b or c. Finally, there are two jobs at the back of the queue, behind
machine m3, which may be of types a, b, or c.

We will actually aggregate some of the states in this detailed description, to sim-
plify the model while retaining the Markovian property. We will retain the identity
and location of the busy machines, but we will not specify the type of job which they
are working on, and we will only record the number of jobs between the busy ma-
chines, and not specify the string of job types. Thus the situation of Fig. 2 will be
denoted as the state (2,m3,4,m2,3,m1).

With this reduced description the system is still Markovian. Our main result in this
paper is to show that there exist choices of the assignment probability distributions,
such that the system has a product-form stationary distribution. This product-form
stationary distribution is unique, and we obtain it explicitly.

To motivate and illustrate the results we will first analyze System A of Fig. 1, with
two types of jobs C = {a, b} and two servers, where C(m1) = {a, b} and C(m2) = {a}.
Here only jobs of type a have a choice of machines, and that happens only when
a job of type a arrives to find both machines available; in other words, when the
system is empty. Hence the assignment probability distributions reduce simply to the
probability η of assigning an arriving job of type a to machine m1 when the system is
empty. This system has previously been analyzed by Adan, Foley and McDonald [1].
In Sect. 2 we solve the equilibrium equations for this system, and derive the correct
assignment probability η and the product form solution. We note that this solution
satisfies partial balance equations. We also show that for all other choices of η the
system will not have a product form solution. Furthermore, if we choose a more
detailed state description, again there will be no product form solution. These results
are summarized in Theorem 1.

We then formulate and derive our main result in Sect. 3. We define the states
(Sect. 3.1), write down the transition rates (Sect. 3.2), and the equilibrium equations
(Sect. 3.3). We then formulate some partial balance equations (Sect. 3.4), and obtain a
candidate solution (Sect. 3.5). We derive a necessary assignment condition (Sect. 3.6),
and show in Sect. 3.7 that if the assignment condition holds then the candidate so-
lution satisfies all the partial balance equations. This leads us to explicit conditions
for ergodicity, and an explicit expression for the stationary distribution (Theorem 2).
Finally, in Sect. 3.8 we show that it is always possible to choose assignment prob-
ability distributions so that the assignment condition holds. Section 3.8 is based on
our recent paper [2], which considers a loss system which is similar to our system.
It is shown there that the same assignment condition implies that the loss system is
time-reversible and insensitive to processing time distributions.
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We conjecture that when the traffic intensity approaches 1, the assignment prob-
ability distributions become less relevant and the product form solution is then a
good approximation for general assignment probability distributions. In particular
this leads to a model of FCFS infinite matching discussed in our paper [3].

We conclude in Sect. 4 with the derivation of the waiting time distributions of jobs
of various types. It turns out that these waiting times are distributed as mixtures of
sums of exponentials (Theorem 3).

Our model in this paper is formulated as a manufacturing model. However, it
should find as much use also to describe, for example, skill-based routing of calls
to operators in call centers, routing of wireless messages to ad hoc nodes, processing
of chips, multiprocessor scheduling and mounting of printed circuit boards; see in
particular [4–6, 9].

2 A system with two servers and two job types

In this section we analyze System A of Fig. 1. This system has been analyzed by
Adan, Foley and McDonald [1], who found the product form solution for a special
value of η, and derived exact asymptotics for the general system. Here we present
a full derivation of the product form solution, to illustrate and motivate the general
results in Sect. 3, and to reach several additional conclusions, summarized in The-
orem 1. Note that the results in Sects. 3 and 4 are independent of the results in this
section. For ease of presentation, the notation used in this section will slightly deviate
from the one introduced in Sect. 1.

System A has two machines, m1, m2, and two types of jobs, a, b, where machine
m1 can serve both types, and machine m2 can serve only type-a jobs. Arrivals are
Poisson, with rates λa, λb, and service times are exponential with machine-dependent
rates μi, i = 1,2. Service is on an FCFS basis, and there is one control parameter:

η is the probability that a type-a job that arrives to find an empty system will
be assigned to machine m1.

Clearly, for ergodicity it is necessary that both

λb

μ1
< 1,

λa + λb

μ1 + μ2
< 1 (1)

should hold. In this section we will show that the conditions above are also sufficient.
In our Markovian description the system can be in the following states:

• (n,m2,m,m1), where m,n ≥ 0, with m + n + 2 jobs, machine m1 is working on
the first job followed by m jobs waiting between machine m1 and machine m2,
all of which must be of type b, followed by machine m2 working on the m + 2nd
job in line, followed by additional n jobs that have not yet been identified, and are
waiting behind machine m2.

• (n,m1,0,m2), where n ≥ 0, with n + 2 jobs, machine m2 is working on the first
job, machine m1 is working on the second job, and there are additional n jobs of
unidentified type waiting behind the two machines.
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Fig. 3 State transitions for the two machine System A

• (m,m1), where m ≥ 0, machine m1 is working on the first job, followed by m jobs
which are all of type b, and machine m2 is idle.

• (0,m2), machine m2 is working on a single job in the system, and machine m1 is
idle.

• (0) the empty system state.

The Markov process is a random walk with geometric jumps in the interior of the
(m,n) positive quadrant, with modified transitions close to the axes and the origin.
Arrivals join the queue or activate an available machine. On completion of service by
machine m1, if the queues are not empty, the earliest job goes into service. On com-
pletion of service by machine m2, the machine moves along the line of n unidentified
jobs until it finds a type-a job to process, or if none is available, it becomes idle. The
jobs which are passed over in this search are now identified as type b and are queued
between the two machines. Each of the unidentified n jobs at the end of the line is
of type b with a probability γ = λb

λa+λb
. Thus machine m2 will identify j − 1 jobs of

type b and then find a type-a job with probability pj = (1−γ )γ j−1, j = 1, . . . , n, or
identify all n jobs as type b and become idle with probability γ n. The transitions and
transition rates are illustrated in Fig. 3. Note that the Markov process is irreducible.

The stationary probabilities, denoted by π(x) for state (x), need to satisfy the
following equilibrium equations, for all the states excluding (0,m1,0,m2), (0,m1),

(0,m2), (0). There are four different cases:

(λa + λb + μ1 + μ2)π(n,m2,m,m1)

= (λa + λb)π(n − 1,m2,m,m1) + μ1π(n,m2,m + 1,m1)

+ μ2(1 − γ )

m∑

j=0

γ jπ(n + j + 1,m2,m − j,m1)

+ μ2(1 − γ )γ mπ(n + m + 1,m1,0,m2), n > 0,m ≥ 0; (2)
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(λa + λb + μ1 + μ2)π(0,m2,m,m1)

= λaπ(m,m1) + μ1π(0,m2,m + 1,m1)

+ μ2(1 − γ )

m∑

j=0

γ jπ(j + 1,m2,m − j,m1)

+ μ2(1 − γ )γ mπ(m + 1,m1,0,m2), m ≥ 0; (3)

(λa + λb + μ1)π(m,m1)

= λbπ(m − 1,m1) + μ1π(m + 1,m1)

+ μ2

m∑

j=0

γ jπ(j,m2,m − j,m1) + μ2γ
mπ(m,m1,0,m2), m > 0; (4)

(λa + λb + μ1 + μ2)π(n,m1,0,m2)

= (λa + λb)π(n − 1,m1,0,m2) + μ1π(n + 1,m1,0,m2)

+ μ1π(n + 1,m2,0,m1), n > 0. (5)

We attempt to derive a product form solution, in other words, we assume the so-
lution is of the form π(n,m2,m,m1) = xmyn, for all m,n ≥ 0, with some constants
0 < x,y < 1. In the following Propositions 1–8 we derive solutions to the equations,
ignoring the normalizing constant which will turn them into probabilities.

Proposition 1 If π(n,m2,m,m1) = xmyn for all m,n ≥ 0, then π(n,m1,0,m2) =
cyn, where c = γy

x−γy
.

Proof We substitute the form of the solution π(n,m2,m,m1) = xmyn into (2):

(λa + λb + μ1 + μ2)x
myn = (λa + λb)x

myn−1 + μ1x
m+1yn

+ μ2(1 − γ )

m∑

j=0

γ jxm−j yn+j+1

+ μ2(1 − γ )γ mπ(n + m + 1,m1,0,m2).

Summing the finite geometric term and dividing by xmyn−1 we obtain

(λa + λb + μ1 + μ2)y = (λa + λb) + μ1xy

+ μ2(1 − γ )y2 1 − (
γy
x

)m+1

1 − γy
x

+ μ2(1 − γ )y2
(

γy

x

)m 1

yn+m+1
π(n + m + 1,m1,0,m2).

This equation can hold for every m,n > 0 only if:

π(n + m + 1,m1,0,m2) = γy

x − γy
yn+m+1. �
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Proposition 2 If π(n,m2,m,m1) = xmyn for all m,n ≥ 0, then π(m,m1) = dxm,
where d = λa+λb

λay
.

Proof Substituting the expanded candidate solution (using the result of Proposition 1)
into (2) and (3), we get:

(λa + λb + μ1 + μ2)x
myn = (λa + λb)x

myn−1 + μ1x
m+1yn

+ μ2(1 − γ )xm+1yn+1 1

x − γy
,

(λa + λb + μ1 + μ2)x
m = λaπ(m,m1) + μ1x

m+1 + μ2(1 − γ )xm+1y
1

x − γy
.

Dividing the first equation by yn, and comparing with the second, we get

λaπ(m,m1) = (λa + λb)x
my−1. �

Proposition 3 If π(n,m2,m,m1) = xmyn for all m,n ≥ 0, where 0 < x,y < 1, then
x = λb

μ1
and y = λa+λb

μ1+μ2
.

Proof Substituting the expanded candidate solution (using the results of Proposi-
tions 1 and 2) into (2) and (4), and canceling powers of x, y, we get:

(λa + λb + μ1 + μ2) = (λa + λb)y
−1 + μ1x + μ2(1 − γ )

xy

x − γy
,

(λa + λb + μ1)
λa + λb

λay
= λb

λa + λb

λay
x−1 + μ1

λa + λb

λay
x + μ2

x

x − γy
.

Recall that 1 − γ = λa

λa+λb
, multiply the second equation by (1 − γ )y and subtract

from the first to obtain after easy manipulations:

y = (λa + λb)x

λb + μ2x
.

Substituting back into one of the equations we obtain:

(λa + λb + μ1)
λb + μ2x

λax
= λb

λb + μ2x

λax2
+ μ1

λb + μ2x

λa

+ λb + μ2x

x
.

The resulting cubic equation has roots x = 1 and x = λb

μ1
(double root). By (1), the

latter is the only root in (0,1). The corresponding value of y is then: y = λa+λb

μ1+μ2
. �

So far we have solved (2)–(4) and obtained values for the product form solution.
Substituting the values of x, y from Proposition 3 into the expressions obtained in
Propositions 1 and 2, we have in summary:

x = λb

μ1
, y = λa + λb

μ1 + μ2
, c = μ1

μ2
, d = μ1 + μ2

λa

. (6)

These form the unique solution for (2)–(4).
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Proposition 4 The product form solution with the values of x, y, c, d of (6) satis-
fies (5).

Proof Substituting the values which we obtained into (5), and dividing by yn, we get:

(λa + λb + μ1 + μ2)
μ1

μ2
= (λa + λb)

μ1

μ2

μ1 + μ2

λa + λb

+ μ1
μ1

μ2

λa + λb

μ1 + μ2
+ μ1

λa + λb

μ1 + μ2

which is easily seen to hold. �

Note that this is a “lucky” solution—we had 4 parameters to determine and 4 sets
of equations, but the elimination of the geometric terms already determined one of
the parameters, c, and so we had 4 sets of equations for just 3 parameters. Hence, we
should not regard this as a method that works for general random walks with diagonal
geometric jumps.

It now remains to verify and determine the remaining values around the origin, for
which we get the following 3 equilibrium equations:

(λa + λb + μ1 + μ2)π(0,m1,0,m2) = (λa + λb)π(0,m2) + μ1π(1,m1,0,m2)

+ μ1π(1,m2,0,m1), (7)

(λa + λb + μ1)π(0,m1) = (λb + ηλa)π(0) + μ1π(1,m1)

+ μ2π(0,m1,0,m2)

+ μ2π(0,m2,0,m1), (8)

(λa + λb + μ2)π(0,m2) = (1 − η)λaπ(0) + μ1π(0,m1,0,m2)

+μ1π(0,m2,0,m1), (9)

in which we have two unknowns, π(0,m2),π(0), and three equations, with the addi-
tional control parameter η.

Proposition 5 The unique choice of η and the solution of the remaining stationary
probabilities are:

η = λa

2λa + λb

, π(0,m2) = μ1

μ2

μ1 + μ2

λa + λb

, π(0) = 2λa + λb

λa + λb

μ1

λa

μ1 + μ2

λa + λb

.

(10)

Proof Substituting the values of the stationary probabilities obtained so far into (7),
we get:

(λa + λb + μ1 + μ2)
μ1

μ2
= (λa + λb)π(0,m2) + μ1

μ1

μ2

λa + λb

μ1 + μ2
+ μ1

λa + λb

μ1 + μ2

= (λa + λb)π(0,m2) + μ1

μ2
(λa + λb),

from which we solve π(0,m2) = μ1
μ2

μ1+μ2
λa+λb

.
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Substituting all the known values into the remaining equations we get:

(λa + λb + μ1)
μ1 + μ2

λa

= (λb + ηλa)π(0) + μ1
μ1 + μ2

λa

λb

μ1
+ μ2

μ1

μ2
+ μ2,

(λa + λb + μ2)
μ1

μ2

μ1 + μ2

λa + λb

= (1 − η)λaπ(0) + μ1
μ1

μ2
+ μ1,

which after rearrangement and canceling becomes:

μ1
μ1 + μ2

λa

= (λb + ηλa)π(0),

μ1
μ1 + μ2

λa + λb

= (1 − η)λaπ(0).

From this we obtain

λb + ηλa = (λa + λb)(1 − η),

having as unique solution η = λa

2λa+λb
. Substituting back into the equations we finally

obtain:

π(0) = 2λa + λb

λa + λb

λb

λa

μ1

λb

μ1 + μ2

λa + λb

.

�

We make several more observations:

Proposition 6 Conditions (1) are necessary and sufficient for ergodicity.

Proof Necessity is obvious. To prove sufficiency notice that the obtained product
form is a non-null and, due to (1), convergent solution to the equilibrium equations
of an irreducible Markov process, which implies by Theorem 1 in Foster [8] that the
system is ergodic. �

Proposition 7 The stationary probabilities satisfy partial balance, for each state the
flux out of the state due to departures equals the flux into the state due to arrivals, and
(consequently) the flux out of the state due to arrivals equals the flux into the state
due to departures.

Proof It is immediate that:

(μ1 + μ2)π(n,m2,m,m1) = (λa + λb)π(n − 1,m2,m,m1), n > 0,m ≥ 0,

(μ1 + μ2)π(n,m1,0,m2) = (λa + λb)π(n − 1,m1,0,m2), n > 0,

(μ1 + μ2)π(0,m2,m,m1) = λaπ(m,m1), m ≥ 0,

μ1π(m,m1) = λbπ(m − 1,m1), m > 0,

(μ1 + μ2)π(0,m1,0,m2) = (λa + λb)π(0,m2),
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μ1π(0,m1) = (λb + ηλa)π(0),

μ2π(0,m2) = (1 − η)λaπ(0). �

The following proposition states that use of the aggregated description of the states
of System A is crucial to the existence of a product form solution. That is, if we
augment the state description, by including the identity of the job being processed by
machine m1 so that the state space includes

(0), (0,m2), (m,m1a), (m,m1b), (n,m1a,0,m2),

(n,m1b,0,m2), (n,m2,m,m1a), (n,m2,m,m1b), m,n ≥ 0,

where m1a, m1b distinguish the type on which machine m1 is working, then there is
no product form solution.

Proposition 8 If one expands the state space to include the identity of the job being
processed by machine m1 (which is either type a or type b), then there is no solution
of the form

π(n,m2,m,m1a) = B1x1
my1

n, π(n,m2,m,m1b) = B2x2
my2

n, m,n ≥ 0,

(11)
for the system.

Proof Substitution of the product form (11) into the new equilibrium equations
for the Markov process with the expanded state space leads to the conclusion that
there fail to exist values 0 < x1, x2, y1, y2 < 1 and B1,B2 > 0 such that the product
form (11) indeed satisfies all equilibrium equations; for details, see [12]. �

To get the actual steady-state probabilities we need a normalizing constant B

which is found by summing up the obtained solution over all states and taking the
reciprocal. We summarize all findings in the following theorem, which includes the
value obtained for the normalizing constant:

Theorem 1 The system is ergodic if and only if λb

μ1
< 1, λa+λb

μ1+μ2
< 1.

The system has a product form solution if and only if η = λa

2λa+λb
.

The stationary distribution in that case is

π(n,m2,m,m1) = B

(
λb

μ1

)m(
λa + λb

μ1 + μ2

)n

, m,n ≥ 0,

π(n,m1,0,m2) = B
μ1

μ2

(
λa + λb

μ1 + μ2

)n

, n ≥ 0,

π(m,m1) = B
μ1 + μ2

λa

(
λb

μ1

)m

, m ≥ 0,

π(0,m2) = B
μ1

μ2

μ1 + μ2

λa + λb

,
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π(0) = B
2λa + λb

λa + λb

μ1

λa

μ1 + μ2

λa + λb

,

where the normalizing constant is given by

B = μ2λa(λa + λb)2(μ1 − λb)(μ1 + μ2 − λa − λb)

μ1(μ1 + μ2)(μ2
2λ2

a + μ1λa(μ1 − λb)(λa + λb) + μ1μ2(2λa + λb)(μ1 + μ2 − λb))
.

The product form solution satisfies partial balance: flux into a state due to arrivals
equals flux out of that state due to departures.

If one expands the state space to include the identity of the job in service by ma-
chine m1, then there is no product form solution.

3 The multidimensional model

In this section we consider the general K-machine system. In Sect. 3.1 we describe
the state space which we use to describe this system. In Sect. 3.2 we describe the
Markovian transition probabilities and rates. In Sect. 3.3 we formulate the equilib-
rium equations for the model. In Sect. 3.4 we formulate partial balance equations
and in Sect. 3.5 we use them to obtain a product form candidate solution to the equi-
librium equations. In Sect. 3.6 we formulate the assignment condition and in Sect. 3.7
we show that under the assignment condition the partial balance equations are satis-
fied by the candidate solution, i.e. this product form solution is the stationary distribu-
tion of the Markov chain. Finally, we use the results of Adan, Hurkens and Weiss [2]
to show how it is always possible to calculate assignment probability distributions so
as to satisfy the assignment condition.

We introduce the following notation:

M := an arbitrary machine M from the set of machines M = {m1, . . . , mK }.
The capitalized M points to one of the machines mi . Note that the names
(or labels) of the machines mi are not capitalized.

λX :=
∑

c∈X
λc, where X ⊂ C.

μY :=
∑

M∈Y
μM , where Y ⊂ M.

C(Y ) := total set of job types that can be handled by the machines in Y ⊂ M,
which is equal to

⋃
M∈Y C(M).

U (Y ) := set of job types unique to the machines in Y ⊂ M, thus the set of job
types that cannot be handled by machines outside Y . We have U (Y ) =
C(Y ).

3.1 The state space for the multidimensional system

For models with K machines we use the following state description:
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Fig. 4 General system in state
s = (ni ,Mi, . . . , n2,M2,

n1,M1)

(ni,Mi,ni−1,Mi−1, . . . ,n1,M1): States in which there are i machines busy.
These machines are denoted by M1, . . . ,Mi , where {M1, . . . ,Mi} ⊂ M. The number
of jobs between machines Mj and Mj+1 is denoted by nj (≥ 0), with j = 1, . . . , i−1.
The number of waiting jobs at the end of the queue, behind machine Mi , is denoted
by ni .

The state space is denoted by S and to simplify the notation we use s to denote
an arbitrary state (ni,Mi, . . . , n1,M1) ∈ S . Figure 4 shows a system in state s. There
are a few things that are important to note about this state description:

First, the waiting jobs between machines Mj and Mj+1 can only be handled
by the machines M1, . . . ,Mj and not by any of the machines Mj+1, . . . ,Mi or
any of the idle machines. This is due to the first-come-first-served processing or-
der. Thus, waiting jobs between machines Mj and Mj+1 can only be of type
c ∈ U ({M1, . . . ,Mj }), according to the definition of U (Y ). The ni waiting jobs in
the back of the queue cannot be handled by any of the idle machines and have to be
of type c ∈ U ({M1, . . . ,Mi}).

Second, since each part of the queue between two machines contains jobs from
different subsets of job types, it is necessary to keep these sets separated in the state
description. It is not possible to aggregate the state description any further without
losing the Markov property.

Third, it is possible that the set of job types U ({M1, . . . ,Mj }) is empty for a certain
set of machines {M1, . . . ,Mj }. In this case there are no jobs which cannot be handled
by any of the machines Mj+1, . . . ,Mi or the idle machines. Thus there can be no
waiting jobs between Mj and Mj+1, and therefore nj can only be equal to zero.
Hence, the state space is given by

S = {0} ∪
K⋃

i=1

{
(ni,Mi, . . . , n1,M1)|{M1, . . . ,Mi} ⊂ M, nj ≥ 0,

nj = 0 if U
({M1, . . . ,Mj }

) = ∅, j = 1, . . . , i
}
,

where state 0 denotes the empty state (in which all machines are idle).
Fourth, it is important to note that in this state description we lose job type in-

formation about the jobs that are in service, since we only denote the machine that
is handling the job and not the job type of the job. This aggregation preserves the
Markov property since all types are processed by machine mi at rate μi . In Sect. 2
we already argued that a more detailed state description, where this job type infor-
mation is included in the state description, does not result in a product form solution
for System A. It is reasonable to conjecture that specifying the job types in process
will destroy the possibility of a product form solution also in the multidimensional
model.
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Fifth, note that the Markov process on S is irreducible. Clearly, it is possi-
ble to reach the empty state 0 from any other state s ∈ S . To see that any state
s = (ni,Mi, . . . , n1,M1) can be reached from 0, observe that starting from 0, with
positive probability, the first K events are arrivals occupying all machines. Then,
again with positive probability, the next K − i events are departures from machines
M /∈ {M1, . . . ,Mi} and we end up in a state where only machines Mi, . . . ,M1 are
busy and no jobs are waiting. Then, the next ni + · · · + n1 + i events are arrivals
that can exclusively be processed by the busy machines Mi, . . . ,M1. Subsequently,
with positive probability, the next i events are departures from each of the machines
M1, . . . ,Mi . First M1 finishes a job and is able to handle the first waiting job. Then
M2 finishes a job, skips that first n1 waiting jobs and handles the next one, and so
on, until we eventually reach state s = (ni,Mi, . . . , n1,M1) when Mi finishes its job,
skips the first n1 + · · · + ni−1 waiting jobs and starts processing the next one.

3.2 The transition behavior

We discuss the possible transitions of the general model below.
From an arbitrary state s = (ni,Mi, . . . , n1,M1) ∈ S the following transitions are

possible:

(i) Arrival of jobs: If a job arrives that cannot be handled by any of the idle machines,
it joins the back of the queue. In state s, arriving jobs that cannot be handled by
any of the idle machines must be of type c ∈ U ({M1, . . . ,Mi}). Thus such a job
arrives with rate λU ({M1,...,Mi }). With rate λC −λU ({M1,...,Mi }) a job arrives that can
be handled by one or more idle machines. For this job an assignment probability
distribution determines to which machine it is sent. The assignment probability
distributions determine the total transition rate from a state s to a state (0,M, s).

To simplify the discussion we introduce the following notation:

λM({M1, . . . ,Mi}) := transition rate from state s = (ni,Mi, . . . , n1,M1)

to state (0,M, s), for all possible permutations
Mi, . . . ,M1 of the sequence Mi, . . . ,M1 and all ma-
chines M that are not busy in state s; this rate is also
referred to as the activation rate (of machine M).

Note that the activation rates λM({M1, . . . ,Mi}) only depend on the set of
busy machines {M1, . . . ,Mi} and not on the sequence of machines Mi, . . . ,M1
and thus not on the order of the machines in the queue. Given the assignment
probability distributions, the arrival rates can be calculated. Note that the follow-
ing holds:

∑

M∈M\{M1,...,Mi }
λM

({M1, . . . ,Mi}
) = λC − λU ({M1,...,Mi }). (12)

We discuss the choice of assignment probabilities further in Sects. 3.6, 3.8.
(ii) Departure of jobs: If a job is finished on a machine, then that machine scans the

queue from right to left until it finds the first job it can handle. There are two
possibilities:
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Fig. 5 Transition from state insertM
kl

(s) to state s = (ni ,Mi, . . . , n1,M1)

(1) The machine does not find a job it can handle. This transition is illustrated
in Fig. 5. Such a transition is possible to state s = (ni,Mi, . . . , n1,M1) from
state (ni,Mi, . . . , l,M,nk − l,Mk, . . . , n1,M1), where machine M is situ-
ated in the queue between Mk and Mk+1. We denote this state by insertMkl (s).
In this state there are nk − l jobs between Mk and M and l jobs between M

and Mk+1. The jobs between machines M and Mk+1 can only be of type
c ∈ U ({M1, . . . ,Mk,M}), thus with probability

λU ({M1,...,Mk})
λU ({M1,...,Mk,M})

,

such a job cannot be handled by machine M . A job between machine Mj

and Mj+1, j > k, cannot be handled by machine M with probability

λU ({M1,...,Mj })
λU ({M1,...,Mj ,M})

.

Thus if machine M finishes its job then, with probability pM
kl (s), it will not

find a job in the queue that it can handle and will become idle, where pM
kl (s)

is defined as

pM
kl (s) := δk(M)lδk+1(M)nk+1 · · · δi(M)ni ,

with

δj (M) := λU ({M1,...,Mj })
λU ({M1,...,Mj ,M})

, j = 1, . . . , i. (13)
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Fig. 6 Transition from state swap
Mj

kl
(s) to state s

We set, by convention, δj (M) = 0 if U ({M1, . . . ,Mj }) ⊆ U ({M1, . . . ,

Mj ,M}) = ∅. Thus, with probability pM
kl (s), a jump is made from state

insertMkl (s) to state s, given that machine M finishes its job.
In the special case of k = 0, before the transition into s, machine M is

working on the first job in the queue, and in that case l = 0, since other-
wise all jobs between the first and second busy machines must be of type in
U ({M}), and machine M will be able to process all of them. Hence, for k = 0
the only transition in which machine M becomes idle is from insertM00(s) to
s, and, in fact,

pM
00(s) = pM

1n1
(s).

(2) The machine finds a job it can handle. This transition is illustrated in Fig. 6.
In this case one of the busy machines finishes its job and finds somewhere in
the queue another job that it can process. The state s can be reached by such
a transition from state

(ni,Mi, . . . , nj+1,Mj+1, nj + nj−1 + 1,Mj−1, . . . ,

Mk+1, l,Mj ,nk − l,Mk, . . . , n1,M1).

This state will be denoted by swap
Mj

kl (s) with j −1 ≥ k. In this state, machine
Mj is located between machines Mk and Mk+1. Between machines Mj−1
and Mj+1 there are nj−1 + nj + 1(> 0) jobs; this is of course only possible
if U ({M1, . . . ,Mj } �= ∅. If machine Mj finishes its job, a transition is made
to state s if the first job that Mj can handle is the (nj−1 + 1)-th job (from the
right) between Mj−1 and Mj+1. The probability of this event is

q
Mj

kl (s) := δk(Mj )
lδk+1(Mj )

nk+1 · · · δj−1(Mj )
nj−1

(
1 − δj−1(Mj )

)
,
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with δj (M) defined in (13). The system makes a jump from state swap
Mj

kl (s)

to state s with probability q
Mj

kl (s), given that Mj finishes its job.
In the special case that k = j − 1, machine Mj starts and ends its move

between machines Mj−1 and Mj , and there are initially nj + 1 + l jobs
between Mj and Mj+1 and nj−1 − l jobs between Mj−1 and Mj . This state

is denoted by swap
Mj

j−1,l(s) and the probability that a transition is made from
this state to state s equals

q
Mj

j−1,l(s) = δj−1(Mj )
l
(
1 − δj−1(Mj )

)
.

Slightly different is the special case that k = 0, where there are two possi-
bilities: In the transition from swapM1

0n1
(s) to s, machine M1 was working on

the first job, and there were n1 + 1 jobs queued between it and machine M2,
and the machine moved to the next job. Because the next job is in U ({M1}),
the probability for this transition is

q
M1
0n1

(s) = 1.

Otherwise, if j > 1 then l = 0 and

q
Mj

00 (s) = q
Mj

1n1
(s).

3.3 Equilibrium equations

We can now formulate the set of equilibrium equations. The equilibrium probability
of being in the state s is denoted by π(s). The state s can be reached by (i) an arrival
of a job, (ii) a departure of a job from a machine that finds no new job in the queue,
and (iii) a departure of a job from a machine that does find a new job in the queue. The
equilibrium equations display these three possibilities. The left-hand side of the equa-
tions equals the total probability flux out of state s. The right-hand side of the equa-
tions equals the probability flux into state s and consists of three parts, corresponding
to respectively (i), (ii) and (iii). In part (ii) we need to sum over all possible states with
one more busy machine (machine M) and over all possible positions of this machine
in the queue. In part (iii) we need to sum over all machines Mj ∈ {M1, . . . ,Mi} for
which U ({M1, . . . ,Mj } �= ∅, and over the positions of machine Mj in the queue. For
all states s = (ni,Mi, . . . , n1,M1) ∈ S\{0} the equilibrium equations are given by:
for ni > 0,

(λC + μ{M1,...,Mi })π(s) = λU ({M1,...,Mi })π(ni − 1,Mi, . . . , n1,M1) (i)

+
∑

M∈M\{M1,...,Mi }
μM PM(s) (ii)

+
i∑

j = 1
U ({M1, . . . ,Mj }) �= ∅

μMj
QMj

(s); (iii) (14)



Queueing Syst (2012) 70:269–298 285

for ni = 0,

(λC + μ{M1,...,Mi })π(s) = λMi

({M1, . . . ,Mi−1}
)
π(ni−1,Mi−1, . . . , n1,M1) (i)

+
∑

M∈M\{M1,...,Mi }
μM PM(s) (ii)

+
i∑

j = 1
U ({M1, . . . ,Mj }) �= ∅

μMj
QMj

(s); (iii)

(15)

where

PM(s) =
i∑

k=1

nk∑

l=0

pM
kl (s)π

(
insertMkl (s)

) + pM
1n1

(s)π(s,0,M), (16)

QMj
(s) =

j−1∑

k=1

nk∑

l=0

q
Mj

kl (s)π
(
swap

Mj

kl (s)
) + q

Mj

1n1
π

(
swap

Mj

00 (s)
)
. (17)

We may omit the equation for state 0, since the set of equilibrium equations is
dependent.

3.4 Partial balance equations

We now decompose the equilibrium equations for the model into partial balance equa-
tions. We will show that if these equations are satisfied, the model has a product form
solution. It appears that the partial balance equations are satisfied and thus that the
model has a product form distribution, if a so-called assignment condition is satisfied.
The assignment condition is discussed in Sects. 3.6 and 3.8.

Since the job type of a departing job is not known (a departing job from machine
M can be of any job type c ∈ C(M)), it is more appropriate to consider station- or
machine-balance, instead of job-type-balance. For state s this results in the following
equations:

(i) One equation for each idle machine M ∈ M\{M1, . . . ,Mi}: the total probability
flux out of state s due to an arrival of a job that is taken into service by machine
M (activation rate λM({M1, . . . ,Mi})) equals the total probability flux into state
s due to a departure of a job on machine M after which the machine becomes
idle. This results in the equations:

λM

({M1, . . . ,Mi}
)
π(s) = μM PM(s), M ∈ M\{M1, . . . ,Mi}. (18)

(ii) One equation for the set of busy machines {M1, . . . ,Mi}: the total probability
flux out of state s, due to an arrival of a job that can only be processed on
one or more machines in {M1, . . . ,Mi} and not on any of the idle machines in
M\{M1, . . . ,Mi} (arrival rate λU ({M1,...,Mi })), equals the total probability flux
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into state s, due to the departure of a job on one of the machines, which finds
another job in the queue, so that the set of busy machines {M1, . . . ,Mi} remains
the same. This equation cannot be divided into one equation for every machine
Mj ∈ {M1, . . . ,Mi}, since upon arrival it is not possible to say which machine
Mj will process the arriving job. This results in the equation:

λU ({M1,...,Mi })π(s) =
i∑

j = 1
U ({M1, . . . ,Mj }) �= ∅

μMj
QMj

(s). (19)

3.5 Candidate product form solution

With the formulated partial balance equations it is easy to derive the candidate prod-
uct form solution. This can be done for every s, by subtracting the sum of (18) for
all machines M ∈ M\{M1, . . . ,Mi} plus (19) from (14) (and by using (12)), and
similarly from (15). This yields the following equations:

μ{M1,...,Mi }π(s) = λU ({M1,...,Mi })π(ni − 1,Mi, . . . , n1,M1), ni > 0, (20)

μ{M1,...,Mi }π(s) = λMi

({M1, . . . ,Mi−1}
)
π(ni−1,Mi−1, . . . , n1,M1), ni = 0.

(21)

It is clear that these equations yield the candidate product form solution given by

π(s) = α
ni

i

λMi
({M1, . . . ,Mi−1})
μ{M1,...,Mi }

· · ·αn1
1

λM1(∅)

μ{M1}
π(0), (22)

where

αj := λU ({M1,...,Mj })
μ{M1,...,Mj }

, j = 1,2, . . . , i. (23)

It is also clear that if this product form solution satisfies (18) for all machines
M ∈ M\{M1, . . . ,Mi} and (19), then also (14) and (15) are satisfied. Thus, if the
candidate solution (22) satisfies the partial balance (18) and (19), then the model has
a product form solution.

3.6 Assignment condition

Because λMi
({M1, . . . ,Mi−1}) still depends on the control parameters, the partial

balance equations (18) and (19) will not be satisfied for every value of the control
parameters. We show in the proof of our main result in the following section that these
equations are satisfied if the control parameters are chosen such that the following
condition is satisfied:

Assignment condition
For i = 1, . . . ,K , and for every subset {Mi, . . . ,M1} ∈ M of size i, the following
holds:
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i∏

j=1

λMj

({M1, . . . ,Mj−1}
) =

i∏

j=1

λMj

({M1, . . . ,Mj−1}
)

for every permutation Mi, . . . ,M1 of Mi, . . . ,M1.

This condition implies that the product
∏i

j=1 λMj
({M1, . . . ,Mj−1}) should be

independent of the order of the machines Mi, . . . ,M1 in the queue.
We assume for now that the assignment condition is satisfied. We show in Sect. 3.8

that it is always possible to choose the assignment probability distributions in such
a way that the assignment condition is satisfied. We also show that while the assign-
ment probability distributions which achieve that may not be unique, the resulting
activation rates λM({M1, . . . ,Mi}) are unique.

We can simplify the notation by introducing

Πλ

({M1, . . . ,Mi}
) :=

i∏

j=1

λMj

({M1, . . . ,Mj−1}
)
, for all {M1, . . . ,Mi} ∈ M,

Πμ(Mi, . . . ,M1) :=
i∏

j=1

μ{M1,...,Mj }, for all (Mi, . . . ,M1) ∈ Mi ,

where Mi is defined as the set of all possible sequences (Mi, . . . ,M1) of all possible
subsets {M1, . . . ,Mi} ⊂ M of size i. Note that Πλ({M1, . . . ,Mi}) is independent of
the order of the machines in the sequence Mi, . . . ,M1, since we assumed that the
assignment condition is satisfied and that Πμ(Mi, . . . ,M1) is not. Now that we have
formulated the assignment condition, we can state our main result.

3.7 Main result

We have formulated the equilibrium equations and derived a candidate product form
solution with the use of partial balance. This candidate product form solution is the
solution of the global balance equations (14) and (15) if the assignment condition is
satisfied. This is shown in the proof of the following theorem.

Theorem 2 The model described in Sect. 3.1 has a product form solution if the
control parameters of the model (the assignment probability distributions) are cho-
sen in such a way that the assignment condition is satisfied. Then, for all states
s = (ni,Mi, . . . , n1,M1) ∈ S , the solution is

π(s) = α
ni

i · · ·αn1
1

Πλ({M1, . . . ,Mi})
Πμ(Mi, . . . ,M1)

π(0).

After normalization, this solution becomes the stationary distribution.

Proof We only have to verify that the partial balance equations are satisfied whenever
the assignment condition holds. Therefore we need to verify that the solution (22)
satisfies (18) and (19).
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To verify (18), we first look at one term of the sum PM(s), which we divide by
λM({M1, . . . ,Mi})π(s). After substituting the product form solution (22) we obtain
the following derivation, which we justify in the following paragraph:

μMpM
kl (s)

π(insertMkl (s))

λM({M1, . . . ,Mi})π(s)

= μM

λM({M1, . . . ,Mi})δk(M)lδk+1(M)nk+1 · · · δi(M)ni

π(0)
Πλ({M1,...,Mi ,M})

Πμ(Mi,...,M,Mk,...,M1)

π(0)
Πλ({M1,...,Mi })
Πμ(Mi,...,M1)

×
α

n1
1 · · ·αnk−l

k (
λU ({M1,...,Mk,M})
μ{M1,...,Mk,M} )l(

λU ({M1,...,Mk+1,M})
μ{M1,...,Mk+1,M} )nk+1 · · · ( λU ({M1,...,Mi ,M})

μ{M1,...,Mi ,M} )ni

α
n1
1 · · ·αni

i

= μM

(
δk(M)

αk

λU ({M1,...,Mk,M})
μ{M1,...,Mk,M}

)l(
δk+1(M)

αk+1

λU ({M1,...,Mk+1,M})
μ{M1,...,Mk+1,M}

)nk+1

· · ·

×
(

δi(M)

αi

λU ({M1,...,Mi,M})
μ{M1,...,Mi ,M}

)ni

× μ{M1,...,Mk,Mk+1} · · ·μ{M1,...,Mi }
μ{M1,...,Mk,M}μ{M1,...,Mk,Mk+1,M} · · ·μ{M1,...,Mi,M}

= μM

μ{M1,...,Mk,M}

(
μ{M1,...,Mk}

μ{M1,...,Mk,M}

)l( μ{M1,...,Mk+1}
μ{M1,...,Mk+1,M}

)nk+1+1

· · ·

×
(

μ{M1,...,Mi }
μ{M1,...,Mi ,M}

)ni+1

= (1 − βk)(βk)
l(βk+1)

nk+1+1 · · · (βi)
ni+1.

(24)

Here the first equality is just the substitution of (22). The second equality follows by
canceling and rearranging terms, expanding Πμ(·) in the numerator and denominator,
and using the assignment condition to see that

Πλ

({M1, . . . ,Mi,M}) = λM

({M1, . . . ,Mi}
)
Πλ

({M1, . . . ,Mi}
)
.

The third equality follows from the definitions of δ and α, by further cancelations and
rearrangements. For the last equality we define:

βj = μ{M1,...,Mj }
μ{M1,...,Mj ,M}

, j = 1, . . . , i.

A similar calculation leads to:

μMpM
1,n1

(s)
π(s,0,M)

λM({M1, . . . ,Mi})π(s)
=

i∏

j=1

(βj )
nj +1. (25)
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Equations (24), (25) can be used to simplify μM PM(s). We get:

μM PM(s) =
i∑

k=1

nk∑

l=0

pM
kl (s)π

(
insertMkl (s)

) + pM
1n1

(s)π(s,0,M)

= λM

({M1, . . . ,Mi}
)
π(s)

[
i∏

h=1

(βj )
nj +1

+
i∑

k=1

nk∑

l=0

(1 − βk)(βk)
l

i∏

h=k+1

(βj )
nj +1

]
. (26)

We now see that the sum of all the β terms on the right-hand side is 1. We note
that the βk represent probabilities for Bernoulli trials, of which there are altogether∑i

k=1(nk + 1) trials, starting with ni + 1 trials with success probability of (1 − βi),
followed by nk + 1 trials with success probability (1 − βk), for k = i − 1, . . . ,2,1.
The summation of terms

∑i
k=1

∑nk

l=0 sums up the probabilities that the first success
will be on the first, the second, . . . , or the last of the trials, while the first summand
is the probability of no success at all. These obviously add up to 1. This verifies (18).

We repeat similarly for (19). Justification of the various steps will follow. Let
j ∈ {2, . . . , i} with U ({M1, . . . ,Mj }) �= ∅. For j − 1 ≥ k ≥ 1 and 0 ≤ l ≤ nk , we get:

μMj
q

Mj

kl (s)
π(swap

Mj

kl (s))

π(s)

= μMj
δk(Mj )

lδk+1(Mj )
nk+1 · · · δj−1(Mj )

nj−1
(
1 − δj−1(Mj )

)

×
π(0)

Πλ({M1,...,Mi })
Πμ(Mi,...,Mj+1,Mj−1,...,Mj ,Mk,...,M1)

π(0)
Πλ({M1,...,Mi })
Πμ(Mi,...,M1)

×
α

n1
1 · · ·αnk−l

k (
λU ({M1,...,Mk,Mj })
μ{M1,...,Mk,Mj } )l · · · ( λU ({M1,...,Mj−1,Mj })

μ{M1,...,Mj−1,Mj } )nj−1+1+nj α
nj+1
j+1 · · ·αni

i

α
n1
1 · · ·αni

i

= μMj

(
δk(Mj )

αk

λU ({M1,...,Mk,Mj })
μ{M1,...,Mk,Mj }

)l

· · ·

×
(

δj−1(Mj )

αj−1

λU ({M1,...,Mj−1,Mj })
μ{M1,...,Mj−1,Mj }

)nj−1(
1 − δj−1(Mj )

)

× μ{M1,...,Mk,Mk+1} · · ·μ{M1,...,Mj−2,Mj−1}
μ{M1,...,Mk,Mj } · · ·μ{M1,...,Mj−2,Mj }

λU ({M1,...,Mj−1,Mj })
μ{M1,...,Mj−1,Mj }

= (λU ({M1,...,Mj−1,Mj }) − λU ({M1,...,Mj−1}))
μMj

μ{M1,...,Mk,Mj }

×
(

μ{M1,...,Mk}
μ{M1,...,Mk,Mj }

)l( μ{M1,...,Mk+1}
μ{M1,...,Mk+1,Mj }

)nk+1+1

· · ·
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×
(

μ{M1,...,Mj−1}
μ{M1,...,Mj−1,Mj }

)nj−1+1

= (λU ({M1,...,Mj−1,Mj }) − λU ({M1,...,Mj−1}))

× (1 − βk,j )(βk,j )
l(βk+1,j )

nk+1+1(βj−1,j )
nj−1+1.

Here in the first equality we note that Πλ({M1, . . . ,Mi}) is independent of the swap
of the position of Mj by the assignment condition. The second equality is obtained by
canceling common terms, and some rearranging. The very last term is there because
there is one more job in the swap state. The third equality follows from the definitions
of δ and α, and for the last equality we define:

βh,j = μ{M1,...,Mh}
μ{M1,...,Mh,Mj }

, 1 ≤ h ≤ j − 1.

A similar calculation leads to

μMj
q

Mj

1,n1
(s)

π(swap
Mj

00 (s))

π(s)
= (λU ({M1,...,Mj−1,Mj })−λU ({M1,...,Mj−1}))

j−1∏

h=1

(βh,j )
nh+1.

We now add up the terms for each Mj , 1 < j ≤ i, to get:

μMj
QMj

(s) = μMj

j−1∑

k=1

nk∑

l=0

q
Mj

kl (s)π
(
swap

Mj

kl (s)
) + μMj

q
Mj

1n1
π

(
swap

Mj

00 (s)
)

= π(s)(λU ({M1,...,Mj−1,Mj }) − λU ({M1,...,Mj−1}))

×
[

j−1∏

h=1

βh,j
nh+1 +

j−1∑

k=1

nk∑

l=0

(1 − βk,j )βk,j
l

j−1∏

h=k+1

βh,j
nh+1

]

= π(s)(λU ({M1,...,Mj−1,Mj }) − λU ({M1,...,Mj−1})),

where the argument that the sum of products of β’s equals 1 is the same as for the
insert transitions.

For j = 1 with U ({M1}) �= ∅ we get:

μM1 QM1(s) = μM1q
M1
1,n1

(s)π
(
swapM1

0,n1
(s)

)

= μM11
λU ({M1}
μM1

π(s)

= π(s)(λU ({M1}) − λU (∅)),

where we use λU (∅) = 0.
Finally, adding up over all j ∈ {1, . . . , i} with U ({M1, . . . ,Mj }) �= ∅ we get:

i∑

j = 1
U ({M1, . . . ,Mj }) �= ∅

μMj
QMj

(s)
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= π(s)

i∑

j = 1
U ({M1, . . . ,Mj }) �= ∅

(λU ({M1,...,Mj−1,Mj }) − λU ({M1,...,Mj−1}))

= π(s)

i∑

j=1

(λU ({M1,...,Mj−1,Mj }) − λU ({M1,...,Mj−1}))

= π(s)(λU ({M1,...,Mi }) − λU (∅))

= π(s)λU ({M1,...,Mi }),

where the second equality is valid since, if U ({M1, . . . ,Mj }) = ∅, then λU ({M1,...,Mk})= 0 for k = 1, . . . , j . This verifies (19), and thus completes the proof. �

3.8 Verifying the assignment condition

In order to be able to state that a product form solution exists, we need to verify that
indeed it is always possible to find assignment probability distributions which result
in activation rates that satisfy the assignment condition. But this is exactly the result
obtained in [2] which considers a closely related system: the current system without
waiting room, so jobs that arrive, and do not find an idle machine which can handle
them, are lost. Below we summarize the results from [2].

First of all it is shown that for given arrival rates λc, c ∈ C , and given the job classes
served by each machine, C(mj ), j = 1, . . . ,K , the activation rates are uniquely de-
termined by the assignment condition, and can be calculated recursively from the
following formulas. For M being the only idle machine,

λM(M\{M}) = λC(M), M ∈ M.

Now we proceed by induction on the number of idle machines, assuming we
have determined for all sets {M1, . . . ,Mj } of size j greater than i the activation
rates λM({M1, . . . ,Mj }) for M /∈ {M1, . . . ,Mj }. Consider then the set of machines
{M1, . . . ,Mi} of size i. Clearly,

λC(M\{M1,...,Mi }) =
∑

M /∈{M1,...,Mi })
λM

({M1, . . . ,Mi}
)
. (27)

Introducing the notation

∏
λ

({M1, . . . ,Mi}
) =

K−1∏

j=i

λMj+1

({M1, . . . ,Mj }
)
,

we conclude from the assignment condition that for any two machines Mj,Mk �∈
{M1, . . . ,Mi},

λMj

({M1, . . . ,Mi}
)∏

λ

({M1, . . . ,Mi,Mj }
)
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= λMk

({M1, . . . ,Mi}
)∏

λ

({M1, . . . ,Mi,Mk}
)
. (28)

The above equations can be solved for λM({M1, . . . ,Mi}) which are then determined
up to a multiplicative constant, and this constant is then uniquely determined by (27).
This shows that activation rates that satisfy the assignment condition exist, and are
unique. To calculate them recursively we obtain from (28):

λMj
({M1, . . . ,Mi})

λMk
({M1, . . . ,Mi}) = λMj

({M1, . . . ,Mi,Mk})
λMk

({M1, . . . ,Mi,Mj }) (29)

and substitution of (29) into (27) yields

λMj

({M1, . . . ,Mi}
)

= λC(M\{M1,...,Mi })
/(

1 +
∑

Mk /∈{M1,...,Mi ,Mj }

λMk
({M1, . . . ,Mi,Mj })

λMj
({M1, . . . ,Mi,Mk})

)
,

i ≤ K − 2, Mj �∈ {M1, . . . ,Mi}.

It is then necessary to find assignment probability distributions which result in
these activation rates. We define P(c,Mj | {M1, . . . ,Mi}) to be the probability that
an arriving job of type c who finds machines {M1, . . . ,Mi} busy will be assigned to
the idle machine Mj . Here we get a distribution for each type of job and each subset
of machines {M1, . . . ,Mi} for which there exists at least one machine Mj such that
c ∈ C(Mj ) and Mj /∈ {M1, . . . ,Mi}.

All that is needed is to find values P(c,Mj | {M1, . . . ,Mi}) ≥ 0 such that

λMj

({M1, . . . ,Mi}
) =

∑

c∈C(Mj )

λcP
(
c,Mj | {M1, . . . ,Mi}

)
, (30)

and it is shown in [2] that there always exist such values (which often are not unique).
It is shown that appropriate values can be obtained by solving a maximal flow

problem (cf. [7]) for each subset of busy machines {M1, . . . ,Mi}. The maximal flow
problem is illustrated in Fig. 7. In this problem there is a source node s, with an
arc of capacity λc to a node c for every c ∈ C(M\{M1, . . . ,Mi}), and a terminal
node t with an arc of capacity λMj

({M1, . . . ,Mi}) from a node Mj to node t for
every Mj /∈ {M1, . . . ,Mi}, and an arc of infinite capacity from node c to node Mj if
c ∈ C(Mj ), see Fig. 7. Note that the sum of capacities of arcs from the source and the
sum of capacities of arcs to the terminal are both equal to λC(M\{M1,...,Mi }):

∑

c∈C(M\{M1,...,Mi })
λc =

∑

Mj /∈{M1,...,Mi }
λMj

({M1, . . . ,Mi}
) = λC(M\{M1,...,Mi }).

Hence, if the maximal flow in this network is λC(M\{M1,...,Mi }), then all the arcs
from the source and all the arcs to the terminal are utilized at full capacity. Let
ν(c,Mj ) denote the flow on the arc with infinite capacity from c to Mj , then
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Fig. 7 Max flow problem related to the set of servers S = {M1, . . . ,Mi }

P(c,Mj | {M1, . . . ,Mi}) = ν(c,Mj )/λc solve (30). A sufficient condition for a flow
of λC(M\{M1,...,Mi }) is the following monotonicity property of the activation rates:

λMj

({M1, . . . ,Mi}
) ≥ λMj

({M1, . . . ,Mi−1}
)
, i ≤ K − 1, Mj /∈ {M1, . . . ,Mi}.

It is proved in [2] that the above monotonicity property always holds.
Below we present an example; see Example 2 in [2] for detailed calculations. It

illustrates that the assignment probability distributions need not be unique.

Example There are three job types, numbered 1, 2 and 3, and three servers, also
numbered 1, 2, and 3 with C(1) = {2,3}, C(2) = {1,3}, C(3) = {1,2}. Let λ = λ1 +
λ2 + λ3. We get for one or two idle servers and i �= j �= k:

P
(
j, i|{j, k}) = P

(
k, i|{j, k}) = 1, P

(
i, j |{k}) = P

(
j, i|{k}) = 1,

P
(
k, i|{k}) = λi + λk

λi + λj + 2λk

, P
(
k, j |{k}) = λj + λk

λi + λj + 2λk

.

When all three servers are idle, the assignment probability distributions are not
unique. Using the abbreviations P(i, j) ≡ P(i, j |∅), the distributions can be param-
eterized as:

⎡

⎢⎣
P(i, j)

P (j, k)

P (k, i)

⎤

⎥⎦ =
⎡

⎢⎣
1 − P(i, k)

1 − P(j, i)

1 − P(k, j)

⎤

⎥⎦ = (1 − θ)

⎡

⎢⎢⎣

max(0,ηj −λk,λi−ηk)

λi

max(0,ηk−λi ,λj −ηi )

λj

max(0,ηi−λj ,λk−ηj )

λk

⎤

⎥⎥⎦
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+ θ

⎡

⎢⎢⎣

min(λi ,ηj ,λi+λj −ηk)

λi

min(λj ,ηk,λj +λk−ηi)

λj

min(λk,ηi ,λi+λk−ηj )

λk

⎤

⎥⎥⎦

where 0 ≤ θ ≤ 1 and

ηj = λ(λ2 − λ2
j )

3λ2 − λ2
1 − λ2

2 − λ2
3

.

4 The waiting time distribution

In this section we use the distributional form of Little’s law [10] to derive the waiting
time distributions of jobs of various types.

The basic formula says that, within a queueing system, a stream of jobs that enter
in a Poisson stream of rate λ stay for a while without affecting either future arrivals
or the time spent in the system by previous jobs, and leave in the same order as
they arrived, satisfy the following relation between steady-state number of jobs in the
system N and the time spent in the system W :

E
(
zN

) = E
(
e−λW(1−z)

)
. (31)

Jobs of type c satisfy the above conditions necessary for the distributional form
of Little’s law. Thus we can use relation (31) to derive explicit expressions for the
steady-state waiting time of jobs of type c in the system, from the time that they enter
the system and until the time that they enter service. It turns out that this waiting time
is distributed as a mixture of sums of exponentials with various parameters.

We introduce the following random variables associated with the system:

Nj is the number of jobs waiting between machines Mj and Mj+1, or behind the
last machine if machine Mj is the last busy machine, or 0 if there are less then
j busy machines, j = 1, . . . ,K .

Nc,j is the number of jobs of type c among Nj . Recall that all jobs of Nj need to be
of types U ({M1, . . . ,Mj }), so Nc,j = 0 if c /∈ U ({M1, . . . ,Mj }).

Nc· is the total number of jobs of type c in the queue, obtained by adding up all
non-zero Nc,j for j = 1, . . . ,K . Note that if c /∈ U ({M1, . . . ,Mi}), then one of
the idle machines can serve jobs of type c, and hence Nc· = 0.

We now derive E(zNc·). To do so we first condition on the set of busy machines.
Recall that the steady-state probability of state s = (ni,Mi, . . . , n1,M1) is

π(s) = α
ni

i · · ·αn1
1

Πλ({M1, . . . ,Mi})
Πμ(Mi, . . . ,M1)

π(0).

We then have that for the system in steady state,

P(NK = 0, . . . ,Ni+1 = 0,Ni = ni,Mi, . . . ,N1 = n1,M1 |M1, . . . ,Mi)



Queueing Syst (2012) 70:269–298 295

=
i∏

j=1

(1 − αj )α
nj

j .

Recall also that

αj = λU ({M1,...,Mj })
μ{M1,...,Mj }

j = 1,2, . . . , i,

and that for c ∈ U ({M1, . . . ,Mj }), the conditional distribution of Nc,j conditional on
Nj is binomial:

P(Nc,j = m|Nj = n) =
(

n

m

)(
λc

λU ({M1,...,Mj })

)m(
1 − λc

λU ({M1,...,Mj })

)n−m

.

For N a geometric random variable with parameter α and for M conditional on N

a binomial random variable with parameters (N, θ), we have:

E
(
zM

) =
∞∑

n=0

(1 − α)αnE
(
zM |N = n

) =
∞∑

n=0

(1 − α)αn

n∑

m=0

(
n

m

)
(zθ)m(1 − θ)n−m

=
∞∑

n=0

(1 − α)
(
α(1 − θ + zθ)

)n = 1 − α

1 − α(1 − θ + zθ)
= 1 − αθ

1−α(1−θ)

1 − αθ
1−α(1−θ)

z
,

from which we can conclude that the unconditional M has a geometric distribution
with parameter αθ

1−α(1−θ)
.

We can now calculate the joint generating function of Nc,1, . . . ,Nc,K , conditional
on the busy machines M1, . . . ,Mi . We note that for j = 1, . . . , i, the conditional
distribution of Nj is geometric with parameter αj , and that if c ∈ U ({M1, . . . ,Mj }),
then Nc,j |Nj is binomial with parameters Nj and θj = λc

λU ({M1,...,Mj }) . Hence Nc,j is

geometric with parameter

ηc,j = αj θj

1 − αj (1 − θj )
= λc

μ{M1,...,Mj } − λU ({M1,...,Mj }) + λc

.

Furthermore, from the product form of the stationary distribution it is seen that condi-
tional on the busy machines M1, . . . ,Mi , the N1, . . . ,Ni are independent, and hence
also Nc,1, . . . ,Nc,i are independent. We therefore obtain for the sequence of busy
machines M1, . . . ,Mi ,

E
(
z
Nc,1
1 · · · zNc,K

K |M1, . . . ,Mi

) =
i∏

j = 1
c ∈ U ({M1, . . . ,Mj })

1 − ηc,j

1 − ηc,j zj

.
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The generating function of Nc· = Nc,1 + · · · + Nc,K conditional on M1, . . . ,Mi is
obtained by substituting zj = z for all j :

E
(
zNc· |M1, . . . ,Mi

) =
i∏

j = 1
c ∈ U ({M1, . . . ,Mj })

1 − ηc,j

1 − ηc,j z
.

To un-condition we use the steady-state probability that machines M1, . . . ,Mi are
busy:

π(·,Mi, . . . , ·,M1) = Πλ({M1, . . . ,Mi})
Πμ(Mi, . . . ,M1)

i∏

j=1

1

1 − αj

π(0). (32)

By summing over all possible sequences (Mi, . . . ,M1), we then have that:

E
(
zNc·) =

K∑

i=0

∑

(Mi,...,M1)∈Mi

π(·,Mi, . . . , ·,M1)

i∏

j = 1
c ∈ U ({M1, . . . ,Mj })

1 − ηc,j

1 − ηc,j z
.

We now apply the distributional form of Little’s law. To obtain the Laplace–
Stieltjes transform (LST) of the waiting time we need to use E(e−sW ) = E((λ−s

λ
)N ),

and in particular, if N has a geometric distribution with parameter η, then

E
(
e−sW

) = E

((
λ − s

λ

)N
)

= 1 − η

1 − η(λ−s
λ

)
=

1−η
η

λ

1−η
η

λ + s
,

which implies that W is an exponential random variable with parameter 1−η
η

λ.
Hence, for LST of the steady-state waiting time Wc of a job of type c, we obtain:

E(e−sWc) =
K∑

i=0

∑

(Mi,...,M1)∈Mi

π(·,Mi, . . . , ·,M1)

i∏

j = 1
c ∈ U ({M1, . . . ,Mj })

1−ηc,j

ηc,j
λc

1−ηc,j

ηc,j
λc + s

.

Using the definition of ηc,j we get the surprising simplification, whenever c ∈
U ({M1, . . . ,Mj }):

1 − ηc,j

ηc,j

λc =
1 − λc

μ{M1,...,Mj }−λU ({M1,...,Mj })+λc

λc

μ{M1,...,Mj }−λU ({M1,...,Mj })+λc

λc = μ{M1,...,Mj } − λU ({M1,...,Mj }),

from which λc has miraculously disappeared. Rewriting this we now have:

Theorem 3 The LST of the steady-state waiting time Wc of a job of type c is equal to

E
(
e−sWc

) =
K∑

i=0

∑

(Mi,...,M1)∈Mi

π(·,Mi, . . . , ·,M1)



Queueing Syst (2012) 70:269–298 297

×
i∏

j = 1
c ∈ U ({M1, . . . ,Mj })

μ{M1,...,Mj } − λU ({M1,...,Mj })
μ{M1,...,Mj } − λU ({M1,...,Mj }) + s

, (33)

where π(·,Mi, . . . , ·,M1) is given by (32).

This has the following interpretation: Consider the system in steady state. Jobs
of type c arrive as a Poisson stream, and hence they see the queue in steady state,
and find machines (Mi, . . . ,M1) busy with probability π(·,Mi, . . . , ·,M1). If some
of the idle machines can process a job of type c, the arriving job will go into service
immediately, and the waiting time will be 0. This is expressed in (33) by noting that
in that case c �∈ U ({M1, . . . ,Mi}), and so the product is empty (and thus equal to 1).
Else, it will have to wait a sum of exponential waiting times.

There will be an exponential waiting time term for machine Mj if c ∈ U ({M1, . . . ,

Mj }). This will include terms for machines Mi,Mi−1, . . . as long as none of them
can serve c, and terminate with a term for the first machine Mk which can serve c. To
be precise, c ∈ C(Mk), while c �∈ C(Mj ) for j = k + 1, . . . , i.

The waiting time term for machine Mj is exponential with rate μ{M1,...,Mj } −
λU ({M1,...,Mj }), which is the waiting time in an M/M/1 queue with arrival rate
λU ({M1,...,Mj }) and service rate μ{M1,...,Mj }.

Hence, when a job of type c arrives, his waiting time can be interpreted as going
through a tandem sequence of M/M/1 queues, until he can be served by the last of
them.
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