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Abstract In the present paper we address two open problems concerning polling
systems, viz., queueing systems consisting of multiple queues attended by a single
server that visits the queues one at a time. The first open problem deals with a system
consisting of two queues, one of which has gated service, while the other receives
1-limited service. The second open problem concerns polling systems with general
(renewal) arrivals and deterministic switch-over times that become infinitely large.
We discuss related, known results for both problems, and the difficulties encountered
when trying to solve them.
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1 Introduction

A polling system is a queueing system consisting of multiple queues attended by a
single server that visits the queues one at a time. Polling systems naturally arise in a
large number of application areas, such as

• maintenance: a patrolling repairman visits various sites;
• manufacturing: a machine successively produces items of various types;
• computer-communication systems: a central computer cyclically polls the termi-

nals on a common link to inquire whether they have any data to transmit;
• road traffic: traffic lights determine which traffic streams may proceed.

In many of these applications, the server incurs a non-negligible switch-over time
when switching between queues.

There is a huge body of literature on polling systems, in which the basic cyclic
polling system and many enhancements have been studied. Extensive surveys on
polling systems and their applications may be found in [13, 20, 24]. In this note
we present two challenging open problems motivated by two of the aforementioned
application areas. By doing so, we want to stimulate research and new collaborations
in these directions. The first problem is motivated by a computer-communication sys-
tem application and seems to lead to a boundary value problem with a rather compli-
cated shift. The second problem requires an asymptotic analysis of the waiting-time
distribution and stems from a manufacturing application.

2 Model and notation

In the present paper (and in almost the whole polling literature) the server visits the
N queues in cyclic order Q1,Q2, . . . ,QN,Q1, . . . , and the arrival processes of cus-
tomers at the various queues are assumed to be independent Poisson processes, with
rate λi at Qi , i = 1, . . . ,N . The service requirements at Qi , denoted by Bi , are inde-
pendent, identically distributed random variables with LST (Laplace–Stieltjes trans-
form) βi(·), i = 1, . . . ,N . Similarly, the switch-over times between Qi and Qi+1,
denoted by Si , are independent, identically distributed with LST σi(·), i = 1, . . . ,N .
The sum of the switch-over times is denoted by S. We furthermore assume that all
arrival, service and switch-over processes are independent, and that the various pa-
rameters are such that the joint steady-state queue-length distributions at server visit
epochs, server departure epochs and arbitrary epochs exist. We also introduce the
notation ρi = λiE[Bi], and ρ = ∑N

i=1 ρi .
A key aspect of polling systems is the service discipline at each queue. The three

most important service disciplines are exhaustive (E): a queue is served until it is
empty; gated (G): the server only serves those customers which were present at the
start of the visit; and 1-limited (1-L): the server serves only one customer—if any is
present. In a seminal paper, Resing [18] has shown that the PGF (Probability Gener-
ating Function) of the joint steady-state queue-length distribution at epochs at which
the server arrives at, say, Q1 can be obtained explicitly for those polling systems in
which the service discipline at each queue is of a branching-type, viz., the following
holds for i = 1, . . . ,N :
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If there are ki customers present at Qi at the start of a visit, then during the
course of the visit, each of these ki customers will effectively be replaced in an i.i.d.
manner by a random population having PGF hi(z1, . . . , zN), which may be any N -
dimensional PGF.

The joint queue-length process at visit epochs then becomes an N -class branching
process with immigration (the immigration corresponding to arrivals during switch-
over times). One may easily verify that exhaustive and gated are branching-type disci-
plines, whereas 1-limited is not. In the gated case, hi(z1, . . . , zN) = βi(

∑N
j=1 λj (1 −

zj )), and in the exhaustive case, hi(z1, . . . , zN) = πi(
∑N

j �=i λj (1 − zj )), where πi(·)
denotes the LST of the busy period distribution at Qi , when viewed as an M/G/1
queue in isolation.

A key element in the analysis of such branching-type polling systems is that the
following relation holds between the PGF Gi(z1, . . . , zN ) of the joint queue-length
distribution at the end of a visit to Qi and the PGF Fi(z1, . . . , zN) of the joint queue-
length distribution at the start of that visit:

Gi(z1, . . . , zN) = Fi

(
z1, . . . , zi−1, hi(z1, . . . , zN), zi+1, . . . , zN

)
. (1)

Moreover, it is easily seen that

Fi+1(z1, . . . , zN) = σi

(
N∑

j=1

λj (1 − zj )

)

Gi(z1, . . . , zN). (2)

Successively applying each of these equations once for i = 1, . . . ,N , we obtain a
functional equation expressing F1(z1, . . . , zN ) in terms of itself. After iteration this
yields an expression for F1(z1, . . . , zN) in the form of an infinite sum of products.

In the next two sections we formulate two open problems for polling systems with
a partial, respectively full, branching-type service discipline.

3 Open problem 1: gated plus 1-limited

In this section we restrict ourselves to the case of N = 2 queues. We are interested
in determining F1(z1, z2) and F2(z1, z2). After briefly discussing known results in
Sect. 3.1, we formulate in Sect. 3.2 an open problem regarding the polling model
with a gated and a 1-limited queue.

3.1 Known results for two-queue polling systems

The polling models with discipline E/E (Exhaustive/Exhaustive), G/G and E/G fall in
the class of multi-type branching, and are easily solved; E/E was already solved by
Takács [19] in 1968. We refer to the survey [20] and to [18] for the other cases and
for extensions to a general number of queues N . The 1-L/1-L model was solved by
using the theory of boundary value problems; see [6] for the case of zero switch-over
times, and [5] for the case of non-zero switch-over times. Now let us turn to E/1-L
and G/1-L. First observe that, with Q2 having 1-L,

G2(z1, z2) = β2(λ1(1 − z1) + λ2(1 − z2))

z2

[
F2(z1, z2) − F2(z1,0)

] + F2(z1,0).

(3)
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Combination of (1), (2) and (3) yields, after having introduced βi(z1, z2) :=
βi(λ1(1 − z1) + λ2(1 − z2)) and σi(z1, z2) := σi(λ1(1 − z1) + λ2(1 − z2)), i = 1,2:

F1(z1, z2) = β2(z1, z2)σ2(z1, z2)

z2

[
σ1(z1, z2)F1

(
h1(z1, z2), z2

)

− σ1(z1,0)F1
(
h1(z1,0),0

)] + σ2(z1, z2)σ1(z1,0)F1
(
h1(z1,0),0

)
. (4)

The E/1-L model with zero switch-over times is simply a two-class non-preemptive
priority model. Ibe [10] considers the case of non-zero switch-over times, obtaining
the marginal queue-length distribution in Q1 at polling instants of that queue. It is less
well known that the joint queue-length distributions at polling instants of a queue can
also be found in a quite straightforward manner. This is accomplished by substituting
h1(z1, z2) = π1(λ2(1 − z2)) into (4), calling this function g(z2), and observing that
F1(h1(z1,0),0) = F1(g(0),0) is a constant, say C, not depending on z1:

F1(z1, z2) = β2(z1, z2)σ2(z1, z2)

z2

[
σ1(z1, z2)F1

(
g(z2), z2

) − Cσ1(z1,0)
]

+ Cσ2(z1, z2)σ1(z1,0). (5)

The substitution z1 = g(z2) finally solves the problem. Details may be found in
Sect. 6.3 of the Ph.D. thesis of Groenendijk [9]. E/1-L appears to be conceptually
easier than E/E or any other known polling model, not requiring a branching-type
sum-of-infinite-products solution, and neither the solution of a boundary value prob-
lem.

Remark 3.1 Our sketch of the analysis of E/1-L reveals that one can extend that
analysis to the case in which h1(z1, z2), which above equals π1(λ2(1 − z2)), is some
arbitrary PGF g(z2). For example, when the server is at Q1, one could have Poisson
arrivals with rate λ∗

2, or batch Poisson arrivals, at Q2.

Remark 3.2 For general k, an exact evaluation for the queue-length distribution is
known in two-queue exhaustive/k-limited systems with zero setup times (see Lee
[11] and Ozawa [15, 16]) and with state-dependent switch-over times (see [28]).

Remark 3.3 As discussed in various polling studies, one can readily derive the
waiting-time LST at Qi from Fi(z1, z2). Furthermore, there exists a simple rela-
tion between the mean waiting times E[Wi] (at Qi ), i = 1,2, . . . ,N , in polling sys-
tems, a so-called pseudo-conservation law (cf. [4]). In the G/1-L case, this pseudo-
conservation law reduces to

ρ1E[W1] + ρ2

(

1 − λ2E[S]
1 − ρ

)

E[W2] = ρ

2∑

i=1

λiE[B2
i ]

2(1 − ρ)
+ ρ

E[S2]
2E[S]

+ E[S]
2(1 − ρ)

[
ρ2 + ρ2

1 + ρ2
2

]
. (6)
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3.2 An unsolved two-queue polling model: G/1-L

Throughout the polling literature, G and E seem to have comparable complexity.
Their role in the branching-type polling models, and in (pseudo-)conservation laws,
is similar. In view of this, and of the simplicity of E/1-L, it is remarkable that G/1-L
has remained unsolved for the past twenty years, despite the fact that it is a quite rele-
vant model (cf. Bisdikian [1], who introduces a variant of G/1-L as a model for com-
munication networks with bridge-stations and suggests an approximative approach).
Hence we state

Open problem 1 Determine the joint queue-length PGF at polling instants in the
two-queue G/1-L polling system.

In the G/1-L case, (4) holds with h1(z1, z2) = β1(z1, z2). Obvious attempts to ob-
tain F1(z1, z2) from (4) include substituting z1 = 0 (which yields a derivative), and
substituting z1 = h1(z1, z2) into the left-hand side of (4). In the latter case, one ob-
tains terms F1(h1(h1(z1, z2), z2), z2) and F1(h1(h1(z1, z2),0),0) on the right-hand
side, and iteration does not seem to lead to a solution.

Our feeling is that (4), in combination with obvious analyticity conditions of
F1(·, ·) inside the product of unit circles, leads to a boundary value problem (cf. [7]),
but one with a rather complicated shift introduced by the function h1(·, ·). Boundary
value problems with a shift have been studied in the Riemann–Hilbert framework
(cf. [8], Sect. 17), and even in the setting of polling systems (cf. [12], which studies
a two-queue polling model with Bernoulli service at both queues), but the present
problem seems particularly challenging.

4 Open problem 2: switch-over time asymptotics

The next open problem considers the class of polling systems, with N queues, that
allow a multi-type branching process interpretation. We are interested in the be-
haviour of the polling system (under proper scaling conditions), when the determinis-
tic switch-over times tend to infinity. This large switch-over time problem is relevant
from a practical point of view, since systems with large switch-over times find a wide
variety of applications in manufacturing environments (see [26]). Firstly, Sect. 4.1
summarises known results for switch-over time asymptotics in polling systems with
Poisson arrivals. Subsequently, we pose a conjecture for the behaviour of systems in
which the arrival process at each of the queues is a general (renewal) process (see
Sect. 4.2). Finally, the rigorous proof of this conjecture is stated as an open problem.

4.1 Known result for Poisson arrival processes

Under the assumption of Poisson arrival processes, Winands [27] presents an ex-
act asymptotic analysis of the waiting-time distribution in branching-type polling
systems with deterministic switch-over times when the switch-over times tend to
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infinity. The results of [27] generalise those derived in [14, 22, 25] for the spe-
cial case of exhaustive and gated service. Since the waiting time grows to infin-
ity in the limiting case, [27] focusses on the asymptotic scaled waiting time Wi/S

as S → ∞ while keeping the ratios of the switch-over times constant. We intro-
duce Φi as the “exhaustiveness” of the service discipline in Qi , defined as Φi =
1 − ∂

∂zi
hi(z1, . . . , zN)|z1=1,...,zN=1. Its interpretation is, that each customer present

at the start of a visit to Qi will be replaced by a number of type i customers with
mean 1 − Φi . If Qi receives exhaustive service, the exhaustiveness is 1; for gated
service, it is 1 − ρi . In case of Poisson arrivals and deterministic switch-over times,
the distribution of the asymptotic scaled waiting time is given by

Wi

S

d−→ 1 − ρi

1 − ρ
Ui (S → ∞), (7)

where Ui is uniformly distributed on [ 1−Φi

Φi
, 1

Φi
].

The closed-form expression of the scaled delay distribution has an intuitively ap-
pealing interpretation. That is, in the case of increasing deterministic switch-over
times the polling system converges to a deterministic cyclic system with continuous
deterministic service rates 1/E[Bi] and continuous demand rates λi , i = 1,2, . . . ,N ,
which reveals itself, for example, in the fact that the scaled number of customers at
Qi at a polling instant of Qi becomes deterministic in the limit as shown in [27]. This
means that in the limit the customers arrive at the system and are served at constant
rates with no statistical fluctuation whatsoever and that the scaled queue lengths can
be seen as continuous quantities. Therefore, the uniform distribution emerging in the
limiting theorems can be explained by the fact that it represents the position of the
server in the cycle on arrival of a tagged customer.

Remark 4.1 In [23] it is shown that in heavy traffic (HT), i.e., if the load tends to
one, the impact of higher moments of the switch-over times on the waiting-time dis-
tribution vanishes. Consequently, the scaled asymptotic waiting time depends on the
marginal switch-over time distributions only through the first moment of the total
switch-over time in a cycle. Building upon this observation, [27] analyses the scaled
asymptotic waiting time in branching-type polling systems with generally distributed
switch-over times under heavy traffic when the switch-over times tend to infinity. The
behaviour of the polling system then becomes deterministic, just like in polling sys-
tems with deterministic switch-over times, which are not necessarily operating in HT.

4.2 Conjecture for general renewal arrival processes

Until now, we have assumed that the arrival processes are Poisson processes. This
assumption is used in [27] to derive the asymptotics presented in the previous sub-
section, building upon a result of [3] which derives a strong relation between the
waiting-time distributions in models with and without switch-over times. This rela-
tion is established by relating the similarities in the offspring generating functions of
the underlying branching processes and by expressing the differences between the un-
derlying immigration functions. These results for polling systems with finite switch-
over times are exploited and, subsequently, it is shown that significant simplifications
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Table 1 Squared coefficient of
variation of the scaled number
of customers at Q1 at a polling
instant of Q1. Values in italic
are not obtained by simulation,
but are computed analytically

Cyclic

c2
Ai

= 0.25 c2
Ai

= 0.5 c2
Ai

= 1 c2
Ai

= 2

Si = 1 0.121 0.167 0.259 0.444

Si = 10 0.012 0.017 0.026 0.044

Si = 100 0.001 0.002 0.003 0.004

result as the switch-over times tend to infinity. Unfortunately, the techniques used
throughout [27] rely heavily on the Poisson assumption, and corresponding results
for polling systems with general arrival processes are not known. Taking a second
look at the intuitive interpretation of the aforementioned results, one would expect
that the Poisson assumption is not essential for this kind of behaviour. That is, if the
scaled number of arrivals during an intervisit period becomes deterministic, then the
length of the scaled visit period (generated by these arrivals) converges to a constant
as well. Since the intervisit period is the sum of individual visit periods and switch-
over times, based on strong law of large numbers arguments the scaled number of
arrivals subsequently indeed tends to become deterministic. This circular intuitive
reasoning (ignoring the interdependence between the visit periods) is independent of
the precise characteristics of the renewal arrival process chosen. We now pose this
statement as a conjecture (see, also, [27]).

Conjecture 4.2 A cyclic polling system with general (renewal) arrival processes
converges to a deterministic cyclic system when the deterministic switch-over times
tend to infinity.

To numerically test this conjecture for general arrival processes, we have per-
formed a couple of simulation experiments of exhaustive polling systems with gen-
eral renewal arrivals. In Table 1 we show results for a symmetric polling system
with 3 queues, where the service times are exponential with mean 0.25. Interarrival
times have mean 1 and the corresponding squared coefficient of variation (SCV),
c2
Ai

, is varied between 0.25, 0.5, 1 and 2. In order to obtain a distribution for these
interarrival times, we fit a phase-type distribution on the first two moments (cf., for
example, [21]). For the cases where the SCV equals 1, Poisson processes are used
for the arrival processes in order to obtain exact results, and this case is included as
benchmark.

Table 1 shows c2
P1

, the SCV of the scaled number of customers at Q1 at a polling
instant of Q1 for varying values of the marginal switch-over times Si in a cycle. From
Table 1 we clearly see that the coefficient of variation approaches zero when the
switch-over times tend to infinity. For polling systems with deterministic switch-over
times and Poisson arrivals, it can actually be shown analytically that the SCV of the
number of customers in a queue, at the beginning of a visit to this queue, is inversely
proportional to the total switch-over time S. Table 1 seems to suggest that this also
holds for other arrival processes. It goes without saying that a highly variable arrival
process has a negative impact on how “fast” the limiting behaviour is approached.
Via Chebyshev’s inequality (see, for example, [17]) we know that a random variable
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Table 2 Squared coefficient of
variation of the waiting time and
the number of customers at Q1
at a polling instant of Q1.
Values in italic are not obtained
by simulation, but are computed
analytically

Cyclic

c2
Ai

IA IB c2
W1

c2
P1

0.25 1 1 0.335 0.001

0.25 1 3 0.335 0.002

0.25 3 1 0.334 0.001

0.25 3 3 0.335 0.001

1 1 1 0.335 0.003

1 1 3 0.336 0.003

1 3 1 0.335 0.002

1 3 3 0.336 0.003

2 1 1 0.336 0.004

2 1 3 0.337 0.005

2 3 1 0.336 0.004

2 3 3 0.337 0.004

with zero variance follows a deterministic distribution and, therefore, this observation
provides empirical evidence for the fact that the scaled number of customers at Q1 at
a polling instant of Q1 becomes deterministic. Therefore, it confirms the validity of
our conjecture that the polling system converges to a deterministic cyclic system as
the switch-over times increase to infinity.

We have run tests for asymmetric polling systems as well, as shown in Table 2. The
first three columns show the input parameters: the SCV of the interarrival time distri-
butions, c2

Ai
; the imbalance of the interarrival times, IA; and the imbalance of the ser-

vice times, IB . The imbalance is the ratio between the largest and the smallest mean
interarrival/service time. The arrival rates and mean service times are chosen such that
the differences λi −λi+1 and E[Bi+1]−E[Bi] are kept constant for i = 1, . . . ,N −1.
Furthermore, we have chosen the normalisation constraint

∑N
i=1 λi/N = 1, implying

that the actual arrival rates and mean service times (for fixed ρ) follow from the rela-
tion ρ = ∑N

i=1 λiE[Bi]. See [2] for a more elaborate description and some examples
of how the arrival rates and mean service times can be computed from this definition
of imbalance. The last two columns of Table 2 contain the SCVs of the waiting times
of customers in Q1, c2

W1
, and the SCVs of the numbers of customers at Q1 at a polling

instant, c2
P1

, for a cyclic polling system with ρ = 0.75 and deterministic switch-over
times Si = 100, for i = 1,2,3. The SCVs of the waiting times approach the limit-
ing value 1

3 , which is the SCV of a uniform distribution, quite rapidly. Furthermore,
c2
P1

becomes negligibly small, illustrating that the behaviour of the system becomes
deterministic.

Summarising, we state the second open problem for polling systems.

Open problem 2 Provide a rigorous proof of Conjecture 4.2, which states that a
cyclic polling system with general (renewal) arrival processes converges to a deter-
ministic cyclic system when the deterministic switch-over times tend to infinity.
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Table 3 Squared coefficient of
variation of the scaled number
of customers at Q1 at a polling
instant of Q1

Longest queue

c2
Ai

= 0.25 c2
Ai

= 0.5 c2
Ai

= 1 c2
Ai

= 2

Si = 1 0.125 0.170 0.254 0.434

Si = 10 0.012 0.017 0.026 0.044

Si = 100 0.001 0.002 0.003 0.004

We wish to end the present paper by stating a related open problem given in [14].
That is, [14] shows via numerical testing that similar limit theorems as presented
here carry over to systems with Poisson arrivals and dynamic visit orders (i.e., there
exists no predetermined order in which the queues are served). This phenomenon is
intuitively explained via heuristic strong law reasoning in [14] and it is conjectured
that the limit theorems hold so long as the switch-overs perform a regulating effect.
As an example, we show simulation results in Table 3 for the same symmetric polling
systems as studied in Table 1, but now the server switches to the longest queue at the
end of a visit. We can see clearly that the system becomes deterministic as well. A
resulting open problem is, therefore, the classification of polling systems in terms of
service, visit and scheduling disciplines, which exhibit the discussed behaviour.

5 Conclusions

There is a huge literature on polling systems, due to their great applicability in real-
life situations. In this paper we have described two problems that have remained
unsolved in the polling literature, despite their practical relevance, and despite the
fact that seemingly minor adaptations of these problems can be solved explicitly. For
the first problem, which is the exact analysis of a two-queue polling system with re-
spectively gated and 1-limited service, we pinpoint the difficulties one runs into when
applying standard techniques. The second problem is the analysis of a polling system
with general renewal arrivals under the limiting situation where the (deterministic)
switch-over times tend to infinity. For this problem we have posed a strong conjec-
ture stating that the (known) results for Poisson arrivals carry over to the system with
general renewal arrivals. By posing these open problems we hope to provide a moti-
vation to search for alternative ways to study and hopefully even solve them.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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