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Abstract We consider a queueing model where documents are simultaneously trans-
ferred over a communication network. The bandwidth allocated to each document
transfer is assumed to be the solution of a utility optimization problem. Under a nat-
ural stability condition and under the assumption that document arrivals are Poisson
and that document sizes are independent exponential distributions, such queueing
models have been proven to be positive recurrent. It has been conjectured for a decade
that the assumption of exponentially distributed documents can be removed. There
exist numerous generalizations without this exponential assumption, but a general
proof remains elusive.
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Stability · Open problem
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1 Introduction

In the Internet, documents are divided into a number of packets, which are then sent
sequentially across the network from sender to receiver. The Internet could be unsta-
ble in two senses: the number of packets within the network could be diverge, or the
number of documents in transfer could be diverge.
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Internet routers have a fixed buffer size, and so, the number of packets in flight,
however large, is always finite. In this sense, the Internet is stable, and the question of
how to send packets across the Internet is more concerned with providing desirable
transfer rates or bandwidth. This task of finding good transfer rates is implemented by
a sender and receiver with the Transmission Control Protocol (TCP). At one concep-
tual level, TCP can be thought of as optimizing the aggregate utility of the bandwidth
received by different document transfers on the Internet; see [20]. Given such a util-
ity optimizing bandwidth allocation policy, can a network process all the document
transfers in progress? More precisely, we will ask if a specific stochastic model of
document transfer is positive Harris recurrent. Throughout this paper, the term stable
refers to the positive Harris recurrence of a Markov process, and unstable refers to
transience of a Markov process.

Suppose that documents arrive on each route r at rate νr and each of these doc-
uments has expected size μ−1

r . The amount of work arriving per unit time is then
ρr = νr

μr
. If the rate of work arriving at a network resource j is strictly above the

resource capacity to process this work, Cj , then certainly instability will arise. So,
the condition that the rate of work arriving is less than the capacity provides a natural
necessary condition for stability,

∑

r:j∈r

ρr < Cj , j ∈ J . (1.1)

Even so, with this condition in place, one could imagine a traffic regime where a
network is unable to process a document transfer before a new transfer arrives. Such
instability, for example, is known to occur in models of radio packets switch net-
works; see [1].

Given that users receive a bandwidth allocation that optimizes a utility function,
is condition (1.1) sufficient to guarantee the stability of the Markov process describ-
ing the document transfers in progress? When documents arrive from independent
Poisson process and documents sizes are independent exponentially distributed, then
it has been shown that condition (1.1) is sufficient for stability; see [3]. Document
sizes for Internet transfers are known to follow a heavy-tailed distribution, and thus
the assumption that document transfers are exponentially distributed is not entirely
satisfactory. In this article we discuss the conjecture that condition (1.1) is sufficient
for stability for general document size distributions.

If such a conjecture holds, then this would suggest that congestion controllers
provide a viable mechanism to provide the maximum level of stability. As we will
review shortly, the resolution of this conjecture has spurred a great deal of interesting
research literature; nonetheless, the conjecture remains open.

We now concentrate on describing the Markov chain model which we wish to
study and reviewing the progress made by different authors. The conjecture which
we discuss is presented in Sect. 2.4.

2 Model, conjecture and literature review

We now build the various components of our model of document transfer over a com-
munication network. First, we define the structure of a communication network. Sec-
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ondly, we define the utility optimizing bandwidth allocations that might be achieved
by a congestion controller. We then define a stochastic model of document transfer
when documents are exponentially distributed and then finally when documents are
of a general size. Throughout this section we introduce and discuss literature relevant
to our conjecture. The conjecture itself is presented in Sect. 2.4.

2.1 Network structure

We let J index the set of resources of a communication network. With each re-
source j ∈ J , we associate a capacity Cj > 0. A route through the network, r ,
is a (nonempty) set of resources. We let R ⊂ 2J index the set of routes. We let
nr give the number of document transfers in progress on route r . As a function of
n = (nr : r ∈ R), route r document transfers are allocated an amount of bandwidth
Λr(n) ∈ R+. This bandwidth is then shared equally amongst all the transfers present
on route r . In other words, within each route, a processor sharing discipline is used.
This important feature of our model will be discussed later. The bandwidth available
to each route is constrained by the available capacity at each resource. So,

∑

r:j∈r

Λr(n) ≤ Cj , j ∈ J . (2.1)

We call any such function Λ(·) a bandwidth allocation policy. In a communication
network, each document transfer receives a rate which may vary depending on the
number of transfers present on each route. Here a bandwidth allocation policy is used
in order to define this transfer rate.

2.2 Network utility maximization and fairness

Congestion control within the Internet is chiefly governed by the Transmission Con-
trol Protocol (TCP). It has been suggested that TCP implicitly attempts to maxi-
mize the utility of the transfer rate received by its users; see [20]. With this in mind,
with each route r ∈ R, we associate a utility function Ur(·), a real-valued increasing,
strictly concave function of the bandwidth allocated to each route r user. A conges-
tion controller then allocates bandwidth in order to optimize the following objective:

maximize
∑

r∈R
nrUr

(
Λr

nr

)
(2.2a)

subject to
∑

r:j∈r

Λr ≤ Cj , j ∈ J , (2.2b)

over Λr ≥ 0, r ∈ R. (2.2c)

In addition, if nr = 0, we assume that Λr(n) = 0. The solution to the above optimiza-
tion represents the equilibrium rate of packet transfer in a communications network
given the number of documents in transfer on each route. Over different values of
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n = (nr : r ∈ R) ∈ Z
R+ , the solutions to this optimization problem, Λ(n), define a

bandwidth allocation policy achieved by a congestion control mechanism.
We think of a utility function Ur(xr) as summarizing an Internet connections ben-

efit from receiving bandwidth xr . We then think of the optimization problem (2.2)
as allocating the available bandwidth in order to maximize the total benefit its users.
Because a bandwidth allocation policy may attempt to allocate some amount of band-
width to all transfers, one often thinks of a bandwidth allocation being fair.

2.2.1 Literature on network utility maximization

In general, a bandwidth allocation policy need not be particularly fair. For example,
it could attempt to maximize the total bandwidth within the network. This maximiza-
tion leads to some transfers receiving zero bandwidth. As we shall see, this maximum
throughout allocation can lead to bad stability properties. A bandwidth allocation can
be very fair. For example, subject to network capacity constraints, one could attempt
to maximize the transfer rate of the document with the smallest bandwidth and then
maximize the second smallest and so forth. . . . Such a policy would achieve max-
min fairness. In the context of communication networks, this was the first fairness
criterion to be considered; see [2]. The utility optimization framework considered
here was first introduced by Kelly [18], and in particular, proportional fairness where
Ur(xr) = log(xr ) has proved a particularly tractable criterion for analysis.

A popular class of utility functions introduced by Mo and Walrand [31] is the set
of weighted α-fair utility functions. For this class of utility functions, Ur takes the
form

Ur(xr) =
{

wr
x1−α
r

1−α
for α > 0,

wr log(xr ) for α = 1.

Here the class of utility functions is parameterized by weights w = (wr : r ∈ R) ∈ R+
and fairness parameter α > 0.

The weighted α-fair class has proved popular as it contains a number of popular
fairness criteria: proportional fairness (α = wr = 1); TCP fairness (α = 2, wr = 1

T 2
r

),

which also converges to maximum throughput (α → 0, wr = 1), and max-min fair-
ness (α → ∞, wr = 1). Although certainly other fairness criteria exist, the weighted
α-fair family parameterizes the set of fairness criteria of interest. For this reason,
weighted α-fairness often acts as a convenient starting point for results on fair band-
width sharing.

Although it is not the central objective of this article, good introductions to the
relationship between utility optimization and congestion control are the short article
of Kelly [17] and the book by Srikant [33].

2.3 A stochastic model with exponentially distributed document sizes

Until now, we have discussed an equilibrium that might be achieved by packets in
transfer across a communication network. We, now, define a model that incorporates
the stochastic arrival and departure of documents and also allocates service with an
allocation policy. We ask if this stochastic model has an equilibrium. This model can



Queueing Syst (2011) 68:237–250 241

be thought of as a model of document transfer across the Internet. We introduce our
stochastic model for a bandwidth allocation policy Λ(·).

Documents to be transferred arrive as a Poisson process. Route r ∈ R documents
arrive as an independent Poisson process of rate νr > 0. Each document has a size that
is independent exponentially distributed with mean μ−1

r . We, thus, define the traffic
intensity of work arriving at route r by ρr = νr

μr
. When there are n = (nr : r ∈ R)

documents in transfer on each route, each route r document is served at rate Λr(n)
nr

.
Documents are then processed at this rate until the number of documents in transfer
changes either by a document departure or arrival.

Here n = (nr : r ∈ R), the number of documents in transfer, gives the state of a
Markov chain with nonzero transition rates

q(n,n + er) = νr , (2.3a)

q(n, x − er) = μrΛr(n) if nr > 0. (2.3b)

This model Markov chain model was introduced by Massoulié and Roberts [25]. We
now discuss the stability of this stochastic model.

2.3.1 An example of instability

We note here that seemingly sensible bandwidth allocation policies need not be sta-
ble. The following example is taken from [3].

Consider the network that consists of two resources J = {A,B}, each with capac-
ity 1, and three routes: r0 = {A,B}, r1 = {A}, and r2 = {B}. This network is called a
two-node linear network. This is because our network forms a line, r0, with two types
of cross traffic, r1 and r2.

Suppose that we use a policy that maximizes the total bandwidth allocated. In this
case, it is preferred to allocate bandwidth to routes r1 and r2 over r0 because route r0
uses capacity at both resources A and B , whilst r1 and r2 only use one resource. So
we use a bandwidth allocation policy that gives all available bandwidths to routes r1
and r2 whenever there is a document in transfer on either route. Only when there are
no documents in transfer on route r1, r2, we allocate capacity to route r0, i.e.,

(
Λr0(n),Λr1(n),Λr2(n)

) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0,1,1) if nr1 > 0 and nr2 > 0,

(0,1,0) if nr1 > 0 and nr2 = 0,

(0,0,1) if nr1 = 0 and nr2 > 0,

(1,0,0) if nr0 > 0, nr1 = 0, and nr2 = 0,

(0,0,0) if nr0 = 0, nr1 = 0, and nr2 = 0.

This policy maximizes the total amount of bandwidth allocated and therefore places
the maximum amount of effort toward processing documents. But is this allocation
policy stable under condition (1.1)? Unfortunately, it is not stable.

Suppose that condition (1.1) holds. We note that route r1, and similarly r2, has
priority over route r0 and so route r1 behaves as a single-server queue with server
capacity 1. Also, as they do not interact, one can see that the number of documents



242 Queueing Syst (2011) 68:237–250

transfers on route r2 is independent of route r1. So for routes 1 and 2, the stability
condition (1.1) is sufficient for routes 1 and 2 to be positive recurrent. If we look at
route r0, we notice that it can only process documents when both routes r1 and r2
have no documents in transfer. The long-run proportion of time that this occurs is
given by the stationary probability that no documents are in transfer on routes r1 and
r2, which is (1 − ρ1)(1 − ρ2). For the stability of class r0, the long-run proportion of
capacity devoted to r0 documents must be strictly larger than the rate at which work
arrives, and thus we derive the stability condition

ρ0 < (1 − ρ1)(1 − ρ2).

This condition is more restrictive than condition (1.1), and so, condition (1.1) is not
sufficient for stability in this example.

2.3.2 Literature on stability with exponentially distributed documents

As we have mentioned, the stochastic model considered above with exponentially
distributed documents sizes is first considered by Massoulié and Roberts [25]. Mas-
soulié and Roberts [25] prove that condition (1.1) is sufficient for stability for the
proportionally fair allocation policy on a linear network. Massoulié and Roberts [25]
do this by explicitly calculating the stationary distribution of the proportionally fair
model on this network topology.

Subsequently, De Veciana and Konstantopoulos [12] prove that (1.1) is sufficient
for the stability for both proportionally fair and max-min fair allocation policies under
a general network topology. De Veciana and Konstantopoulos [12] proved the stabil-
ity by the construction of an appropriate Lyapunov function and then by applying
Foster’s lemma.

The generalization of these results to the rest of the weighted α-fair family was
proven by Bonald and Massoulié [3]. Once again, their arguments consisted of con-
structing an appropriate Lyapunov function. Instead of applying their Lyapunov func-
tion directly to their Markov processes, the Lyapunov function is applied to the “fluid
model” associated with the Markov process (2.3). A fluid model is a deterministic pro-
cesses associated with the Markov processes (2.3). In the case of a weighted α-fair
bandwidth allocation policy Λ(·), the appropriate fluid model is a positive solution to
the differential equation

dnr(t)

dt
= νr − μrΛr(n), nr > 0, r ∈ R. (2.4)

Intuitively, this differential equation makes sense: it relates the rate that documents
arrive and depart to changes in the number of documents present.

To derive (2.4), one must prove a “fluid limit,” a formal law of large numbers
argument that proves the convergence of the Markov chain model (2.3) to a solution
of the differential equation (2.4). For weighted α-fair allocation policies, this fluid
limit result is proven in [19]. For general discussions on proving fluid limits, see [10]
and [11].

Given that the fluid model (2.4) is related to the Markov process (2.3), the sta-
bility of the differential equation (2.4) may perhaps relate to the positive recurrence
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of the Markov process (2.3). A result proved by Dai [8] shows that if any fluid limit
model eventually reaches zero and stays there, regardless of the initial system con-
figuration, then the underlying queueing process is positive Harris recurrent. Bonald
and Massoulié prove the stability of the associated fluid model with the Lyapunov
function

F(n) :=
∑

r∈R
wrμ

−1
r ρ−α

r

n1+α
r

α + 1
.

To give some feeling as to how such Lyapunov functions are applied, we present and
discuss the proof of Bonald and Massoulié [3] in the Appendix.

The Lyapunov function of Bonald and Massoulié [3] was next generalized to ap-
ply to a general utility function by Ye [34]. Aside form a few technical conditions
bounding derivatives, this result demonstrated that condition (1.1) was sufficient for
the network stability when utility functions where general and when documents had
exponentially distributed sizes.

Finally, we note that there are some Markov chain generalizations beyond the
model presented. Liu et al. [23] present and prove the stability of a model where the
capacity region (2.1) may be nonconvex and may vary in time. Also, in practice con-
gestion controllers may take some time to converge to a utility optimizing bandwidth
allocation. The paper [22] discusses and proves the stability when a utility optimizing
bandwidth allocation is not achieved instantaneously.

2.3.3 A further note on fluid limits and positive recurrence

A key component of the proof of Bonald and Massoulié [3] was the stability result
presented in [8] and [9]. The work of Dai applies to queueing network where cus-
tomers have general service requirements, but the result of Dai comes with the caveat
that if a queueing model processes jobs in different classes/routes, the service disci-
pline must be head-of-the-line, meaning that within each class documents are pro-
cessed with a first-in-first-out service discipline. As we described in Sect. 2.1, service
within a route is processor sharing not head-of-the-line. Due to the memoryless prop-
erty, processor sharing and head-of-the-line service disciplines are equivalent when
documents have an exponentially distributed size. So the results of Dai do apply to
the case where documents are exponentially distributed, but unfortunately they do not
directly apply to document sizes that are not exponentially distributed. To deal with
this issue, new theory must be developed.

2.4 A stochastic model with generally distributed document sizes

The assumption of exponentially distributed document sizes is somewhat idealistic,
and so it is desirable to model the transfer of documents of a generally distributed
size. The description of such a Markov process is a natural extension of our previous
Markov chain model.

Documents to be transferred arrive as a Poisson process. Route r ∈ R documents
arrive as an independent Poisson processes of rate νr > 0. Each document on route
r has a size that is independent identically distributed according to some random
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variable Xr . A route r document’s distribution has support on (0,∞) and has mean
μ−1

r . Once again, we define the traffic insensitivity of route r by ρr = νr/μr . Between
document arrival and departure events, on each route r , a document is processed
linearly at rate Λr(n)

nr
.

In order to give an Markov process description of our communication network,
we must record the residual sizes of documents, that is, the amount of each document
which remains to be transferred. Given that there are nr documents to be transfer on
route r for k = 1, . . . , nr , we let yrk > 0 be the residual size of the kth document in
transfer on route r . We index elements yrk so that yr1 ≤ yr2 ≤ · · · ≤ yrnr . The state
of the documents in transfer on route r is then given by the vector

yr = (yrk : k = 1, . . . , nr ),

and the state of the documents in transfer is given by

y = (yr : r ∈ R).

The variable yrk decreases linearly at rate Λr(n)
nr

until a document departure or arrival

occurs. That is, given that the Markov process takes state y0 at time t0,

yr(t) = y0
r − (t − t0)

Λr(n
0)

n0
r

for t > t0,

while yr1(t) > 0 (before a document departure) and while (t − t0) < minr{Sr} (before
a document arrival). Here each Sr is an independent exponential random variable
with parameter νr . We let y(t−) give the state of our Markov process instantaneously
before time t .

If a document departure occurs at time t , that is, yr1(t
−) = 0 and (t − t0) <

minr{Sr}, then nr(t) is updated to equal nr(t
−) − 1, and yr(t) is updated so that

y(t) = (
yrk(t

−) : k = 2, . . . , nr

)
.

The random variables Sr represent the Poisson arrival of documents. If a document
arrival occurs on route r , i.e., t − t0 = Sr = minr̃ Sr̃ and yr̃1(t) > 0 for all r̃ ∈ R, then
an independent random variable Xr is drawn according to the distribution of route
r documents. This gives the size of the arriving document. Accordingly, nr(t) is
updated to equal nr(t

−) − 1, and yr(t) is updated to give

yr(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Xr, yr1(t
−), . . . , yrnr (t

−)) for Xr ≤ yr1(t
−),

(yr1(t
−), . . . , yrk(t

−),Xr, yrk+1(t
−), . . . , yrnr (t

−))

for yrk(t
−) ≤ Xr ≤ yrk+1(t

−),

(yr1(t
−), . . . , yrnr (t

−),Xr) for yrnr (t
−) ≤ Xr.

A new exponential parameter νr random variable S′
r is then drawn to replace Sr .

The process we describe here is a piecewise linear cádlág Markov processes. We
could also describe the state of each route yr as a measure with a Dirac mass at yrk ;
this measure-valued description is used by Gromoll and Williams [15] and Bram-
son [6].
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Remark 1 We remark that this model could be generalized so that interarrival times
are independent identically distributed rather than exponentially distributed. Residual
interarrival time could then be incorporated to give a Markov state description. We
do not include this extension, firstly, because a Poisson process is justifiable arrival
process, it is the aggregation of a large number of rare events, and secondly, because
allowing general document sizes is our primary modeling objective.

We are interested in knowing when our Markov process has a stationary distri-
bution. We cannot use the theory of countable-state-space Markov chains, and so, in
this setting, a slightly different notion of recurrence and positive recurrence is used. In
particular, the corresponding notions of recurrence and positive recurrence are Harris
recurrence and positive Harris recurrence. We will shortly give pointers to precise
definitions and literature on this topic, but first we state our conjecture.

The principle conjecture of interest is the following:

Conjecture 1 The Markov process described above, a bandwidth sharing network
operating under a bandwidth allocation which optimizes (2.2) and with general doc-
ument sizes, is positive Harris recurrent under the condition

∑

r:j∈r

ρr < Cj , j ∈ J .

This conjecture is widely expected to hold for weighted α-fair utility functions.
Like the result of Ye [34], for general utility functions, some additional restrictions
may be required.

2.4.1 Discussion on positive Harris recurrence and queueing

The theory of Harris recurrence was firstly developed by its namesake [16]. A pro-
cesses is said to be Harris recurrent if there exists a σ -finite measure φ, defined on
the state space of our Markov process, S, such that

φ(A) > 0 implies Py(τA < ∞), x ∈ S,

where Py is the law of our Markov process started at y, A is a Borel-measurable
subset of our Markov process’ state space, and τA is the hitting time of the Markov
process on set A.

As in the countable state space theory, it has been shown that Harris recurrence is
sufficient for a Markov process to have a stationary measure, see [13]. If this measure
is a finite measure, then a stationary distribution exists, and our process is said to be
positive Harris recurrent.

A crucial role in proving positive Harris recurrence is the existence of a petite set.
In words, a petite set is a set of states from which there is some measure determined
lower bound on the probability of reaching any other set of states. The existence of
a petite set that has finite expected hitting time after leaving itself is equivalent to a
Markov process being positive Harris recurrent. Thus, to prove the positive Harris
recurrence, one must find a petite set and prove that its expected return time is finite.
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An excellent account of this approach for discrete-time Markov processes is given by
Meyn and Tweedie [28]. A continuous-time treatment is given by the same authors
in the papers [27, 29, 30].

So, in the context of our queueing applications and in the approach of Dai [8, 9],
one needs to characterize a petite set and then show that it has a finite expected return
time. To characterize a petite set, some technical assumptions must be made on doc-
ument interarrival times. These assumptions are presented in [26] and further in [5,
Sect. 4.2]. These assumptions are satisfied for an independent Poisson arrival process.
To prove that expected return times are finite, one can apply Foster’s lemma. Propo-
sition 4.6 of [5] presents a form of Foster’s lemma, the multiplicative Foster’s crite-
rion. This version of Foster’s lemma is used to execute the stability proof in [8, 9].
The book of Bramson [5] provides a superb account of the theory relevant to proving
the stability of queueing networks and should be the first place to start on this topic.

2.4.2 Literature on stability with generally distributed documents

For general document sizes, initial results on the stability of utility optimizing band-
width allocations were proven by Bonald and Proutière [4]. Bonald and Proutière [4]
studied the behavior of insensitive bandwidth allocations. Bonald and Proutière [4]
showed that the proportionally fair allocation policy coincided with an insensitive
policy for line, grid, and hypercube network topologies. They thus proved that (1.1)
gave the stability for the proportionally fair policy with phase-type document sizes
for these specific networks. For lines and the special case of a 2 × 2 grid, this result
is also observed by Lakshmikantha et al. [21].

By further developing the link between proportional fairness and insensitivity,
Massoulié [24] proves stability of proportionally fair bandwidth allocation policies
with the assumption that documents sizes are from phase-type. Massoulié [24] proves
results for any network topology.

Under a relatively mild second-moment condition, Bramson [6] proves the sta-
bility for networks operating under a max-min fair allocations policy with generally
distributed document sizes.

With the aim of establishing a fluid limit proof of stability, as given by Dai [8]
for head-of-the-line disciplines, a number of authors have established fluid limits
for bandwidth sharing networks with general document sizes. In particular, Chiang
et al. [7] prove fluid limit results for weighted α-fair bandwidth allocations with α

sufficiently close to zero. Chiang et al. [7] use this result to place probabilistic bounds
on their queueing network’s state. Similarly, Gromoll and Williams [15] provide a
formal fluid limit argument for bandwidth networks with general document sizes.
Gromoll and Williams [14] show the fluid limit stability for tree network and line
network topologies. Further, a fluid model of weighted α-fair bandwidth sharing is
stated in the paper [32]. Here the authors prove the stability of their partial differential
equation model. As it stands, there is no proof that the fluid model stability implies
the positive Harris recurrence, and so theory must be developed so that these papers
imply the stability of the underlying Markov process.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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Appendix: Fluid limit and stability

The paper [3] considers the Markov chain (2.3) for a weight α-fair bandwidth allo-
cations. The paper proves that a necessary and sufficient condition for positive recur-
rence of the Markov chain is that

∑
r:j∈r ρr < Cj for each j ∈ J . We will state one

result needed for the proof, introduce some notation, and then give their proof.

Theorem 1 ([8]) If any fluid model n satisfying (2.4) is such that ∃ T > 0 s.t. ∀t >

T , n(t) = 0, then the Markov chain (2.3) is positive recurrent.

Consider the objective function of the weighted α-fair optimization problem

Gn(Λ) =
{∑

r∈R wrnr
1

1−α
(
Λr (n)

nr
)1−α for α �= 1,

∑
r∈R wrnr logΛr for α = 1.

From Gn(Λ) we can heuristically construct a Lyapunov function. Assuming the
condition (1.1), the weighted α-fair bandwidth allocation Λ(n) and traffic inten-
sity ρ both satisfy the networks capacity constraints. Because Λ(n) is optimal,
Gn(Λ(n)) > Gn(ρ). In this sense, the processing rate Λ(n) is out performing the
work arrival rate ρ. We now ask what is the long-run effect of this. By applying a
Taylor expansion, we have

∫ T

0

[
Gn(t)

(
Λ

(
n(t)

)) − Gn(t)(ρ)
]
dt

=
∫ T

0

(
Λ

(
n(t)

) − ρ
) · ∇Gn(t)(ρ) + o

(∣∣Λ
(
n(t)

) − ρ
∣∣)dt

= −
∫ T

0

∑

r

(
ρr − Λr

(
n(t)

))
wr

(
nr(t)

ρr

)α

dt + o

(∫ T

0

∣∣Λ
(
n(t)

) − ρ
∣∣dt

)

= −
∫ T

0

1

μr

dnr(t)

dt
wr

(
nr(t)

ρr

)α

dt + o

(∫ T

0

∣∣Λ
(
n(t)

) − ρ
∣∣dt

)

= F
(
n(0)

) − F
(
n(t)

) + o

(∫ T

0

∣∣Λ
(
n(t)

) − ρ
∣∣dt

)
,

where we define the nonnegative function

F(n) :=
∑

r∈I
wrμ

−1
r ρ−α

r

n1+α
r

α + 1
.

Thus,

F
(
n(t)

) = F
(
n(0)

) −
∫ T

0

[
Gn(t)

(
Λ

(
n(t)

)) − Gn(t)(ρ)
]
dt

+ o

(∫ T

0

∣∣Λ
(
n(t)

) − ρ
∣∣dt

)
.
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F(n) determines the cumulative benefit of Λ(n) out performing ρ. If the network is
stable, in the long run, Λ(n) is approximately ρ. So, the little o term above should
have a small effect on the evolution of F(n(t)).

Now we can give the theorem:

Theorem 2 ([3]) The Markov chain given by (2.3) is positive recurrent iff∑
r:j∈r ρr < Cj for each j ∈ J

Proof We first prove the if direction of the result. As we observed above,

dF(n(t))

dt
= ∇Gn(ρ) · (ρ − Λ

(
n(t)

))
,

and Gn(Λ(n)) ≥ Gn(u) for any u ∈ R
R+ satisfying the networks capacity constraints∑

r:j∈r ur ≤ Cj . Thus, the partial derivate of the convex function Gn(·) in the direc-
tion Λ(n) − u is positive, i.e.,

∇Gn(u) · (Λ(
n(t)

) − u
) ≥ 0.

In particular, we take u = (ρr(1 + ε) : r ∈ R), where ε > 0 is sufficiently small so
that u satisfies the network capacity constraints. So,

0 ≥ ∇Gn(u) · (ρ(1 + ε) − Λ(n)
) × (1 + ε)α =

∑

r∈R
wr

(
nr

ρr

)α(
ρr(1 + ε) − Λr

)
.

Thus, for n(t) �= 0,

−ε
∑

r∈R
wrρr

(
nr

ρr

)α

≥
∑

r∈R
wr

(
nr

ρr

)α

(ρr − Λr) = ∇Gn(ρ) · (Λ(
n(t)

) − ρ
)

= dF(n(t))

dt
.

Notice that ‖n‖1 := (
∑

r wrρ
1−α
r nα

r )1/α and ‖n‖2 := (F (n))1/α+1 both define norms
on R

R. Since all finite-dimensional norms are equivalent, there is a constant β such
that ‖n‖1 ≥ β‖n‖2, and so we have

dF(n)

dt
≤ −εβαF

(
n(t)

)α/(α+1)
. (A.1)

If F(n(t)) = 0, then (A.1) implies that dF(n(t))
dt

= 0, and so F(n(t ′)) = 0 ∀t ′ > t,

and hence, n(t ′) = 0 ∀t ′ > t . Hence, all we need now is to check that F(n(T )) = 0
for some T ≥ 0. Integrating (A.1) yields

F
(
n(T )

) 1
α+1 − F

(
n(0)

) 1
α+1 =

∫ T

0
F

(
n(s)

) −α
1+α dF

(
n(s)

) ≤ −ε

∫ t

0
βα ds = −εβαT

⇒ F
(
n(T )

) ≤
(

F
(
n(0)

)1/(1+α) − εβα

1 + α
T

) 1
1+α

+
.
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We can find T > 0 such that the left-hand side of the above equation is 0, hence
making F(n(T )) = 0.

We now show the only if direction of the theorem. Suppose that, on the contrary,
there exists a link j such that

∑
r:j∈r ρr ≥ Cj . Set W̃ such that, for our Markov chain

(2.3), every time a document arrives on a route r with j ∈ r, an amount of work
equal to the size of that document is added to W̃. Let the work at W̃ be processed at
constant rate C̃ = Cj . Hence, C̃ ≥ ∑

r:j∈r Λr(Nr(t)) for all t, and so in this coupling

the amount of work W̃ is greater than the amount of work on all routes associated
with queue j . W̃ is the workload process of a multiclass single-server queue with
different input flows for each r such that j ∈ r . It is known that such a multiclass
single-server queue is positive recurrent iff

∑
r:j∈r

ρr

Cj
< 1. But by assumption it is

not, and so the expected time for W̃ to reach zero is infinite. As the expected time
for this workload process to reach zero is infinite, the same must be true for our
bandwidth model. Hence, the Markov chain (2.3) is not positive recurrent, and so we
have a contradiction. �
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