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Abstract This paper presents a novel technique for deriving asymptotic expressions
for the occurrence of rare events for a random walk in the quarter plane. In particular,
we study a tandem queue with Poisson arrivals, exponential service times and coupled
processors. The service rate for one queue is only a fraction of the global service rate
when the other queue is non-empty; when one queue is empty, the other queue has
full service rate. The bivariate generating function of the queue lengths gives rise
to a functional equation. In order to derive asymptotic expressions for large queue
lengths, we combine the kernel method for functional equations with boundary value
problems and singularity analysis.

Keywords Boundary value problems · Random walks in the quarter plane · Rare
events · Queueing theory · Singularity analysis · Tail decay rate · Large deviations
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1 Introduction

Stationary distributions of two-dimensional one-step random walks in the quarter
plane can be obtained by solving functional equations. Malyshev pioneered this gen-
eral problem in the 1970’s, and the theory has advanced since via its use in appli-
cations like lattice path counting and two-server queueing models. The idea of re-
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ducing the functional equation for the generating function to a standard Riemann–
Hilbert boundary value problem stems from the work of Fayolle and Iasnogorodski
[10] on two parallel M/M/1 queues with coupled processors (the service speed of
a server depends on whether or not the other server is busy). Extensive treatments
of the boundary value technique for functional equations can be found in Cohen and
Boxma [5] and Fayolle, Iasnogorodski and Malyshev [11]. This technique concerns
sophisticated complex analysis, Riemann surfaces and various boundary value prob-
lems.

This paper presents a novel technique for deriving asymptotic estimates for the
occurrence of certain types of rare events in a random walk in the quarter plane.
We believe that our technique might prove useful in the analysis of a wider class
of random walks, but in this paper we concentrate on a tandem queue with Poisson
arrivals, exponential service times and coupled processors. Denote by N1 and N2 the
stationary number of customers in the first and second queue. The generating function
P(x, y) = E(xN1yN2) then satisfies the functional equation

h1(x, y)P (x, y) = h2(x, y)P (x,0) + h3(x, y)P (0, y) + h4(x, y)P (0,0), (1)

where the functions hj are quadratic polynomials in x and y. Equation (1) cannot be
solved directly for P(x, y), because it contains other unknown functions P(x,0) and
P(0, y). The classical approach is then to consider the roots of the kernel h1(x, y)

w.r.t. one of the variables x, y. Substituting such roots into (1) yields additional rela-
tions between the unknown functions P(x,0) and P(0, y). These relations give rise
to boundary value problems whose solutions lead to a specification of P(x,0) and
P(0, y) and hence P(x, y). For the tandem queue with coupled processors this was
done in [28, 32]. The formal solution obtained, however, is too complicated to invert
for the stationary distribution. We shall look at this inversion problem, and derive
asymptotic expressions for the marginal distributions.

To analyze P(N1 = n), for large n, we need to extract information from the gener-
ating function P(x,1) =∑∞

n=0 P(N1 = n)xn. We shall employ the functional equa-
tion to determine the dominant (closest to the origin) singularities of the functions
P(x,0) and P(x,1). Let ξ denote the dominant singularity of P(x,1). Large devi-
ations theory typically focusses on rough tail asymptotics of the form (the pole ξ is
positive)

lim
n→∞

1

n
log P(N1 = n) = − log ξ.

We shall derive the exact tail asymptotics, which requires the investigation of P(x,1)

in the neighborhood of its dominant singularity ξ .

1.1 Singularity analysis

In [28, 32] solutions for P(x,0) and P(0, y) were derived that are valid only in
certain parts of the complex planes. In this paper we provide complete solutions to
P(x,0) and P(0, y) that are in fact the analytic continuations to the entire complex
planes of the solutions in [28, 32]. The technique of investigating a function near its
dominant singularity to obtain asymptotic expressions for its coefficients is known
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as singularity analysis and has a long history in areas of mathematics like analy-
sis, combinatorics and number theory; for an elaborate exposition see Flajolet and
Sedgewick [12]. In most cases the generating function is univariate and explicit, and
extracting information on the coefficients boils down to the (asymptotic) evaluation
of univariate contour integrals. The work on obtaining asymptotics from multivariate
generating functions has been strongly motivated by recursively defined combinato-
rial structures like trees, see e.g. [9, 12, 13], and specific random walks or queueing
models [4, 14, 15, 19]. One of the central ideas in multivariate asymptotics is to
exploit a functional equation to reduce multivariate problems to univariate contour
integrals. In contrast to most functional equations that are subject to multivariate as-
ymptotics (see [27] for an overview), our functional equation (1) does not allow for a
closed-form solution, which complicates considerably the application of singularity
analysis. Our method can be considered as a contribution to the technique of singu-
larity analysis for bivariate generating functions.

Related work was done in [19] for two parallel M/M/1 queues with coupled
processors, also leading to rare event probabilities. However, this latter model can be
reduced to a Dirichlet problem (the boundary value problem has a boundary which
is a circle, and the problem is solved by using the Poisson kernel; see [10, 19]). In
the present paper, the boundary is a general smooth closed contour and we use a
Riemann–Hilbert formulation, which allows us to directly extend the function out-
side the domain delineated by the boundary. In this respect, the problem considered
in the present paper is more general than the one considered in [19], and the approach
that we take might prove useful for many models that fall into the class of random
walks in the quarter plane.

1.2 Alternative methods

There are at least two alternative techniques to derive tail asymptotics for random
walks in the quarter plane, perhaps the one with the longest tradition being large de-
viations theory. Seminal work in this area was done by Borovkov and Mogul’skii [2].
For so-called 0-partially homogeneous chains, of which our random walk in the quar-
ter plane is a special case, in [2] (see also [21]) both the rough and the exact asymp-
totics have been considered. However, the decay rate is not made explicit, and it is
not clear how to obtain results for marginal distributions. For determining the rough
decay rate one needs to identify the local rate function and solve a variational prob-
lem. This variational problem, under additional assumptions, can be reduced to an
optimization problem (see e.g. [30]), but requires a case-specific approach.

For the large deviations approach, it is necessary to incorporate the boundary ef-
fects, which requires finding an optimal path that minimizes a cost function. For many
models, this gives rise to multiple regimes, where each regime corresponds to a cer-
tain most likely path. For a modified Jackson network, in which one server may help
the other server, Foley and McDonald [17] were able to find most of these regimes
using the large deviations approach. See also [1, 16, 18].

The second alternative techniques is the matrix-analytic method. Initially, the
matrix-geometric method targeted at deriving the so-called boundary condition, un-
der which the asymptotics show geometric behavior; see [20, 25, 31]. This boundary
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condition plays a crucial role in the large deviations approach too, and is naturally the
subject of much recent work [20, 22, 23, 25, 29]. Geometric decay requires the dom-
inant singularity to be a pole, whereas it could be a singularity of a different nature
like a branch point. The recent work of Miyazawa [24] greatly enlarges the scope
of applicability of the matrix-analytic techniques, because it is no longer restricted
to the boundary condition. For the general class of skip-free random walks in the
quarter plane, Miyazawa characterizes both the rough and exact asymptotics of the
tail decay rates, for coordinate directions and marginal distributions. Among other
things, it is shown in [24] that the matrix-analytic methods can be used to determine
all asymptotic regimes for the modified Jackson network in [17].

1.3 Contributions and outline of the paper

The tandem queue with coupled processors, which we chose as our vehicle to present
the asymptotic technique, is of independent interest. It arises as a natural model for
bandwidth sharing of Internet capacity that is based on reservation procedures (see
[7, 28, 32]). The two processors are coupled such that the speed of processor i is
μi when the other processor is busy, and μ∗

i when the other processor is idle. This
coupling became extremely popular in the last decade due to its relation to the Gen-
eralized Processor Sharing (GPS) discipline (μ∗

1 = μ∗
2 = μ1 + μ2), the prevalent dis-

cipline for bandwidth sharing in packet networks. See [3] for an overview on GPS.
The different asymptotic regimes identified in this paper yield structural insights on
the impact of GPS on rare events in a tandem queue.

In the present paper, we make the following contributions:

– We provide in Propositions 3 and 4 exact solutions to P(x,0) and P(0, y), in
terms of meromorphic functions, which are valid in the entire complex x and y

planes cut along some segments. The solutions follow from analytic continuations
through the functional equation (1).

– We determine the domain of analyticity of the functions P(x,1) and P(1, y).
A crucial role is fulfilled by the resultant of the functions h1 and h2. The domains
of analyticity lead to exact asymptotic expressions for P(N1 = n) and P(N2 = n).

– The parameter values determine the nature of the dominant singularities of P(x,1)

and P(1, y). This gives rise to several different asymptotic regimes. Asymptotic
estimates for the probabilities of large queue lengths are obtained using Laplace’s
method and Darboux’s method. Proposition 5 distinguishes four different regimes
for queue 1, and Proposition 6 shows that there are three different regimes for
queue 2.

Section 2 contains the model description and an extensive analysis of the zero-pairs
of the kernel h1 in (1). In particular, various analytic continuations of these zero-pairs
are constructed, which identify some of the singularities of the function P(x,0) and
P(0, y). Further singularities are identified in Sect. 3 by considering the resultant of
h1 and h2. In Sect. 4 we formulate P(x,0) and P(0, y) in terms of boundary value
problems. The solutions to these boundary value problems yield solutions to P(x,0)

and P(0, y) in terms of meromorphic functions, with a clear description of their sin-
gularities. In Sect. 5 this knowledge is used to obtain a complete characterization of
the exact asymptotics for the marginal distributions P(N1 = n) and P(N2 = n).
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2 Model description and preliminary properties

Consider a two-stage tandem queue, where jobs arrive at queue 1 according to a Pois-
son process with rate λ, demanding service at both queues before leaving the system.
Each job requires an exponential amount of work with parameter νj at queue j . The
global service rate is set to one. The service rate for one queue is only a fraction
(p for queue 1 and 1 −p for queue 2) of the global service rate when the other queue
is non-empty; when one queue is empty, the other queue has full service rate. There-
fore, when both queues are non-empty, the departure rates at queue 1 and 2 are ν1p

and ν2(1 − p), respectively.
When one of the queues is empty, the departure rate of the nonempty queue j is

temporarily increased to νj . With Nj(t) the number of jobs in queue j at time t ,
the two-dimensional process {(N1(t),N2(t)), t ≥ 0} is a Markov process, and upon
uniformization, a random walk in the quarter plane.

The ergodicity condition under which this Markov process has a unique stationary
distribution is given by

ρ = λ

ν1
+ λ

ν2
< 1. (2)

This can be explained by the fact that, independent of p, the two stations together
always work at capacity 1 (if there is work in the system), and that λ/ν1 + λ/ν2

equals the amount of work brought into the system per time unit. We henceforth
assume that the ergodicity condition is satisfied.

Denote the joint stationary probabilities by

P(N1 = n,N2 = k) = lim
t→∞ P

(
N1(t) = n,N2(t) = k

)

and let P(x, y) represent the bivariate generating function

P(x, y) =
∞∑

n=0

∞∑

k=0

P(N1 = n,N2 = k)xnyk.

From the balance equations it follows (see [28]) that P(x, y) satisfies the functional
equation (1) with

h1(x, y) = (λ + pν1 + (1 − p)ν2
)
xy − λx2y − pν1y

2 − (1 − p)ν2x,

h2(x, y) = (1 − p)
(
ν1y(y − x) + ν2x(y − 1)

)
,

h3(x, y) = − p

1 − p
h2(x, y),

h4(x, y) = ν2x(y − 1) − h2(x, y).

We have P(0,0) = 1 − ρ by (2).
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2.1 Zero-pairs of the kernel

Let r̂ = 1 + 1/r1 + 1/r2 with r1 = λ/(pν1) and r2 = λ/((1 − p)ν2). With this nota-
tion, the equation h1(x, y) = 0 in y has two roots:

X±(y) = 1

2y

(
(r̂y − 1/r2) ±√D2(y)

)
,

where

D2(y) = (r̂y − 1/r2)
2 − 4y3/r1. (3)

The functions X±(y) are well defined for y ∈ R \ {0} as long as D2(y) ≥ 0. It is
easily checked that limy→0 X+(y) = 0 (the point 0 is a removable singularity for
the function X+(y)) and limy→0 X−(y) = −∞ (the point 0 is a singularity for the
function X−(y)). In addition, as shown in [32], the discriminant D2(y) has three
roots in R. These three roots are denoted by y1, y2 and y3 and are such that 0 < y1 <

y2 ≤ 1 < y3. We have D2(y) > 0 for y ∈ (−∞, y1) ∪ (y2, y3) and D2(y) < 0 for
y ∈ (y1, y2) ∪ (y3,∞).

Similarly, the equation h1(x, y) = 0 in x has two roots:

Y±(x) = r1

2

(
(r̂ − x)x ±√D1(x)

)
,

where

D1(x) = ((r̂ − x)x
)2 − 4x/(r1r2). (4)

The functions Y±(x) are well defined for x ∈ R as long as the discriminant
D1(x) ≥ 0. As shown in [32], the discriminant D1(x) has four real roots x1 = 0 <

x2 ≤ 1 < x3 < x4. We have D1(x) > 0 for x ∈ (−∞, x1) ∪ (x2, x3) ∪ (x4,∞) and
D1(x) < 0 for x ∈ (x1, x2) ∪ (x3, x4).

In the next section we investigate how to analytically continue the functions Y±(x)

in C \ ([x1, x2] ∪ [x3, x4]) and X±(y) in C \ ([y1, y2] ∪ [y3,∞)).

2.2 Analytic continuation

In the following, we assume that for z ∈ C, arg(z) ∈ (−π,π], and we take the deter-
mination of the square root such that

√
x2 = x if x ≥ 0 and

√−1 = i. The couple
(X+(y), (−∞, y1)) defines a germ of analytic function. We first investigate how this
germ can be analytically continued in the complex plane deprived of the segments
[y1, y2] and [y3,∞). Let z+ = 
(z) + i|�(z)|.

Lemma 1 The function

X∗(y) =
{

X+(y) when y ∈ {z : 
(z) ≤ y2,�(D2(z
+)) < 0} ∪ (−∞, y1),

X−(y) otherwise,
(5)

defined in C \ ([y1, y2] ∪ [y3,∞)), is analytic.
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Proof Let y = u + iv with u,v ∈ R. We have D2(y) = 
(D2(y)) + i�(D2(y)) with


(D2(y)
) =

(

r̂u − 1

r2

)2

− r̂2v2 − 4

r1

(
u3 − 3uv2),

�(D2(y)
) = v

(
4

r1
v2 −

(
12

r1
u2 − 2r̂2u + 2

r2

))

.

The imaginary part vanishes for u and v satisfying the equation

4

r1
v2 = 12

r1
u2 − 2r̂2u + 2

r2
. (6)

For sufficiently large u, the right-hand side of the above equation is positive. If we
assume that this term does not cancel for u describing the whole of R, then we can
define two curves in C along which the imaginary part of D2(y) vanishes: one curve
lies entirely in the positive half-plane {y : �(y) > 0} and the other curve lies entirely
in the negative half-plane {y : �(y) < 0}.

Along one of these curves, the sign of the real part 
(D2(y)) is constant since
the imaginary and real parts cancel only for y ∈ R (namely for y equal to one of
the roots y1, y2 and y3). For the curve in the upper half-plane we have v2 ∼ 3u2 for
|u| → +∞. But in this case, we would have 
(D2(y)) ∼ 32u3/r1, which contradicts
the fact that 
(D2(y)) should keep the same sign as u describes the whole of R.
Hence, the polynomial in the right-hand side of (6) has roots in R, which are positive
since the value of this polynomial at 0 is 2/r2 > 0. Let y∗

1 and y∗
2 denote these roots

with 0 < y∗
1 ≤ y∗

2 .
Equation (6) defines two hyperbolic branches as depicted in Fig. 1. The left

branch intersects the real axis at point y∗
1 and for a point y on this branch such that

�(y) = 0, 
(D2(y)) < 0. By continuity of the real part, which is a polynomial in u

and v, we have 
(D2(y
∗
1 )) ≤ 0 and hence y1 ≤ y∗

1 ≤ y2. The right branch intersects
the real axis at point y∗

2 . For y on this branch such that �(y) = 0, 
(D2(y)) > 0
and by continuity of the real part, we have 
(D2(y

∗
2 )) ≥ 0, which implies that

y2 ≤ y∗
2 ≤ y3.

Fig. 1 Branches on which �(D2(y)) = 0
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The function X+(y) is analytic in the domain {y : 
(y) ≤ y∗
1 ,�(D2(y

+)) <

0} ∪ (−∞, y1). The function X−(y) is analytic in the complementary domain of
the closure of this set in C \ ([y1, y2] ∪ [y3,∞)). To show that the function X∗(y)

is analytic in the whole of C deprived of the segments [y1, y2] and [y3,∞), by Mor-
eira’s theorem, it is sufficient to show that this function is continuous on the branch
{y : �(D2(y)) = 0, 
(D2(y)) ≤ 0} separating the two above domains. But this is
straightforwardly checked from the choice of the determination of the square root. �

By using exactly the same arguments as in the proof of Lemma 1, we can prove
the following result.

Lemma 2 The function

X∗(y) =
{

X−(y) when y ∈ {z : 
(z) ≤ y2,�(D2(z
+)) < 0} ∪ (−∞, y1),

X+(y) otherwise,
(7)

defined in C \ ([y1, y2] ∪ [y3,∞)), is analytic.

We now turn to the functions Y±(x). First note that Y±(0) = 0. As shown in [32],
when x is close to the segment [x1, x2], Y±(x) is close to a contour ∂Dy in the y-
plane included in the half-plane {y : 
(y) ≥ 0}. In particular, the point 0 lies in ∂Dy .
In addition, when y is close to the segment [y1, y2], X(y) is in the x-plane close
to a contour ∂Dx surrounding the point 0. The contours ∂Dx and ∂Dy delineate
bounded open domains in the x-plane deprived of the segment [x1, x2] and the y-
plane deprived of the segment [y1, y2] denoted by Dx and Dy , respectively. Since
our ultimate goal is to establish a conformal mapping between these two domains,
and since Y±(−iε) ∼ ±(cos(π/4) + i sin(π/4))

√
ε/(r1r2) for small ε > 0, we are

led to pick the function Y+(x) as a candidate for the desired conformal mapping
because Y+(−iε) ∈ Dy while Y−(−iε) /∈ Dy for sufficiently small ε > 0.

Lemma 3 The function

Y ∗(x) =

⎧
⎪⎨

⎪⎩

Y+(x) when x ∈ {z : 
(z) ≤ x2,�(D1(z
+)) < 0} ∪ (−∞, x1),

Y+(x) when x ∈ {z : 
(z) ≥ x3,�(D2(z
+)) > 0} ∪ (x4,∞),

Y−(x) otherwise,

(8)

defined in C \ ([x1, x2] ∪ [x3, x4]), is analytic.

Proof Let x = u + iv with u,v ∈ R. We have D1(x) = 
(D1(x)) + i�(D1(x)) with


(D1(x)
) = ((r̂ − u)u + v2)2 − v2(r̂ − 2u)2 − 4u

r1r2
,

�(D1(x)
) = 2v

(

(r̂ − 2u)v2 + u(r̂ − u)(r̂ − 2u) − 2

r1r2

)

.
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Note that �(D1(x)) = 0 if (u, v) satisfies

(2u − r̂)v2 = u(2u − r̂)(u − r̂) − 2

r1r2
. (9)

Let d1(u) be the polynomial in the right-hand side of the above equation. This poly-
nomial is of degree 3 and has at least one real root (u1 say). Since limu→+∞ d1(u) =
+∞ and d1(r̂) = −2/(r1r2) < 0, u1 > r̂ . The polynomial d1(u) can then be decom-
posed as d1(u) = (u−u1)d11(u). If the polynomial d11(u) had no real roots, then this
polynomial would be positive in the whole of R since d1(u) is positive for large u.
When u < r̂/2, (9) would have two roots, namely

v = ±
√

(u − u1)d11(u)

2u − r̂
.

We would then obtain two curves, one in the half-plane {x : �(x) > 0} and the other
in the half-plane {x : �(x) < 0}. Along each of these curves, the sign of 
(D1(x))

should be constant (see the arguments in the proof of Lemma 1). But when u → −∞,
v2 ∼ u2 and then 
(D1(x)) < 0, and when u → r̂/2, v2 ∼ −2/(r1r2(2u − r̂)) and

(D1(x)) > 0, which contradicts the fact that the sign of 
(D1(x)) should be con-
stant along the curves �(D1(x)) = 0. As a consequence, the polynomial d1(u) has
three real roots. Let us denote these roots by x∗

1 , x∗
2 and x∗

3 with x∗
1 ≤ x∗

2 ≤ x∗
3 . Their

product is equal to 1/(r1r2) and since one of them is positive, the two others have the
same sign.

We already know that x∗
3 > r̂ . If x∗

1 ≥ r̂/2, then (9) defines two curves for u ≤ r̂/2,
one is included in the upper half-plane and the other in the lower half-plane, which is
not possible for the same reasons as above. Hence, x∗

1 ≤ r̂/2. This also implies that
x∗

2 < r̂/2 since d1(r̂/2) = −2/(r1r2) < 0. Hence, we have

0 ≤ x∗
1 ≤ x∗

2 < r̂/2 < r̂ < x∗
3 .

Let us consider the three curves defined by

v = ±
√

(u − x∗
1 )(u − x∗

2 )(u − x∗
3 )

2u − r̂
when u ≤ x∗

1 or x∗
2 ≤ u < r̂/2 or u ≥ x∗

3 .

See Fig. 2.
For the curve defined for u ≤ x∗

1 it is easily checked that 
(D1(x)) < 0 when v = 0
and by continuity we deduce that 
(D1(x)) ≤ 0. This implies that x1 ≤ x∗

1 ≤ x2.
Similar arguments show that x3 ≤ x∗

3 ≤ x4. For the curve defined for x2 ≤ u < r̂/2,
we have 
(D1(x)) > 0 when v = 0 and hence 
(D1(x)) ≥ 0 all along the curve.
This implies that x2 ≤ x∗

2 ≤ x3. We finally have the ordering

x1 ≤ x∗
1 ≤ x2 ≤ x∗

2 < r̂/2 < x3 ≤ x∗
3 ≤ x4.

Note that it is easily checked that x3 > r̂/2. Indeed, if we assume that x3 ≤ r̂/2 ≤
x∗

3 ≤ x4, we would have D1(r̂/2) ≤ 0 and then D1(x) would be nonpositive for all
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Fig. 2 Branches on which �(D1(x)) = 0

x ≥ r̂/2 since the term (r̂ − x)x is maximal at the point r̂/2; this is clearly not possi-
ble.

By invoking the same arguments as in the proof of Lemma 1, it is easily checked
that the function Y ∗(x) defined by (8) is analytic in the complex plane deprived of
the segments [x1, x2] and [x3, x4]. �

By similar arguments, we can prove the following result.

Lemma 4 The function

Y∗(x) =

⎧
⎪⎨

⎪⎩

Y−(x) when x ∈ {z : 
(z) ≤ x2,�(D1(z
+)) < 0} ∪ (−∞, x1),

Y−(x) when x ∈ {z : 
(z) ≥ x3,�(D2(z
+)) > 0} ∪ (x4,∞),

Y+(x) otherwise,

(10)

defined in C \ ([x1, x2] ∪ [x3, x4]), is analytic.

To conclude this section, let us examine the images of the contours ∂Dx and
∂Dy by the analytic functions Y ∗ and X∗, respectively. First note that for x ∈
C \ ([x1, x2] ∩ [x3, x4]), X∗(Y ∗(x)) = x and for y ∈ C \ ([y1, y2] ∩ [y3,∞)),
Y ∗(X∗(y)) = y. To prove the first equality, consider x ∈ (−∞,0) sufficiently close
to 0, so that Y ∗(x) = Y+(x) ∼ √−r1x/r2 and X∗(Y ∗(x)) = X+(Y ∗(x)) ∼ x. It fol-
lows that the equality X∗(Y ∗(x)) = x holds for a neighborhood of 0 and since the
function X∗(Y ∗(x)) is analytic in C \ ([x1, x2] ∩ [x3, x4]) this equality holds for the
whole of C \ ([x1, x2] ∩ [x3, x4]). Similar arguments can be invoked to prove the
second equality.

Corollary 1 We have X∗(∂Dy) ⊂ [x1, x2] and Y ∗(∂Dx) ⊂ [y1, y2].
Proof Consider y ∈ ∂Dy (the case of ∂Dx is similar). By construction, there exists
an x ∈ [x1, x2] such that

y = Y+(x + 0i), ȳ = Y+(x − 0i), y = Y−(x − 0i), ȳ = Y−(x + 0i).

Note that we use the notation x +0i (resp. x −0i) to designate the limit of a sequence
in the upper (resp. lower) half-plane converging to x ∈ R. From the definition of
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Y ∗(x), the determination of this function at the point x ± 0i is either Y+(x ± 0i)

or Y−(x ± 0i). It follows that y = Y ∗(x + ε0i) where ε = ±1, depending on the
determination of Y ∗(x). It follows that X∗(y) = X∗(Y ∗(x + ε0i)) = x ∈ [x1, x2].
Hence, X∗(∂Dy) ⊂ [x1, x2]. �

2.3 Conformal mappings

We are now able to establish the conformal mappings which will play a crucial role
in the derivation of the boundary functions P(0, y) and P(x,0).

Proposition 1 The function X∗(y) is a conformal mapping from Dy onto Dx . The
reciprocal function is Y ∗(x).

Proof As noted before, when y is in Dy and sufficiently close to 0, X+(y) ≡
X∗(y) ∈ Dx . Since the set Dy is an open and simply connected domain and since
X∗(y) is an analytic function, X∗(Dy)∩Dx is a non-null, open and simply connected
domain included in Dx .

If Dx is not a subset of X∗(Dy), consider the complementary set X∗(Dy)
c ∩Dx =

∅ in Dx . Let x be a point on the boundary between this set and X∗(Dy) ∩ Dx .
There exist a sequence (xn) in X∗(Dy) ∩ Dx , and a sequence (x′

n) in the interior of
X∗(Dy)

c ∩Dx both converging to x. Since (xn) is in X∗(Dy)∩Dx , there exists a se-
quence (yn) in Dy such that X∗(yn) = xn. Moreover, as we have X∗(Y ∗(x)) = x for
all x in the x-plane deprived of the segments [x1, x2] and [x3, x4], and Y ∗(X∗(y)) = y

for all y in the y-plane deprived of the segments [y1, y2] and [y3,∞), the sequences
(yn) and (Y ∗(xn)) converge to the same point. But by definition the points Y ∗(xn)

lie outside the domain Dy . It follows that these two sequences converge to a point on
∂Dy . By Corollary 1, this implies that x ∈ [x1, x2], which is not possible. It follows
that Dx ⊂ X∗(Dy).

If the above inclusion is strict, we consider a point x on the boundary ∂Dx . There
should exist a point y in Dy such that X∗(y) = x but this is not possible since y

should be in [y1, y2] since Y ∗(∂Dx) ⊂ [y1, y2]. It follows that X∗(Dy) = Dx . In addi-
tion, the function X∗(y) is one to one since Y ∗(X∗(y)) = y. It follows that this func-
tion is a conformal mapping from Dy onto Dx and the reciprocal function is Y ∗. �

The conformal mappings X∗ and Y ∗ between the domains Dx \ [x1, x2] and Dy \
[y1, y2] are illustrated in Fig. 3. While X∗ maps Dy \ [y1, y2] onto Dx \ [x1, x2], the
set X∗(Dy \ [y1, y2]) is an open domain surrounding Dx in the x-plane. Similarly,
Y∗(Dx \ [x1, x2]) is an open domain surrounding Dy in the y-plane.

It is worth noting that X∗(ξ) → x ∈ ∂Dx from inside Dx when ξ → y ∈ [y1, y2].
Similarly, Y ∗(ξ) → y ∈ ∂Dy from inside Dy when ξ → x ∈ [x1, x2]. We also have
X∗(ξ) → x ∈ ∂Dx from outside Dx when ξ → y ∈ [y1, y2] and Y∗(ξ) → y ∈ ∂Dy

from outside Dy when ξ → x ∈ [x1, x2].

3 Intersection points of the curves h1(x,y) = 0 and h2(x,y) = 0

When h1(x, y) = 0, we see from (1) that we can express P(x,0) (resp. P(0, y))
as a function of P(0, y) (resp. P(x,0)) and h4(x, y), where the function h2(x, y)
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Fig. 3 Fundamental domains Dy and Dx

appears in the denominator. The common solutions of the equations h1(x, y) = 0 and
h2(x, y) = 0 are then potential singularities for the functions P(x,0) and P(0, y).

3.1 The common roots in variable y

Let y ∈ C \ ([y1, y2] ∪ [y3,∞)) and h1(x, y) = 0, x = X±(y). If in addition
h2(x, y) = 0, then y is a root of the resultant in x of the two polynomials h1(x, y)

and h2(x, y) (see the Appendix); this resultant, denoted by Qx(y), is a polynomial
of degree 5 in y, which has at most four distinct zeros in C. The point 0 is a double
root. Another trivial root is 1 since h1(1,1) = 0 and h2(1,1) = 0. As shown in the
Appendix, the resultant Qx(y) can actually be decomposed as

Qx(y) = cxy
2(y − 1)Qx(y),

where Qx(y) is the quadratic polynomial

Qx(y) = λν1y
2 + ν2(ν2 − ν1 + λ)y − ν2

2 (11)

and cx is a constant.
When y describes the segment [y2, y3], the curves y → x = X±(y) describe the

contour of a closed domain Ωy in the (y, x)-plane as illustrated in Fig. 4. The contour
∂Ωy of Ωy contains the point (1,1).

When h2(x, y) = 0,

x = ν1y
2

(ν1 − ν2)y + ν2
. (12)

As illustrated in Fig. 4, when r1 < 1, the hyperbolic branch defined by (12) intersects
the branch x = X−(y) at some point with a negative abscissa. The same observation
is true when r1 ≥ 1. It follows that the resultant Qy(x) has four real roots and the
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Fig. 4 Intersection points of the
functions X±(y) and the curve
h2(x, y) = 0 when r1 < 1

quadratic polynomial Qx(y) has two real roots, one is negative and the other is in
[y2, y3]. The positive root is (with ρi = λ/νi )

y∗ = ρ1

2ρ2

(
1

ρ1
− 1

ρ2
− 1 +

√
(

1

ρ1
− 1

ρ2
− 1

)2

+ 4

ρ1

)

(13)

and the negative root is

y∗ = ρ1

2ρ2

(
1

ρ1
− 1

ρ2
− 1 −

√
(

1

ρ1
− 1

ρ2
− 1

)2

+ 4

ρ1

)

.

It is worth noting that y∗ does not depend on p. From the Appendix, we know that
y∗ ∈ (1, y3].

3.2 The common roots in variable x

The resultant in x of the polynomials h1(x, y) and h2(x, y) is a polynomial of degree
5 with trivial roots 0 and 1 (0 is a double root). If x = 0 and (x, y) is an intersection
point of the curves h1(x, y) = 0 and h2(x, y) = 0, then

y = ν2

λ + ν2 − λx
. (14)

For x ∈ [x2, x3], the curves y = Y±(x) delineate a closed domain Ωx such that its
contour ∂Ωx contains the point (1,1). Note that if r1 < r2, then Y+(1) = 1 and if
r1 > r2, then Y−(1) = 1.

The hyperbolic branch defined by (14) intersects the branch y = Y−(x) or y =
Y+(x) at a point with abscissa x > x4. It follows that the resultant in y of the polyno-
mials h1(x, y) and h2(x, y), denoted by Qy(x), can be decomposed as

Qy(x) = cyx
2(x − 1)Qy(x),

where cy is a constant and

Qy(x) = λ2x2 − (λ + ν1 + ν2)λx + ν1ν2. (15)
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The roots x∗ and x∗ are given by

x∗ = 1

2

(

1 + 1

ρ1
+ 1

ρ2
−
√
(

1 + 1

ρ1
+ 1

ρ2

)2

− 4

ρ1ρ2

)

(16)

and

x∗ = 1

2

(

1 + 1

ρ1
+ 1

ρ2
+
√
(

1 + 1

ρ1
+ 1

ρ2

)2

− 4

ρ1ρ2

)

,

and are such that x∗ ≤ x3 < x4 ≤ x∗. In addition, we know that x∗ > 1 and hence
x∗ ∈ (1, x3]. The variable x∗ does not depend on the probability p.

From the above observations, we deduce the following result.

Proposition 2 The equation Qy(X
∗(y)) = 0 has a solution in (−∞, y3], which is

necessarily equal to y∗ ∈ (1, y3], if and only if x∗ = X−(y∗).
Similarly, the equation Qx(Y

∗(x)) = 0 has a solution in (−∞, x3], which is nec-
essarily equal to x∗ ∈ (1, x3], if and only if y∗ = Y−(x∗).

It is worth noting that we can have x∗ = X∗(y∗) only if 1 = X∗(1), that is r1 ≤ 1.
Similarly, we can have y∗ = Y ∗(x∗) only if 1 = Y ∗(1), that is r1 ≥ r2.

4 Boundary value problems

We first determine the function P(x,0); the derivation of the function P(0, y) can be
done in the exact same fashion.

Proposition 3 The function P(x,0) is given by

P(x,0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2πi

∫

∂Dx

gx(z)

z − x
dz for x ∈ Dx,

gx(x) + 1

2πi

∫

Cx

gx(z)

z − x
dz for x ∈ C \ Dx,

(17)

where Cx is a contour in Dx surrounding the slit [x1, x2] and such that the function
gx given by

gx(x) = (1 − ρ)
ν2Y

∗(x)(pν1Y
∗(x) − λx2)

(1 − p)xQx(Y ∗(x))

is analytic in the strip delineated by the contours Cx and ∂Dx . The function P(x,0)

is a meromorphic function in C \ [x3, x4] with singularities at the solutions to the
equation Qx(Y

∗(x)) = 0, if they exist.

Proof From the analysis carried out in Sect. 2, we know that for y in a neighborhood
Vy(0) of 0+, X∗(y) is close to 0 in Dx(0,1) (the unit disk in the x-plane). For y ∈
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Vy(0), we deduce from (1) that

h2
(
X∗(y), y

)
P
(
X∗(y),0

)+ h3
(
X∗(y), y

)
P(0, y) + h4

(
X∗(y), y

)
P(0,0) = 0,

which implies that

P
(
X∗(y),0

)= p

1 − p
P (0, y) − (1 − ρ)

h4(X
∗(y), y)

h2(X∗(y), y)
.

Note that h2(X
∗(y), y) = 0 if and only if Qy(X

∗(y)) = 0, which has only real so-
lutions (see Sect. 3). From Proposition 2, this equation has a solution in (−∞, y3]
if and only if x∗ = X∗(y∗), which is then the unique solution and which is in
(1, y3]. If α = Y ∗(x2) ≤ 1, the domain Dy is included in the unit disk Dy(0,1)

and in that case the function h4(X
∗(y), y)/h2(X

∗(y), y) has no singularities in Dy .
If α > 1, then r1 > r2. In this case, x∗ is not equal to X∗(y∗) and the function
h4(X

∗(y), y)/h2(X
∗(y), y) has no singularities in Dy . Hence, by using the same

arguments as in [32], we deduce that the function P(x,0) can be analytically contin-
ued to the domain Dx . (We use the fact that the function P(x,0) can be expanded
in a power series of x at the point 0 with positive coefficients and P(0, y2) < ∞,
which implies that P(x,0) is analytic in the disk with center 0 and radius X∗(y2)

containing Dx .)
Now, if we use the function X∗(y), we obtain a meromorphic function in a do-

main surrounding from outside the domain Dx . If we take y in a sufficiently small
neighborhood of [y1, y2] we can analytically define P(x,0) in an outer neighborhood
of Dx .

Consider x0 ∈ ∂Dx . Then there exists y0 ∈ [y1, y2] such that X∗(y) → x0 from
inside when y → y0. In that case, X∗(y) → x̄0 from outside. Let us define the interior
(resp. exterior) limit Pi(x,0) (resp. Pe(x,0)) of the function P(x,0) with respect to
the contour ∂Dy by

Pi(x0,0) = lim
x→x0,x∈Dx

P (x,0)
(

resp. Pe(x0,0) = lim
x→x0,x∈C\Dx

P (x,0)
)
.

We then deduce from the above observation that for x ∈ ∂Dy and y = Y ∗(x)

Pi(x,0) = pP (0, y)

1 − p
−(1−ρ)

h4(x, y)

h2(x, y)
, Pe(x,0) = pP (0, y)

1 − p
−(1−ρ)

h4(x̄, y)

h2(x̄, y)
,

since P(·,0), h2 and h4 have real coefficients. Hence, we arrive at the fact that for
x ∈ ∂Dx and y = Y ∗(x)

Pi(x,0) − Pe(x,0) = −2i(1 − ρ)�
(

h4(x, y)

h2(x, y)

)

.

Note that for x ∈ ∂Dx , we have xx̄ = y/r1 = Y ∗(x)/r1 since x and x̄ are the
two solutions to (1) in x. In addition, from the Appendix, we know that the resultant
Qx(y) can be written as

Qx(y) = px(x, y)h1(x, y) + qx(x, y)h2(x, y),



16 Queueing Syst (2011) 67: 1–32

where px(x, y) and qx(x, y) are polynomials in x and y. For y = Y ∗(x), we have
h1(x, y) = 0 and then

Qx(y) = qx(x, y)h2(x, y).

Simple computations show that

h4(x, y)

h2(x, y)
= −1 + ν2x(y − 1)

h2(x, y)

and

qx(x, y) = λyb1(y)x − (λ(1 − p)ν1y
3 + a1(y)b1(y)

)
,

where

a1(y) = (λ + pν1 + (1 − p)ν2
)
y − (1 − p)ν2,

b1(y) = (1 − p)
(
(ν2 − ν1)y − ν2

)
.

Hence, for x ∈ ∂Dy and y = Y ∗(x), we have

�
(

h4(x, y)

h2(x, y)

)

= �
(

ν2x(y − 1)(λyb1(y)x − (λ(1 − p)ν1y
3 + a1(y)b1(y)))

−ν1(1 − p)2y2(y − 1)Qx(y)

)

.

By using the fact that λyx2 − a1(y)x = −pν1y
2, we have

�
(

h4(x, y)

h2(x, y)

)

= �
(

ν2(pν1b1(y) + λ(1 − p)ν1yx)

ν1(1 − p)2 Qx(y)

)

and then

�
(

h4(x, y)

h2(x, y)

)

= ν2λy�(x)

(1 − p)Qx(y)
= ν2λy(r1x

2 − y)

2ir1x(1 − p)Qx(y)
.

We finally arrive at the classical Riemann–Hilbert problem. For x ∈ ∂Dx ,

Pi(x,0) − Pe(x,0) = (1 − ρ)
ν2Y

∗(x)(pν1Y
∗(x) − λx2)

x(1 − p)Qx(Y ∗(x))
= gx(x).

The solution to this Riemann–Hilbert problem is given by

P(x,0) = 1

2πi

∫

∂Dx

gx(z)

z − x
dz for x /∈ ∂Dx.

The above formula defines an analytic function in Dx . For x ∈ C \ Dx , let us pick a
closed contour Cx in Dx surrounding the slit [x1, x2] and so that the function gx is
analytic in the strip delineated by the contours ∂Dx and Cx . Then, we have

1

2πi

∫

∂Dx

gx(z)

z − x
dz = gx(x) + 1

2πi

∫

Cx

gx(z)

z − x
dz.
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The function on the right-hand side of the above equation defines a meromorphic
function in C \ [x3, x4]. �

We can replace the integrals appearing in (17) with integrals along the segment
[y1, y2]. We then obtain elliptic integrals. Since these integrals do not appear as sim-
ple combinations of Jacobi elliptic functions, we do not further investigate the con-
nection between the function P(x,0) and elliptic functions. Finally, it is worth noting
that the radius of convergence of the function P(x,0) is equal to either x3 or else x∗
if y∗ = Y ∗(x∗).

By adapting the above proof to the function P(0, y), we obtain the following re-
sult.

Proposition 4 The function P(0, y) is given by

P(0, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2πi

∫

∂Dy

gy(z)

z − y
dz for y ∈ Dy,

gy(y) + 1

2πi

∫

Cy

gy(z)

z − y
dz for y ∈ C \ Dy,

where Cy is a closed contour in Dy surrounding the slit [y1, y2] such that the function
gy given by

gy(y) = (1 − ρ)
λ(pν1y

2 − (1 − p)ν2X
∗(y))

pyQy(X∗(y))

is analytic in the strip delineated by the contours Cy and ∂Dy . The function P(0, y)

is a meromorphic function in C \ [y3, y4] with singularities at the solutions to the
equation Qy(X

∗(y)) = 0, if they exist.

Proof Denote by Pi(0, y) and Pe(0, y) the interior and exterior limits of the function
P(0, y) with respect to the contour ∂Dy . We have for y ∈ ∂Dy and x = X∗(y)

Pi(0, y) − Pe(0, y) = 2i(1 − ρ)
1 − p

p
�
(

h4(x, y)

h2(x, y)

)

.

We have Qy(x) = qy(x, y)h2(x, y) for x = x∗(y) with

qy(x, y) = (1 − p)ν1
[−ypν1

(
p(ν2 − ν1)x + α1(x)

)

+ pα1(x)(ν2 − ν1)x + α1(x)2 − pν1ν2x
]
.

Then

�
(

h4(x, y)

h2(x, y)

)

= ν2x

Qy(x)
�((y − 1)qy(x, y)

)= λ(pν1y
2 − (1 − p)ν2x)

2i(1 − p)yQy(x)
,

which implies that

Pi(0, y) − Pe(0, y) = (1 − ρ)
λ(pν1y

2 − (1 − p)ν2x)

pyQy(x)
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= (1 − ρ)
λ(pν1y

2 − (1 − p)ν2X
∗(y))

pyQy(X∗(y))
= gy(y).

Note that 0 is a removable singularity of the function gy(y) since X∗(y) ∼ −r2y
2/r1

when y → 0. �

5 Asymptotic analysis

We derive in this section the tail of the distribution of the numbers of customers in
the first and the second queue. For this purpose, we consider the generating functions
P(x,1) and P(1, y), which satisfy

P(x,1) =
∞∑

n=0

P(N1 = n)xn and P(1, y) =
∞∑

n=0

P(N2 = n)yn,

where N1 and N2 are the numbers of customers in the first and the second queue,
respectively. From (1), we have

P(x,1) = ν1
(1 − p)P (x,0) − pP (0,1) − (1 − p)(1 − ρ)

λx − pν1

and

P(1, y) = (ν1y + ν2)((1 − p)P (1,0) − pP (0, y) − (1 − p)(1 − ρ)) + ν2(1 − ρ)

(1 − p)ν2 − pν1y
.

Note that the normalizing condition P(1,1) = 1 implies that

(1 − p)P (1,0) − pP (0,1) = (1 − p)(1 − ρ) + ρ1 − p. (18)

Lemma 5 If r2 ≤ 1, then

(1 − p)P
(
r−1

1 ,0
)− pP (0,1) − (1 − p)(1 − ρ) = 0, (19)

which implies that the point 1/r1 is a removable singularity for the function P(x,1).
If r2 > 1 (and then r1 ≤ 1 by the stability condition (2)), we have

(1 − p)P
(
r−1

1 ,0
)− pP (0,1) − (1 − p)(1 − ρ) < 0 (20)

and the point 1/r1 is a nonremovable singularity for the function P(x,1).

Proof We know that P(x,0) is a meromorphic function in the disk with center 0 and
radius x3, with a unique potential singularity at point x∗. Equation (1) implies for
x = x∗, when x∗ is a singularity for P(x,0),

h2
(
x,Y ∗(x)

)
P(x,0) + h3

(
x,Y ∗(x)

)
P
(
0, Y ∗(x)

)+ h4
(
x,Y ∗(x)

)= 0. (21)
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When r2 ≤ 1, we have Y ∗(1/r1) = 1 and the above equation implies (19). When
r2 > 1 (and hence r1 ≤ 1), we have Y ∗(1/r1) = 1/r2 < 1, and (21) implies

(1 − p)P (1/r1,0) − pP (0,1/r2) − (1 − p)(1 − ρ)

= (1 − ρ)

ν2
r1

(1 − 1
r2

)

ν1
r2

( 1
r2

− 1
r1

) + ν2
r1

( 1
r2

− 1)
< 0.

Since P(0,1/r2) ≤ P(0,1), Inequality (20) follows. �

Similar arguments yield the following result for the function P(1, y); the proof is
omitted.

Lemma 6 We have

(1 − p)P (1,0) − pP (0, r1/r2) − (1 − p)(1 − ρ) + p(1 − ρ) = 0, (22)

and hence the point r1/r2 is a removable singularity for the function P(1, y).

By using the two lemmas above, we are now able to determine the tails of the
probability distributions of the random variables N1 and N2.

Proposition 5 For given system parameters λ, ν1, ν2 and p, the exact asymptotics of
P(N1 = n) as n → ∞ are:

I If y∗ = Y ∗(x∗) and x∗ < x3, which can occur only if r1 ≥ r2, then

P(N1 = n) ∼ κ
(1)
1

(
1

x∗

)n

. (23)

II If y∗ = Y ∗(x∗) and r2 > 1 (and then r1 ≤ 1),

P(N1 = n) ∼ κ
(1)
2 (r1)

n. (24)

III If y∗ = Y ∗(x∗) and r2 ≤ 1, 1/r1 is a removable singularity for P(x,1) and we
have

P(N1 = n) ∼ κ
(1)
3

1

n
√

n

(
1

x3

)n

. (25)

IV If y∗ = Y ∗(x3) and x∗ = x3,

P(N1 = n) ∼ κ
(1)
4

1√
n

(
1

x∗

)n

, (26)

with x3 the third largest real root of D1(x) in (4), and Y ∗(x), y∗, x∗ as in (8), (13),
(16), respectively. Further, ri = λ/(pνi), ρ = 1 − λ/ν1 − λ/ν2 and

κ
(1)
1 = ν1ν2(1 − ρ)((1 − p)ν2x

∗ − pν1(y
∗)2)

(λx∗ − pν1)(ν
2
2 + λν1(y∗)2)x∗ ,
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κ
(1)
2 = P(0,1) + 1 − p

p

(
1 − ρ − P(r−1

1 ,0)
)
,

κ
(1)
3 = (1 − ρ)λν1ν2

4
√

π(λx3 − pν1)

λ2(1−p)
pν2

x2
3 + 2λx3 − (pλ + ν1)

Qy(x3)Q∗
y(x3)

√
x3τx,

κ
(1)
4 = (1 − ρ)λν1ν2

2
√

π(λx3 − pν1)

λ2(1−p)
pν2

x2
3 + 2λx3 − (pλ + ν1)√

x3 Q′
y(x3)Q∗

y(x3)
τx,

with Qy(x) as in (15),

τx =√(x3 − x1)(x3 − x2)(x4 − x3) (27)

and

Q∗
y(x) = 1

λ2

(

x − pν1y
∗

x∗

)(

x − pν1y∗
x∗

)

.

Proof Note first that we always have 1/r1 ≤ x3 since

D1(1/r1) = (1 − 1/r2)
2/r2

1 ≥ 0.

In case I, note that if r2 ≤ 1, 1/r1 is a removable singularity for the function
P(x,1). If r2 > 1, then x∗ < 1/r1 ≤ x3 since

Qy(1/r1) = ν1λ
(
1/r2 − p − (1 − p)/r1

)
< 0.

This implies that x∗ is the singularity with the smallest modulus. The residue of the
function P(x,0) at point x∗ is equal to

(1 − ρ)
ν2y

∗(pν1y
∗ − λ(x∗)2)

(1 − p)x∗Q′
x(y

∗) ∂Y ∗
∂x

|x=x∗
.

Since h1(x,Y ∗(x)) = 0, we deduce that

∂Y ∗

∂x

∣
∣
∣
∣
x=x∗

= −
∂h1
∂x

(x∗, y∗)
∂h1
∂y

(x∗, y∗)
= (y∗)2(pν1y

∗ − λ(x∗)2)

x∗(pν1(y∗)2 − (1 − p)ν2x∗)
.

A direct application of Darboux’s method then yields (23).
In case II, the point r1 ≤ 1 is the pole with the smallest modulus for the function

P(x,1) and Darboux’s method yields (24).
In case III, the function P(x,1) has no singularities in the disk D(0, x3) with

center 0 and radius x3. The function P(x,0) can then be represented, for |x| < x3, as

P(x,0) = 1

2iπ

∫

C(x3)

gx(z)

z − x
dz,
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where C(x3) is the circle with center 0 and radius x3. By using (19), we have

P(x,1) = ν1(1 − p)
P (x,0) − P(1/r1,0)

λx − pν1
= 1

2iπ

∫

C(x3)

hx(z)

z − x
dz,

where

hx(z) = ν1(1 − p)
gx(z)

λz − pν1
.

As shown in Sect. 3, the point x∗ may be a pole of the function hx . Let Res(hx;x∗)
denote the residue of the function hx at x∗. By deforming the integration contour so
as to encompass the segment [x3, x4], and since |hx(z)| < Kx/|z| for some constant
Kx > 0 when |z| → ∞, we deduce that

P(x,1) = 1

2iπ

∫ x4

x3

hx(z + 0i) − hx(z − 0i)

z − x
dz + Res(hx;x∗)

x − x∗

and then

P(x,1) = −1

π

∫ x4

x3

(1 − ρ)ν1ν2

ξ(λξ − pν1)(ξ − x)
�
(

Y ∗(ξ)(λξ2 − pν1Y
∗(ξ))

Qx(Y ∗(ξ))

)

dξ

+ Res(hx;x∗)
x − x∗

.

We have

�
(

Y ∗(ξ)(λξ2 − pν1Y
∗(ξ))

Qx(Y ∗(ξ))

)

= �(Y ∗(ξ)(λξ2 − pν1Y
∗(ξ))Qx(Y ∗(ξ)))

Qx(Y ∗(ξ))Qx(Y ∗(ξ))
.

When ξ ∈ [x3, x4], the relation

Y ∗(ξ) = Y∗(ξ)

holds and tedious computations show that Qx(Y
∗(ξ))Qx(Y∗(ξ)) is a quadratic poly-

nomial in ξ . In particular, we get

Qx

(
Y ∗(ξ)

)
Qx

(
Y∗(ξ)

)= (λν1)
2(Y ∗(ξ)−y∗)(Y ∗(ξ)−y∗

)(
Y∗(ξ)−y∗)(Y∗(ξ)−y∗

)
.

By definition, we know that the above quantity vanishes for x equal to x∗ or x∗.
More precisely, in case III, we have Y∗(x∗) = y∗. In addition, Y∗(x∗) or Y ∗(x∗) is
equal to y∗. Finally, we note that if x is such that h1(x, y) = 0 then pν1y/(λx)

is also such that h1(x, y) = 0. This implies that the four roots of the polynomial
Qx(Y

∗(ξ))Qx(Y∗(ξ)) are x∗, x∗, pν1y
∗/(λx∗) and pν1y∗/(λx∗). Hence,

Qx

(
Y ∗(ξ)

)
Qx

(
Y∗(ξ)

)= −λ3ν2
2

p2ν1
(ξ − x∗)(ξ − x∗)

(

ξ − pν1y
∗

λx∗

)(

ξ − pν1y∗
λx∗

)

= − λν2
2

p2ν1
Qy(ξ)Q∗

y(ξ),
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where the polynomial Q∗
y(x) is defined by (5).

Moreover, we have

�
(
Y ∗(ξ)

(
pν1Y

∗(ξ) − λξ2)Qx

(
Y ∗(ξ)

))

= λ

2pν1

(

−λ2ν2(1 − p)

p
ξ3 + ν2

2(pλ + ν1)ξ − 2ν2
2λξ2

)√−D1(ξ).

It follows that

P(x,1) = 1

π

∫ x4

x3

Hx(ξ)

ξ − x
dξ + Res(hx;x∗)

x − x∗
,

where

Hx(ξ) = (1 − ρ)ν1

pν1 − λξ

λ2(1 − p)ξ2 + 2pλν2ξ − pν2(pλ + ν1)

2Qy(ξ)Q∗
y(ξ)

√−D1(ξ).

Then

P(N1 = n) = 1

π

∫ x4

x3

Hx(ξ)

ξ
e−n log ξ dξ − Res(hx;x∗)

(x∗)n+1
. (28)

In the neighborhood of x3, we have

− log ξ = − logx3 − 1

x3
(ξ − x3) + o(ξ − x3)

and

Hx(ξ)

πξ
= k

(1)
3

√
ξ − x3 + o

(√
ξ − x3

)
,

where

k
(1)
3 = (1 − ρ)ν1

2π(pν1 − λx3)

λ2(1 − p)x2
3 + 2pν2λx3 − pν2(pλ + ν1)

x3 Qy(x3)Q∗
y(x3)

τx,

with τx as in (27). A direct application of Laplace’s method [6, 8] then yields

P(N1 = n) ∼ k
(1)
3 Γ (3/2)

1

n3/2

(
1

x3

)n− 3
2

when n → ∞. Since Γ (3/2) = √
π/2, (25) follows.

In case IV, we have for ξ in the neighborhood of x3

Qy(ξ) = Q′
y(x3)(ξ − x3) + o(ξ − x3)

and then

Hx(ξ)

2πξ
= k

(1)
4 (ξ − x3)

−1/2 + o
(
(ξ − x3)

−1/2),
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where

k
(1)
4 = (1 − ρ)ν1

2π(pν1 − λx3)

λ2(1 − p)x2
3 + 2pν2λx3 − pν2(pλ + ν1)

x3 Q′
y(x3)Q∗

y(x3)
τx.

Laplace’s method then yields

P(N1 = n) ∼ k
(1)
4 Γ (1/2)

1

n1/2

(
1

x3

)n− 1
2

and by using the fact that Γ (1/2) = √
π , (26) follows. �

Remark When we set p = 0 we give full priority to queue 2 and the functional equa-
tion greatly simplifies due to h3(x, y) = 0. Then, for ζ(x) = ν2/(λ + ν2 − λx), we
see that h1(x, ζ(x)) = 0 and hence

P(x,0) = −h4(x, ζ(x))P (0,0)

h2(x, ζ(x))
= (ν1ν2 − λν1x)(1 − ρ)

Qy(x)

= (ν1ν2 − λν1x)(1 − ρ)

λ2(x − x∗)(x − x∗)
= c1

x − x∗
+ c2

x − x∗ ,

with

c1 = (ν1ν2 − λν1x∗)(1 − ρ)

λ2(x∗ − x∗)
, c2 = (ν1ν2 − λν1x

∗)(1 − ρ)

λ2(x∗ − x∗)
.

This gives

P(x,1) = ν1

λx

[
c1

x − x∗
+ c2

x − x∗ − (1 − ρ)

]

and

P(N1 = n) ∼ ν2
1λx∗ − ν2

1ν2

λ3(x∗ − x∗)(x∗)2
(1 − ρ)

(
1

x∗

)n

.

Note that this agrees with regime I in Proposition 5 if

ν1(λx∗ − ν2)

λ2(x∗ − x∗)x∗ = ν2
2

ν2
2 + λν1(y∗)2

,

which can indeed be shown to be true.

For the second queue, we first note by using Lemma 6 that the point r1/r2 is
always a removable singularity for the function P(1, y).

Proposition 6 For given system parameters λ, ν1, ν2 and p, the exact asymptotics
for P(N2 = n) as n → ∞ are:
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I If x∗ = X∗(y∗) and y∗ < y3, which can occur only when r1 ≤ 1, then

P(N2 = n) ∼ κ
(2)
1

(
1

y∗

)n

. (29)

II If x∗ = X∗(y∗), then

P(N2 = n) ∼ κ
(2)
2

1

n
√

n

(
1

y3

)n

. (30)

III If x∗ = X∗(y∗) and y∗ = y3,

P(N2 = n) ∼ κ
(2)
3

1√
n

(
1

y∗

)n

. (31)

with y3 the third largest real root of D2(y) in (3), and X∗(y), y∗, x∗ as in (5), (13),
(16), respectively. Further, ri = λ/(pνi), ρ = 1 − λ/ν1 − λ/ν2 and

κ
(2)
1 = (1 − ρ)λ(ν1y

∗ + ν2)(pν1y
∗ − λ(x∗)2)

((1 − p)ν2 − pν1y∗)x∗Q′
y(x∗)

,

κ
(2)
2 = (1−ρ)(ν2 +ν1y3)(λp(pν2 + (1 − p)ν1)y

2
3 +2λp(1−p)ν2y3 − (1−p)ν2

2 )

2
√

πp2(pν1y3 − (1−p)ν2)Qx(y3)Q∗
x(y3)

√
y3τy,

κ
(2)
3 = (1 − ρ)(ν2 + ν1y3)(λp(pν2 + (1 − p)ν1)y

2
3 + 2λp(1 − p)ν2y3 − (1 − p)ν2

2 )√
π

√
y3p2(pν1y3 − (1 − p)ν2)Q′

x(y3)Q∗
x(y3)

τy,

with τy = √
pν1(y3 − y1)(y3 − y2)/λ,

Q∗
x(y) =

(

y − (1 − p)ν2x
∗

pν1y∗

)(

y − (1 − p)ν2x∗
pν1y∗

)

, (32)

and Qx(y), Qy(x) as in (11), (15), respectively.

Proof In case I, y∗ is the pole with the smallest modulus for the function P(1, y) and
a direct application of Darboux’s method yields

P(N2 = n) ∼ (1 − ρ)λ

(1 − p)ν2 − pν1y∗
(1 − p)ν2x

∗ − pν1(y
∗)2

(y∗)2 Q′
y(x

∗) ∂X∗
∂y

|y=y∗

(
1

y∗

)n

and (29) follows.
In case II, the function P(1, y) is analytic in the disk with center 0 and radius y3

and we have

P(0, y) = 1

2iπ

∫

C(y3)

gy(z)

z − y
dz,

where C(y3) is the circle with center 0 and radius y3. By using (22), we have

P(1, y) = 1 − ρ + (ν1y + ν2)p(P (0, r1/r2) − P(0, y))

(1 − p)ν2 − pν1y
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= 1 − ρ + 1

2iπ

∫

C(y3)

hy(z)

z − x
dz,

where

hy(z) = p(ν2 + ν1z)gy(z)

pν1z − (1 − p)ν2
.

By deforming the integration contour along the segment [y3,∞), and since the
function hy(z) is such that |hy(z)| < Ky/|z| for some constant Ky > 0 when |z| →
∞, we deduce that

P(1, y) = (1 − ρ) + 1

2iπ

∫ ∞

y3

hy(z + 0i) − hy(z − 0i)

z − y
dz

and then

P(1, y)

= (1 − ρ) + −1

π

∫ ∞

y3

(1 − ρ)λ(ν2 + ν1z)

z(pν1z − (1 − p)ν2)
�
(

(pν1y
2 − (1 − p)ν2X

∗(y))

Qy(X∗(y))

)

dz.

There holds

�
(

(pν1y
2 − (1 − p)ν2X

∗(y))

Qy(X∗(y))

)

= �((pν1y
2 − (1 − p)ν2X

∗(y))Qy(X∗(y)))

Qy(X∗(y))Qy(X∗(y))
.

When z ∈ [y3,∞), we have

X∗(z) = X∗(z).

It is easily checked that the function z → z2 Qy(X
∗(z))Qy(X∗(z)) is a quadratic

polynomial in z. By definition, we know that this polynomial vanishes for y equal
to y∗ or y∗. More precisely, in case II, we have X∗(y∗) = x∗. In addition, X∗(y∗)
or X∗(y∗) is equal to x∗. If y is such that h1(x, y) = 0 then (1 − p)ν2x/(pν1y)

is also such that h1(x, y) = 0. This implies that the four roots of the polynomial
z2 Qy(X

∗(z))Qy(X∗(z)) are y∗, y∗, (1 −p)ν2x
∗/(pν1y

∗) and (1 −p)ν2x∗/(pν1y∗).
Hence,

z2 Qy

(
X∗(z)

)
Qy

(
X∗(z)

)

= λ2p2ν2
1(z − y∗)(z − y∗)

(

z − (1 − p)ν2x
∗

pν1y∗

)(

z − (1 − p)ν2x∗
pν1y∗

)

and then

z2 Qy

(
X∗(z)

)
Qy

(
X∗(z)

)= λν1p
2 Qx(z)Q∗

x(z),

where the polynomial Q∗
x(z) as defined in (32).
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Moreover, we have in the neighborhood of y3

�
((

pν1y
2 − (1 − p)ν2X

∗(y)
)

Qy

(
X∗(y)

))

= − ν1

2y

(
λp
(
pν2 + (1 − p)ν1

)
y2 + 2λp(1 − p)ν2y − (1 − p)ν2

2

)√−D2(y).

It follows that

P(1, y) = (1 − ρ) + 1

π

∫ ∞

y3

Hy(z)

z − x
dz,

where the function Hy(z) is defined for z in the neighborhood of y3 by

Hy(z) = (1 − ρ)(ν2 + ν1z)
√−D2(z)

2p2(pν1z − (1 − p)ν2)Qx(z)Q∗
x(z)

× (λp(pν2 + (1 − p)ν1
)
z2 + 2λp(1 − p)ν2z − (1 − p)ν2

2

)
.

Then, for n ≥ 1,

P(N2 = n) = 1

π

∫ ∞

y3

Hy(z)

z
e−n log z dz. (33)

In the neighborhood of y3, we have

− log z = − logy3 − 1

y3
(z − y3) + o(z − y3)

and

Hy(z)

πz
= k

(2)
2

√
z − y3 + o

(√
z − y3

)
,

where

k
(2)
2 = (1 − ρ)(ν2 + ν1y3)(λp(pν2 + (1 − p)ν1)y

2
3 + 2λp(1 − p)ν2y3 − (1 − p)ν2

2)

2πy3p2(pν1y3 − (1 − p)ν2)Qx(y3)Q∗
x(y3)

×√4pν1(y3 − y1)(y3 − y2)/λ.

A direct application of Laplace’s method then yields

P(N2 = n) ∼ k
(2)
2 Γ (3/2)

1

n3/2

(
1

y3

)n− 3
2

when n → ∞. Since Γ (3/2) = √
π/2, (30) follows.

In case III, we have for z in the neighborhood of y3

Qx(z) = Q′
x(y3)(z − y3) + o

(
(z − y3)

)

and then

Hy(z)

2πz
= k

(2)
3 (z − y3)

−1/2 + o
(
(z − y3)

−1/2),
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where

k
(2)
3 = (1 − ρ)(ν2 + ν1y3)(λp(pν2 + (1 − p)ν1)y

2
3 + 2λp(1 − p)ν2y3 − (1 − p)ν2

2)

2πy3p2(pν1y3 − (1 − p)ν2)Q′
x(y3)Q∗

x(y3)

×√4pν1(y3 − y1)(y3 − y2)/λ.

Laplace’s method then yields

P(N2 = n) ∼ k
(2)
3 Γ (1/2)

1

n1/2

(
1

y3

)n− 1
2

and with Γ (1/2) = √
π (31) follows. �

5.1 Numerical examples

We shall now compare the asymptotic estimates in Propositions 5 and 6 against re-
sults obtained by numerical calculations. Truncating the state space by bounding one
of the queue lengths leads to a Markov process on an infinite strip, better known as
a Quasi-Birth-Death (QBD) process. For these processes, fast numerical algorithms
are available (see [26]). All numerical results presented were obtained by imposing
an upper bound on the second queue of 500 (so that the truncation effect should be
negligible).

For a first scenario we take λ = 1.5, ρ1 = .4 and ρ2 = .3. Figure 5 compares
X∗(y∗) with x∗ and Y ∗(x∗) with y∗, when p varies. For example, we see that for
p < .6, Y ∗(x∗) = y∗. For p = .5, we have regime (23) for queue 1 and regime (30) for
queue 2. Results for this case are presented in Table 1. Note that (23) converges fast
to the true (numerical) value. The convergence of the branch point asymptotics (30)
seems slower, in particular the convergence of the last column in Table 1 to the value
κ

(2)
2 = 20.7454. In order to demonstrate that κ

(2)
2 is indeed the leading constant, we

Fig. 5 Comparisons of x∗,
X∗(y∗) and y∗, Y ∗(x∗) when p

varies. Here, λ = 1.5, ρ1 = .4,
ρ2 = .3 and x∗ = 1.5890,
y∗ = 1.2146
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Table 1 Illustration of (23) and (30) for λ = 1.5, ρ1 = .4, ρ2 = .3, p = .5. In this case x∗ = 1.5890,

X∗(y∗) = 0.9555, y∗ = Y ∗(x∗) = 1.2146. We find that κ
(2)
2 = 20.7454

n P(N1 = n) κ
(1)
1 (x∗)−n

P(N2 = n) n−3/2(y3)−n P(N2=n)

n−3/2(y3)−n

5 2.8301e−002 2.4891e−002 1.0567e−002 5.1414e−003 2.0553e+000

10 2.5852e−003 2.4569e−003 3.6384e−004 1.0449e−004 3.4821e+000

15 2.4842e−004 2.4252e−004 1.5032e−005 3.2693e−006 4.5978e+000

20 2.4237e−005 2.3938e−005 6.7391e−007 1.2206e−007 5.5210e+000

50 2.2151e−011 2.2140e−011 1.0132e−014 1.1140e−015 9.0958e+000

100 1.9438e−021 1.9438e−021 1.8829e−027 1.5511e−028 1.2139e+001

200 1.4983e−041 1.4983e−041 1.2762e−052 8.5067e−054 1.5002e+001

300 1.1549e−061 1.1549e−061 1.1804e−077 7.1825e−079 1.6434e+001

Table 2 Comparison of (33)
and (30) for λ = 1.5, ρ1 = .4,
ρ2 = .3, p = .5 and

κ
(2)
2 = 20.7454

n (33) n−3/2(y3)−n P(N2=n)

n−3/2(y3)−n

102 1.8301e−27 1.5509e−28 1.1801e+1

103 4.8227e−252 2.5453e−253 1.8947e+1

104 2.3446e−2486 1.1415e−2487 2.0540e+1

105 2.4607e−24816 1.1873e−24817 2.0725e+1

106 1.1550e−248102 5.5682e−248104 2.0743e+1

107 1.8797e−2480952 9.0611e−2480954 2.0745e+1

Table 3 Illustration of (25) and (30) for λ = 1.5, ρ1 = .4, ρ2 = .3, p = .65. In this case x∗ = 1.5890,

X∗(y∗) = 1.2421, y∗ = 1.2146 and Y ∗(x∗) = 0.9392. We find that κ
(1)
3 = 81.6727 and κ

(2)
2 = 3.7799

n P(N1 = n) n−3/2(x3)−n P(N1=n)

n−3/2(x3)−n P(N2 = n) n−3/2(y3)−n P(N2=n)

n−3/2(y3)−n

5 2.0854e−002 7.4520e−003 2.7985e+000 2.6154e−002 2.7103e−002 9.6499e−001

10 1.2811e−003 2.1951e−004 5.8359e+000 4.1746e−003 2.9037e−003 1.4377e+000

15 8.6268e−005 9.9552e−006 8.6656e+000 8.3828e−004 4.7896e−004 1.7502e+000

20 6.0730e−006 5.3873e−007 1.1273e+001 1.8669e−004 9.4268e−005 1.9804e+000

50 1.0651e−012 4.5586e−014 2.3364e+001 4.9780e−008 1.8464e−008 2.6961e+000

100 9.3290e−024 2.5976e−025 3.5914e+001 1.3411e−013 4.2613e−014 3.1472e+000

200 1.1821e−045 2.3856e−047 4.9552e+001 2.2323e−024 6.4202e−025 3.4770e+000

300 1.9248e−067 3.3732e−069 5.7061e+001 5.3829e−035 1.4892e−035 3.6146e+000

compare (30) against the integral representation (33) (omitting the residue term); see
Table 2. Indeed, this confirms the correctness of κ

(2)
2 = 20.7454.

Results for p = .65 are presented in Table 3 in which case we have regime (25)
for queue 1 and regime (30) for queue 2. Note again the slow convergence to the
asymptotic constants κ

(1)
3 and κ

(2)
2 .
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Table 4 Illustration of (24) and (29) for λ = 1, ρ1 = .1, ρ2 = .85, p = .3. In this case x∗ = X∗(y∗) =
1.0581, y∗ = 1.0520 and Y ∗(x∗) = 0.2761

n P(N1 = n) κ
(1)
2 (r1)n rel. error P(N2 = n) κ

(2)
1 (y∗)−n

5 2.5017e−003 2.1008e−003 1.1909 3.7599e−002 3.7227e−002

10 1.0008e−005 8.6452e−006 1.1577 2.8912e−002 2.8894e−002

15 4.0423e−008 3.5577e−008 1.1362 2.2428e−002 2.2427e−002

20 1.6403e−010 1.4641e−010 1.1204 1.7407e−002 1.7407e−002

50 7.6060e−025 7.1109e−025 1.0696 3.8058e−003 3.8058e−003

100 1.0262e−048 9.9052e−049 1.0360 3.0199e−004 3.0199e−004

200 1.9451e−096 1.9219e−096 1.0120 1.9014e−006 1.9014e−006

300 3.7427e−144 3.7292e−144 1.0036 1.1972e−008 1.1972e−008

Table 4 illustrates some results for λ = 1.5, ρ1 = .2, ρ2 = .4 and p = .4, in which
case we have regimes (24) and (29).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix: The resultant of the polynomials h1 and h2

Generally speaking, when we have two polynomials in two variables, say,

f1(x, y) = a0(y) + a1(y)x + · · · + an(y)xn,

f2(x, y) = b0(y) + b1(y)x + · · · + bm(y)xm,

the resultant of the polynomials f1 and f2 with respect to x is the determinant
Resx(f1, f2) of the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

an · · · a0 0 · · · · · ·
0 an · · · a0 0 · · ·

· · · · · · · · · · · · · · · · · ·
· · · · · · 0 an · · · a0
bm · · · b0 0 · · · · · ·
0 bm · · · b0 0 · · ·

· · · · · · · · · · · · · · · · · ·
· · · · · · 0 bm · · · b0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎬

⎭
m rows

⎫
⎬

⎭
n rows

which is a polynomial in y. The polynomials f1 and f2 have a common nontrivial
root (x0, y0) if and only if the resultant with respect to x is 0 at y0. This leads to the
resolution of a polynomial equation. Note that by adding to the (m + n)th column,
the ith column multiplied by xm+n−i for 0 ≤ i < n + m, Resx(f1, f2) is equal to the
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determinant of the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

an · · · a0 0 · · · xm−1f1

0 an · · · a0 0 xm−2f1
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 an · · · f1

bm · · · b0 0 · · · xn−1f2

0 bm · · · b0 0 xn−2f2
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 bm · · · f2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which can written as p(x, y)f1(x, y) + q(x, y)f2(x, y), where p and q are polyno-
mials in variables x and y.

A.1 Resultant in x

In the case of the polynomials h1(x, y) and h2(x, y), the resultant in x, denoted by
Qx(y), is the determinant of the matrix

⎛

⎝
−λy a1(y) −pν1y

2

b1(y) (1 − p)ν1y
2 0

0 b1(y) (1 − p)ν1y
2

⎞

⎠ ,

where a1(y) = (λ+pν1 + (1−p)ν2)y − (1−p)ν2 and b1(y) = (1−p)((ν2 −ν1)y −
ν2). Straightforward computations show that

Qx(y) = −ν1(1 − p)2y2(y − 1)Qx(y),

where

Qx(y) = λν1y
2 + ν2(ν2 − ν1 + λ)y − ν2

2 .

It is easily checked that the quadratic polynomial Qx(y) has two roots of opposite
sign, as mentioned in Sect. 3. The positive root is

y∗ = ν2

2λν1

(−(ν2 − ν1 + λ) +
√

(ν2 − ν1 + λ)2 + 4λν1
)

and the negative root is

y∗ = ν2

2λν1

(−(ν2 − ν1 + λ) −
√

(ν2 − ν1 + λ)2 + 4λν1
)
.

In addition, the value of this polynomial at the point 1 is equal to λ(ν1 + ν2)− ν1ν2 =
ν1ν2(ρ1 + ρ2 − 1) < 0, which implies that y∗ > 1.
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A.2 Resultant in y

The resultant in y of the polynomials h1(x, y) and h2(x, y) is denoted by Qy(x) and
is equal to the determinant of the matrix

⎛

⎜
⎜
⎝

−pν1 α1(x) −(1 − p)ν2x 0
0 −pν1 α1(x) −(1 − p)ν2x

(1 − p)ν1 (1 − p)(ν2 − ν1)x −ν2(1 − p)x 0
0 (1 − p)ν1 (1 − p)(ν2 − ν1)x −ν2(1 − p)x

⎞

⎟
⎟
⎠ ,

where α1(x) = x(λ + pν1 + (1 − p)ν2 − λx). Straightforward computations show
that

Qy(x) = −ν2ν1(1 − p)2x2(x − 1)Qy(x)

with Qy(x) = λ2x2 − (λ + ν1 + ν2)λx + ν1ν2. The quadratic polynomial Qy(x) has
two positive roots equal to

x∗ = λ + ν1 + ν2 −√(λ + ν1 + ν2)2 − 4ν1ν2

2λ

and

x∗ = λ + ν1 + ν2 +√(λ + ν1 + ν2)2 − 4ν1ν2

2λ

with x∗ < x∗, and since Qy(1) = ν1ν2(1 − ρ1 − ρ2) > 0, x∗ > 1.
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