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Abstract We consider a single-stage queuing system where arrivals and departures
are modeled by point processes with stochastic intensities. An arrival incurs a cost,
while a departure earns a revenue. The objective is to maximize the profit by control-
ling the intensities subject to capacity limits and holding costs. When the stochastic
model for arrival and departure processes are completely known, then a threshold
policy is known to be optimal. Many times arrival and departure processes can not be
accurately modeled and controlled due to lack of sufficient calibration data or inaccu-
rate assumptions. We prove that a threshold policy is optimal under a max–min robust
model when the uncertainty in the processes is characterized by relative entropy. Our
model generalizes the standard notion of relative entropy to account for different lev-
els of model uncertainty in arrival and departure processes. We also study the impact
of uncertainty levels on the optimal threshold control.
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1 Introduction

We consider a general single-stage queuing system, in which the input (arrival) and
output (service completion) processes are modeled by point processes with dynam-
ically controlled stochastic intensities. An entering job incurs a cost, c̃, and a job
completion produces revenue, p̃. In addition there is a holding cost which is linearly
proportional to the number of jobs in the system at a given time. The problem is to dy-
namically control both the input and output intensities so as to maximize discounted
profit.

Problems of this type have been studied, for example, by Chen and Yao [3], where
it is shown that a threshold policy for both the input and output processes is optimal
under the assumption that the stochastic model for arrival and departure processes is
accurate and known. (See [7, 14] and [12] for similar results.) In many applications,
however, arrival and departure intensities can not be accurately modeled due to com-
plexities of the real-world system or lack of sufficient calibration data. This raises
natural questions including (i) what is the impact of model uncertainty on the “opti-
mal” operating policies for the system, and (ii) are threshold policies still “optimal”?
In this paper we account for model errors by formulating a max-min robust control
version of this problem in which model uncertainty is incorporated using the notion
of relative entropy. Within this framework we show that threshold policy is optimal
for the robust control problem, and study the impact of the level of model uncertainty
on the optimal threshold level.

While the use of relative entropy to account for model uncertainty in stochastic op-
timization problems has a relatively long history ([5, 8, 10] and [11]), one feature of
this paper which departs from the standard approach is that we generalize the standard
notion of relative entropy in order to allow for different levels of model uncertainty
for the arrival as well as the departure processes (see also Lim, Shanthikumar and
Watewai [9] for similar ideas in the context of dynamic pricing). Aside from being
realistic—for example, it is likely to be the case that the system operator is substan-
tially more knowledgeable about the service system he/she is controlling (since it is
internal) than the customer arrival process, which is typically much more complicated
and subject to many external factors—this also allows us to study (say) the impact of
the level of model uncertainty in the arrival process on the service control policy.

The outline of this paper is as follows. In Sect. 2 we recall the model from Chen
and Yao [3] and formulate the robust version of this problem. The robust version
involves an extension of the notion of discounted relative entropy from Hansen, Sar-
gent, Turmuhambetova and Williams [5] in order to handle different levels of model
uncertainty for the arrival and departure processes. Dynamic programming equations
for the robust control problem are derived in Sect. 3, and the impact of the level of
model uncertainty on the threshold control levels is studied in Sect. 4.
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Fig. 1 Queuing system

2 Model formulation

In this section we first introduce the standard model which is similar to [3] before
formulating the robust model in Sect. 2.2. The robust model extends the notion of
discounted relative entropy from [5] in order to handle different level of uncertainties
in arrival and departure rates.

2.1 Nominal model

Consider a single-stage queuing system as shown in Fig. 1. Let Xt be the state of
the system that denotes the number of jobs in process at time t . Xt takes values on
nonnegative integers and is of the form

Xt = x0 + At − Dt, (1)

where x0 ≥ 0 is the state at time t = 0 of the system and At and Dt are the arrival and
departure processes respectively. At and Dt denote the cumulative number of arrivals
and departures until time t.

We assume that At and Dt are simple point processes. Let Ft be the sigma field
generated by Xt , i.e., Ft = σ(Xs, s ≤ t). Also let At and Dt admit Ft predictable
intensities βt and αt . The rates αt and βt are subjected to the following capacity
constraints:

0 ≤ βt ≤ y, ∀t ≥ 0,

0 ≤ αt ≤ z, ∀t ≥ 0.
(2)

If there is no ambiguity in the arrival or departure process, i.e., if we can exactly
control the arrival and departure intensities, then our objective is to find a control
u = {βt ,αt , t ≥ 0} to maximize the following discounted value function:

V (x0, u) = Ex0

∫ ∞

0
e−δt (p̃ dDt − c̃ dAt − hXt dt). (3)

Ex0 denotes the conditional expectation given X0 = x0, δ is the discount factor, p̃ is
the revenue obtained by selling one unit of output, c̃ is the cost of acquiring one unit
of input and h is the unit holding cost for work-in-process inventory. Substituting Xt

from (1) in (3) we get:

V (x0, u) = Ex0

∫ ∞

0
e−δt

((
p̃ + h

δ

)
dDt −

(
c̃ + h

δ

)
dAt

)
− hx0

δ
. (4)

Defining p = p̃ + h
δ

and c = c̃ + h
δ

we have

V (x0, u) = Ex0

∫ ∞

0
e−δt (p dDt − c dAt) − hx0

δ
. (5)
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We can drop the last term in (5) for the purpose of finding optimal control as it is a
constant term. From the definition of stochastic intensity [2]

Ex0

∫ ∞

0
c dAt = Ex0

∫ ∞

0
cβt dt,

Ex0

∫ ∞

0
p dDt = Ex0

∫ ∞

0
pαt dt.

(6)

Rewriting the value function in (5) using (6) and dropping the constant term we have

V (x0, u) = Ex0

∫ ∞

0
e−δt (p dDt − c dAt ) = Ex0

∫ ∞

0
e−δt (pαt − cβt ) dt. (7)

The problem formulation with unambiguous arrival rate is:

max
u

V (x0, u) = max
u

Ex0

∫ ∞

0
e−δt (pαt − cβt ) dt. (8)

2.2 Robust model

Let (�, Ft , F ) be the underlying measurable space for arrival and departure
processes, At and Dt respectively. At and Dt are counting processes and admit in-
tensities. A complete specification of intensity λt of the process At and of intensity
μt of the process Dt induces a measure P over F . The nominal model is based on
the assumption that the decision maker is able to set arrival and departure intensities
precisely subject to capacity constraints. The objective then is to find (λt ,μt ) which
are optimal.

In reality the real-world intensity processes are unlikely to be (λt ,μt ). For exam-
ple, the arrival rate, λt , might be a function of the price an arriving customer pays for
the service being offered while μt could depend on the number of workers assigned
to the customer in service, and the assumption in the nominal model is the decision
maker knows the exact relationship between pricing decisions and the arrival rate λt ,
as well as the number of workers assigned and the departure rate μt , so that the arrival
and departure rates can be set to the precise values that the decision maker desires.
In practice, the relationship between the pricing decision and λt and also the number
of assigned workers and the service rate μt may be difficult to characterize. The ar-
rival intensity might be a complicated non-stationary function of the price and also
of other factors such as amount of advertising. This makes it impossible to precisely
calibrate intensities.

More generally we have a situation where the decision maker on the basis of her
model thinks she is setting the arrival and departure rates at levels (λt ,μt ) but in
reality the rates might be something different (say (βt , αt )). Our objective in this
section is to incorporate the possibility of such model uncertainty into the formulation
of the problem.

Suppose the real-world Ft -predictable intensity processes βt and αt induces a
measure Q over F . We assume that the real-world intensity processes, while not
known accurately, satisfy certain minimal conditions with respect to the intensity
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processes λt and μt , which are precisely known to the decision maker. Let Pt and Qt

be restrictions of P and Q respectively to Ft . In particular we assume that for all t ,
Qt is absolutely continuous with respect to Pt , i.e.,

Pt (A) = 0 ⇒ Qt(A) = 0 ∀A ∈ Ft .

The distribution Q is said to be absolutely continuous over finite intervals with
respect to P if Qt is absolutely continuous with respect to Pt for all t . This definition
of absolute continuity captures the idea that two models are impossible to distinguish
with certainty over a finite interval [5].

Let {γt , t ≥ 0} be a stochastic process such that for every t , γt is Radon–Nikodym
derivative [4] of Qt with respect to Pt . γt is a positive martingale and is adapted to
filtration Ft . It follows from [6] that there are Ft -predictable processes κt and ηt such
that:

γt = exp

(∫ t

0

(
ln(κs) dAs + ln(ηs) dDs

) +
∫ t

0

(
(1 − κs)λs + (1 − ηs)μs

)
ds

)
. (9)

The following result is a version of the Girsanov Theorem for point processes as
stated in Bremaud [2].

Theorem 1 (Girsanov Theorem) Let At and Dt be Ft -adapted point processes with
Ft -predictable intensities λt and μt respectively under the probability measure P .
Suppose that γt is a positive Ft -martingale under P and that the Radon–Nikodym
density of Qt with respect to Pt is given by

dQt

dPt

= γt = exp

(∫ t

0

(
ln(κs) dAs + ln(ηs) dDs

)+
∫ t

0

(
(1−κs)λs + (1−ηs)μs

)
ds

)
,

(10)
then At and Dt are Ft -adapted point processes with intensities βt = κtλt and
αt = ηtμt respectively under Q.

Theorem 1 allows us to parameterize the real-world model Q = (βt , αt , t ≥ 0)

through the processes κt and ηt .

2.3 Relative entropy

Relative entropy or KL divergence is a measure of difference between two proba-
bility measures. In this paper we use a weaker notion, called Discounted Relative
Entropy [5] to measure the discrepancy between two measures over an infinite hori-
zon.

The weaker notion requires that the two measure being compared put positive
probability on all of the same events, except tail events. The discounted relative en-
tropy is defined as:

R̃(Q|P) = δ

∫ ∞

0
exp(−δt)

(∫
ln

(
dQt

dPt

)
dQt

)
dt, (11)

where dQt

dPt
is the Radon–Nikodym derivative of Qt with respect to Pt .
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This measure of relative entropy is convex in Q as shown in [5]. It should be
noted here that even if the discounted measure of entropy is finite the standard relative
entropy measure of distance between P and Q can be infinite, i.e., it can happen that:

∫
log

(
dQ

dP

)
dQ = +∞. (12)

If (12) holds but the discounted relative entropy (11) is finite, then it means that a
statistician would be able to distinguish between the probability measures P and Q

with a continuous record of data on an infinite interval while it is impossible to do
so by recording finite length time interval data. As an example, if under P the arrival
rate is constant λ and under Q the arrival rate is constant β , β �= λ, then the relative
entropy of P and Q is infinite but the discounted relative entropy between Q and P

is finite.
Returning to our discussion on point processes, it follows from Theorem 1 that

our measure of discounted relative entropy (11) transforms into:

R̃(Q|P) = δ

∫ ∞

0
e−δt

(∫
ln

dQt

dPt

dQt

)
dt

= δ

∫ ∞

0
e−δt

(∫ t

0

(
λs(κs lnκs + 1 − κs) + μs(ηs lnηs + 1 − ηs)

)
ds

)
dt

= δ

∫ ∞

0

(
λs(κs lnκs + 1 − κs) + μs(ηs lnηs + 1 − ηs)

)
ds

(∫ ∞

s

e−δt dt

)

=
∫ ∞

0
e−δsλs(κs lnκs + 1 − κs) ds +

∫ ∞

0
e−δsμs(ηs lnηs + 1 − ηs) ds,

(13)

where the third equality is justified by Fubini’s theorem [4] as the integrand is
positive. The first term R̃1(Q|P) = ∫ ∞

0 e−δsλs(κs lnκs + 1 − κs) ds can be inter-
preted as a measure of ambiguity in the arrival process. Similarly the second term
R̃2(Q|P) = ∫ ∞

0 e−δsμs(ηs lnηs + 1 − ηs) ds measures the ambiguity in the depar-
ture process.

Our robust control problem corresponding to (8) is as follows:

max
u∈U

min
Q

EQ

[∫ ∞

0
e−δt (pαt − cβt dt)

]

Subject to: R̃(Q|P) ≤ η.

(14)

Here the control is u = {λt ,μt , λt ≤ y,μt ≤ z, t ≥ 0}.
The robust control problem is a two-player game between ‘nature’ and decision

maker. Given the control u, nature chooses a “worst-case” measure Q from the class
of measures defined by the convex discounted relative entropy constraint. The con-
stant η ≥ 0 is a measure of our confidence in the nominal measure P and restricts
the amount that Q (or the real-world intensity processes βt and αt ) can deviate from
P (resp. λt and μt ). A large value of η allows Q to deviate further from our nomi-
nal probability measure P while a small value of η is chosen when we have a high
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degree of confidence in our nominal model. Putting η = 0 reduces the robust control
problem to a standard one.

Alternatively, we may consider the following problem:

max
u∈U

min
Q

(
EQ

[∫ ∞

0
e−δt (pμt − cβt dt)

]
+ θR̃(Q|P)

)
. (15)

The constant θ > 0 may be seen as the Lagrange multiplier for the relative entropy
constraint in (14) and solving (14) is equivalent to solving (15) for an appropriate
choice of θ . Alternatively, the parameter θ can represents our confidence in the nom-
inal model. A large value of θ denotes high confidence in the model as the penalty of
deviation from the model is large.

Note that the discounted relative entropy in (13) is the sum of two terms. The
terms individually can be interpreted as measure of uncertainties in arrival and de-
parture processes respectively. In formulation (15), as both the terms in discounted
relative entropy expansion are multiplied by the same constant θ , the confidence lev-
els in arrival and departure processes are assumed to be the same. If we have reason
to believe in varying levels of confidence in arrival and departure processes the for-
mulation (15) can be modified as:

max
u∈U

min
Q

(
EQ

[∫ ∞

0
e−δt (pαt − cβt dt)

]
+ θAR̃1(Q|P) + θDR̃2(Q|P)

)
, (16)

where θA and θD denotes the confidence in arrival and departure processes respec-
tively. Hence Model (16) differs from the standard robust model (15) which assumes
the same level of uncertainty for all parts of the model.

Substituting the value of discounted relative entropy for point processes from (13)
to (15), our robust formulation is:

max
u∈U

min
κ,η

Ex0

[∫ ∞

0
e−δt

(
pηsμs − cκsλs + θAλs(1 − κs + κs lnκs)

+ θDμs(1 − ηs + ηs lnηs)
)
ds

]
. (17)

3 Characterization of optimal policy

Suppose we first restrict ourselves to the policies which are Markov in the state (the
number of items that are currently in service). In other words, we can replace λt

and μt by λ(Xt ) and μ(Xt) respectively. Further assume that nature is restricted to
choose among a set of Markovian policy only, i.e., κ and η are only functions of X.
In this case the formulation (17) reduces to:

max
λ,μ

min
κ

Ex0

[∫ ∞

0
e−δt

(
pη(Xs)μ(Xs) − cκ(Xs)λ(Xs)

+ θAλ(Xs)
(
1 − κ(Xs) + κ(Xs) lnκ(Xs)

)

+ θDμ(Xs)
(
1 − η(Xs) + η(Xs) lnη(Xs)

))
ds

]
. (18)
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The Hamiltonian–Jacobi–Bellman (HJB) equation corresponding to the above for-
mulation is:

δV (x) = max
λ(x),μ(x)

min
κ(x),η(x)

[
λ(x)κ(x)

(−c + θA

(−1 + lnκ(x)
) + �V (x)

) + λ(x)θA

+ μ(x)η(x)
(
p + θD

(−1 + lnη(x)
) − �V (x − 1)

) + μ(x)θD

]
, (19)

where

�V (x) = V (x + 1) − V (x) (20)

and

V (x) = max
λ(x),μ(x)

min
κ(x),η(x)

Ex

[∫ ∞

0
e−δt

(
pμ(Xs) − cκ(Xs)λ(Xs)

+ θAλ(Xs)
(
1 − κ(Xs) + κ(Xs) lnκ(Xs)

)

+ θDμ(Xs)
(
1 − η(Xs) + η(Xs) lnη(Xs)

))
ds

]
. (21)

The solution of the (unconstrained convex) inner minimization (with respect to κ

and η) problem in (19) is characterized by the first order conditions and yields the
following:

κ∗(x) = exp

(
− 1

θA

(
�V (x) − c

))
,

η∗(x) = exp

(
− 1

θD

(
p − �V (x − 1)

))
.

(22)

Substituting back the value of κ∗ and η∗(x) from (22) to (19) we get the following
after some manipulation:

δV (x) = max
λ(x),μ(x)

[
θAλ(x)

(
1 − exp

(
− 1

θA

(
�V (x) − c

)))

+ θDμ(x)

(
1 − exp

(
− 1

θD

(
p − �V (x − 1)

)))]
. (23)

As the above equation is linear in λ(x) and μ(x) we get the following characterization
of the optimal policy:

λ∗(x) =
{

y if �V (x) ≥ c

0 otherwise.
(24)

μ∗(x) =
{

z if �V (x − 1) ≤ p, x ≥ 1
0 otherwise.

(25)

This proves that the optimal policy would either allow arrivals at full force or not
to allow arrivals at all. The same structure holds for production. We either produce
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at full force or do not produce at all. In order to guarantee that the optimal policy is
threshold we need to prove the existence of a number b such that:

{
c ≤ �V (x) ≤ p for x ≤ b

�V (x) < c for x > b.
(26)

As it does not make sense to stop the production if there is a positive inventory due to
discounting and the holding cost, it is obvious that the optimal output policy should
be of the following form:

μ∗(x) =
{

z if x ≥ 1
0 otherwise.

(27)

Now consider the following policy for arrivals. At every stage there is a choice
between setting the arrival intensity to zero or setting it equal to its maximum value
of y. The value function if we follow this binary policy, which we have already proved
to be optimal in the case when both nature and decision maker are restricted to the
class of Markovian policies, is:

V (x) = max
λ(·)∈{0,y}

Ex

[∫ ∞

0
e−δt

(
pμ∗(Xs)η

∗(Xs) − cκ∗(Xs)λ(Xs)

+ θAλ(Xs)
(
1 − κ∗(Xs) + κ∗(Xs) lnκ∗(Xs)

)

+ θDμ(Xs)
(
1 − η∗(Xs) + η∗(Xs) lnη∗(Xs)

))
ds

]
. (28)

μ∗(x) is as described in (27), and κ∗(x), η∗(x) are as in (22). Now suppose we can
find a finite constant ν such that ν ≥ (yκ∗(x)+zη∗(x)),∀x. The existence of such a ν

is guaranteed if we look at the expression (22) as it is possible to get upper and lower
bounds on V (x).1 Given such a ν we can write the following dynamic programming
equation (see Bertsekas [1, Chap. 5])

V (x) = 1

δ + ν

[
pμ∗(x)η∗(x) + μ∗(x)θD

(
1 − η∗(x) + η∗(x) lnη∗(x)

)

+ (
ν − μ∗(x)

)
V (x) + μ∗(x)V (x − 1)

+ max
(−cyκ∗(x) + yθA

(
1 − κ∗(x) + κ∗(x) lnκ∗(x)

)
+ yκ∗(x)

(
V (x + 1) − V (x)

)
,0

)]
. (29)

Without loss of generality we can assume that δ+ν = 1 as it is possible to scale upper
bounds z and y appropriately. Substituting the value of κ∗(x) and η∗(x) from (22)
in (29) and simplifying we get:

V (x) = μ∗(x)θD

(
1 − e

− 1
θD

(p−�V (x−1))
)

+ νV (x)

+ yθA max
(

1 − e
− 1

θA
(�V (x)−c)

,0
)
. (30)

1Zero is a lower bound. An upper bound is the value function of an unambiguous problem which can be
uniformly upper bounded.
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To prove the structural properties of V (x) consider the following value-iteration al-
gorithm:

Vn+1(x) = μ∗(x)θD

(
1 − e

− 1
θD

(p−�Vn(x−1))
)

+ νVn(x)

+ yθA max
(

1 − e
− 1

θA
(�Vn(x)−c)

,0
)
. (31)

Such a value-iteration algorithm corresponding to a stochastic game can be shown
to converge to the true value function (see [13]).

The set of value-iteration equations can be written more explicitly in the following
form:

Vn+1(x) = zθD

(
1−e

− 1
θD

(p−�Vn(x−1))
)
+νVn(x)+yθA max

(
1−e

− 1
θA

(�Vn(x)−c)
,0

)
(32)

where by convention �Vn(−1) = p for all n so that e
− 1

θD
(p−�Vn(−1)) = 1.

Theorem 2 Suppose we initialize V0(x) = 0 for all x. If we iterate according to (32)
then the following holds true for every n:

(a) �Vn(x) ≤ p.
(b) Vn(x) is increasing in x, i.e., �Vn(x) ≥ 0.
(c) Vn(x) is concave in x, i.e., �Vn(x) is decreasing in x.

Proof Proof is by induction. By construction the hypothesis holds true for n = 0. We
now suppose that it holds for n = k and show that it holds for n = k + 1.

(a)

�Vk+1(x) = zθD

((
(1 − e

− 1
θD

(p−�Vk(x))
)

−
(

1 − e
− 1

θD
(p−�Vk(x−1))

))

+ ν
(
�Vk(x)

) + yθA

(
max

(
1 − e

− 1
θA

(�Vk(x+1)−c)
,0

)

− max
(

1 − e
− 1

θA
(�Vk(x)−c)

,0
))

≤ zθD

(
1 − e

− 1
θD

(p−�Vk(x))
)

+ ν�Vk(x)

≤ z
(
p − �Vk(x)

) + ν�Vk(x) = zp + (ν − z)p ≤ zp + (ν − z)p = p.

We have used the following facts: max(1 − e
− 1

θA
(�Vk(x+1)−c)

,0) ≤
max(1 − e

− 1
θA

(�Vk(x)−c)
,0) as �Vk(x) is a decreasing function of x;

(1 − e
− 1

θD
(p−�Vk(x−1))

) ≥ 0 as �Vk(x − 1) ≤ p for all x and 1 − e−s ≤ s when
x ≥ 0.
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(b)

�Vk+1(x) = zθD

(
e
− 1

θD
(p−�Vk(x−1)) − e

− 1
θD

(p−�Vk(x))
)

+ ν
(
�Vk(x)

)

+ yθA

(
max

(
1 − e

− 1
θA

(�Vk(x+1)−c)
,0

)

− max
(

1 − e
− 1

θA
(�Vk(x)−c)

,0
))

≥ ν�Vk(x) + yθA

(
max

(
1 − e

− 1
θA

(�Vk(x+1)−c)
,0

)

− max
(

1 − e
− 1

θA
(�Vk(x)−c)

,0
))

≥ ν�Vk(x) − yθA max
(

1 − e
− 1

θA
(�Vk(x)−c)

,0
)
.

If �Vk(x) ≤ c, then max(1 − e
− 1

θA
(�Vk(x)−c)

,0) = 0 and hence �Vk+1(x) ≥
ν�Vk(x) ≥ 0.

Else, if �Vk(x) ≥ c, then

�Vk+1(x) ≥ ν�Vk(x) − yθA

(
1 − e

− 1
θA

(�Vk(x)−c)
)

≥ ν�Vk(x) − yθA

�Vk(x) − c

θA

≥ (ν − y)�Vk(x) ≥ 0.

Here we have used the fact that 1 − e−s ≤ s when s ≥ 0. Also note that ν ≥ y as
ν ≥ yκ∗(x) for every admissible value of κ∗(x) and κ∗(x) = 1 is admissible as
�V (x) = c is possible.

(c)

�Vk+1(x) − �Vk+1(x + 1)

= zθD

(
e
− f (x−1)

θD − 2e
− f (x)

θD + e
− f (x+1)

θD

)
+ ν

(
�Vk(x) − �Vk(x + 1)

)

+ yθA

(
2 max

(
1 − e

− g(x+1)
θA ,0

)
− max

(
1 − e

− g(x)
θA ,0

)

− max
(

1 − e
− g(x+2)

θA ,0
))

,

where f (x) = p − �V (x) and g(x) = �V (x) − c. Note that, as 0 ≤ f (x) ≤ p

and f (x) is increasing in x, we have

e
− f (x−1)

θD − e
− f (x)

θD ≥ 0.

Also, as g(x) is decreasing in x,

max
(

1 − e
− g(x+1)

θA ,0
)

− max
(

1 − e
− g(x+2)

θA ,0
)

≥ 0.
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Therefore

�Vk+1(x) − �Vk+1(x + 1)

≥ zθD

(
e
− f (x+1)

θD − e
− f (x)

θD

)
+ ν

(
�Vk(x) − �Vk(x + 1)

)

+ yθA

(
max

(
1 − e

− g(x+1)
θA ,0

)
− max

(
1 − e

− g(x)
θA ,0

))

= zθD

(
e
− f (x+1)

θD − e
− f (x)

θD

)
+ z

((
p − �Vk(x + 1)

) − (
p − �Vk(x)

))

+ yθA

(
max

(
1 − e

− g(x+1)
θA ,0

)
− max

(
1 − e

− g(x)
θA ,0

))

+ y
((

�Vk(x) − c
) − (

�Vk(x + 1) − c
))

+ (ν − y − z)
(
�Vk(x) − �Vk(x + 1)

)

≥ zθD

((
e
− f (x+1)

θD + f (x + 1)

θD

)
−

(
e
− f (x)

θD + f (x)

θD

))

+ yθA

((
max

(
1 − e

− g(x+1)
θA ,0

)
− g(x + 1)

θA

)

−
(

max
(

1 − e
− g(x)

θA ,0
)

− g(x)

θA

))
.

e−s + s is an increasing function of s when s ≥ 0, so

(
e
− f (x+1)

θD + f (x + 1)

θD

)
−

(
e
− f (x)

θD + f (x)

θD

)
≥ 0.

Also max(1−e−s ,0)−s is decreasing in s and, as g(x) is a decreasing function
of x,

(
max

(
1 − e

− g(x+1)
θA ,0

)
− g(x + 1)

θA

)
−

(
max

(
1 − e

− g(x)
θA ,0

)
− g(x)

θA

)
≥ 0.

Therefore,

�Vk+1(x) − �Vk+1(x + 1) ≥ 0. �

Hence we have proved here that if we restrict ourselves to the class of Markovian
policies and nature is also restricted to choose a Markovian policy to hurt the decision
maker then a threshold policy is optimum. Specifically we proved that there exists a
threshold b ∈ [0,∞] such that

{
c ≤ V (x + 1) − V (x) ≤ p for x ≤ b

V (x + 1) − V (x) < c for x > b.
(33)



Queueing Syst (2010) 65: 157–174 169

Coupled with (24) we have the following policy:

λ∗(x) =
{

y if x ≤ b

0 if x > b.
(34)

Next we will show that the policy remains optimal even if nature is free to choose
any non-Markovian policy. Specifically we prove that if we choose the threshold
policy and nature is free to choose anything, nature would choose the Markovian
policy to hurt most.

Theorem 3 Suppose we choose the input and output intensities according to (34)
and (25). Suppose we allow “nature”, acting as the adversary, to choose any arbi-
trary Ft -predictable processes κt and ηt to hurt the decision maker so that the ex-
pected profit is minimized. Then nature would choose the Markovian policy as given
by (22), where the value function in the equation is the optimal one when both nature
and decision maker are allowed to choose only Markovian policies.

Proof For any given arbitrary processes (κt , ηt ), t ≥ 0, suppose we consider a situa-
tion where nature follows (κt , ηt ) up to time t and then follows the Markovian policy
given by (22) after that. The value function associated with this (denoted by Ṽt ) can
be expressed as follows:

Ṽt (x) = Ex

∫ t

0
e−δt

(
pμ∗(Xs)ηs − cλ∗(Xs)κs + θAλ∗(Xs)(1 − κs + κs lnκs)

+ θAμ∗(Xs)(1 − ηs + ηs lnηs) ds
) + Ex

[
e−δtV (Xt )

]
. (35)

To derive the second expectation in the above equation consider
∫ t

0
e−δs dV (Xs) = e−δtV (Xt ) − V

(
X(0)

) + δ

∫ t

0
e−δsV (Xs) ds. (36)

Taking expectation on both sides of the equality, we have

Ex

∫ t

0
e−δs dV (Xs) = Ex

[
e−δtV (Xt )

] − V (x) + Ex

[
δ

∫ t

0
e−δsV (Xs) ds

]
. (37)

We can calculate the left most term in the above expression as:

Ex

∫ t

0
eδs dV (Xs) = Ex

∫ t

0
e−δs

([
�V (Xs)

]
dAs − [

�V (Xs − 1)
]
dDs

)

= Ex

∫ t

0
e−δs

(
κsλ

∗(Xs)�V (Xs) − ηsμ
∗(Xs)�V (Xs − 1)

)
ds.

(38)

The first equality follows from the fact that there are only two possible transitions,
upward and downward, and the second equality follows from (6). From (36) and (38)
we get:
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Ex

[
e−δtV (Xt )

] = V (x) + Ex

∫ t

0
e−δs

(
κsλ

∗(Xs)�V (Xs) − ηsμ
∗(Xs)�V (Xs − 1)

− δV (Xs)
)
ds. (39)

From (23) we have

δV (Xs) = θAλ∗(x)

(
1 − exp

(
− 1

θA

(
�V (Xs) − c

)))

+ θDμ∗(x)

(
1 − exp

(
− 1

θD

(
p − �V (Xs − 1)

)))
. (40)

From (39) and (40) we get

Ex

[
e−δtV (Xt )

]

= V (x) + Ex

∫ t

0
e−δs

(
κsλ

∗(Xs)�V (Xs) − ηsμ
∗(Xs)�V (Xs − 1)

)
ds

− Ex

∫ t

0
e−δsθAλ∗(x)

(
1 − exp

(
− 1

θA

(
�V (Xs) − c

)))
ds

+ Ex

∫ t

0
e−δsθDμ∗(x)

(
1 − exp

(
− 1

θD

(
p − �V (Xs − 1)

)))
ds. (41)

Substituting Ex[e−δtV (X(t))] from (41) to (35) we obtain

Ṽt (x) = Ex

∫ t

0
e−δs

(
λ∗(Xs)

[
−cκs + θA

(
κs(lnκs − 1) + e

− 1
θA

(�V (Xs)−c)
)

+ κs�V (Xs)
])

ds

+ Ex

∫ t

0
e−δs

(
μ∗(Xs)

[
pηs + θD

(
ηs(lnηs − 1) + e

− 1
θD

(p−�V (Xs−1))
)

− ηs�V (Xs − 1)
])

ds + V (x). (42)

We now prove that the integrands in the expression are non-negative, i.e.,

−cκs + θA

(
κs(lnκs − 1) + e

− 1
θA

(�V (Xs)−c)
)

+ κs�V (Xs) ≥ 0 (43)

and

pηs + θD

(
ηs(lnηs − 1) + e

− 1
θD

(p−�V (Xs−1))
)

− ηs�V (Xs − 1) ≥ 0. (44)

But this is straightforward as expressions (43) and (44) are convex in κ and η

respectively and, from the first order conditions, the values of κs and ηs that minimize
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the integrands are:

κs = e
− 1

θA
(�V (Xs)−c)

ηs = e
− 1

θD
(p−�V (Xs−1))

.

(45)

Substituting the minimizing value of κs in (43) and ηs in (44) we get zeros. Hence
we have proved that

Ṽt (x) ≥ V (x). (46)

�

A similar analysis would prove that if nature chose the Markovian policy as de-
fined in (22) and we are free to choose any policy, we will again choose the threshold
policy. So even if we are free to choose anything and nature is restricted to Markov-
ian policies, we will choose the threshold policy. Giving more freedom to nature will
only worsen the performance. So it makes sense for us to choose the threshold policy.
Hence a threshold policy is optimum even if we are free to choose any Ft -predictable
intensities and in that case nature would also choose a Markovian policy to hurt us
most.

4 Effect of ambiguity parameter on threshold control

In this section we will study the effect of change in ambiguity levels on threshold
control.

We define the optimal value function explicitly as a function of φ := (θA, θD) as

V φ(x) := max
u

min
κ,η

Ex

[∫ ∞

0
e−δt

(
pμs − cκsλs + θAλs(1 − κs + κs lnκs)

+ θDμs(1 − ηs + ηs lnηs)
)
ds

]
. (47)

We also define a partial order on φ, i.e., φ1 ≥ φ2 if θ1A ≥ θ2A and θ1D ≥ θ2D .
The following property of the value function is obvious from its definition.

Proposition 1 If φ1 ≤ φ2 then V φ1(x) ≤ V φ2(x) for all x ∈ N .

Let b(φ) be the value of the optimal threshold control corresponding to the para-
meter φ. We now show that the threshold remains bounded.

Proposition 2 b(φ) < ∞ for all φ ∈ [0,∞] × [0,∞].

Proof If b(φ) = ∞ for some φ then limx→∞ V φ(x) = ∞ as �V φ(x) > c for all x.
But the function V φ(·) is uniformly (in x) less than the value function for the unam-
biguous problem. The value function of the unambiguous problem can be uniformly
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bounded by setting αt = z and βt = 0 in (8). Hence limx→∞ V φ(x) = ∞ is not pos-
sible. �

We can now prove that the optimal threshold control is monotone in θA for
fixed θD .

Proposition 3 Let φ1 = (θ1A, θD) and φ2 = (θ2A, θD). If θ1A < θ2A then
b(φ1) ≥ b(φ2).

Proof If x > b(φ) for some φ = (θA, θD), then �V φ(x) < c and hence

V φ(x) = zθD

(
1 − e

− 1
θD

(p−�V φ(x−1))
)

+ νV φ(x) (48)

which implies

δV φ(x) + zθD

(
e
− 1

θD
(p−�V φ(x−1))

)
= zθD. (49)

Subtracting δV φ(x − 1) from both sides we get

δ
(
�V φ(x − 1)

) + zθD

(
e
− 1

θD
(p−�V φ(x−1))

)
= zθD − δV φ(x − 1). (50)

Suppose on the contrary b(φ1) < b(φ2) < ∞. By definition of b(φ2), �V φ2(b(φ2))

≥ c but �V φ2(b(φ2) + 1) < c. Therefore substituting x = b(φ2) + 1 we get the fol-
lowing from (50):

δ
(
�V φ2

(
b(φ2)

)) + zθD

(
e
− 1

θD
(p−�V φ2 (b(φ2)))

)
= zθD − δV φ2

(
b(φ2)

)
. (51)

Also as b(φ1) < b(φ2)

δ
(
�V φ1

(
b(φ2)

)) + zθD

(
e
− 1

θD
(p−�V φ1 (b(φ2)))

)
= zθD − δV φ1

(
b(φ2)

)
. (52)

As φ2 ≥ φ1, V φ2(b(φ2)) ≥ V φ1(b(φ2)). Hence

δ
(
�V φ2

(
b(φ2)

)) + zθD

(
e
− 1

θD
(p−�V φ2 (b(φ2)))

)

≤ δ
(
�V φ1

(
b(φ2)

)) + zθD

(
e
− 1

θD
(p−�V φ1

(
b(φ2)))

)
. (53)

The function δs + zθDe
− 1

θD
(p−s)

is an increasing function of s for s ≥ 0. So the only
way (53) can be true is if

�V φ2
(
b(φ2)

) ≤ �V φ1
(
b(φ2)

)
.

As �V φ2(b(φ2)) ≥ c, so �V φ1(b(φ2)) ≥ c. This contradicts b(φ1) < b(φ2). �
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Fig. 2 Threshold control variation with ambiguity levels

Fig. 3 Threshold is increasing if θA = θD

Numerical experiments also indicate (for various choices of parameters) that the
threshold value is an increasing function of θD . Thus the ambiguity in arrival and
ambiguity in departure appear to act in opposite directions (see for example Fig. 2).
It is therefore important to consider the case when the two ambiguity levels are the
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same. In our numerical experiments for θA = θD , the threshold control is increasing
in the common ambiguity level (Fig. 3).

5 Conclusion

In this paper, we considered the problem of worst-case robust intensity control of
the arrival and departure processes of a single-state queueing system, where model
ambiguity is represented using the notion of relative entropy. A novel feature of our
model is that we consider different levels of uncertainty for the arrival and departure
processes. We prove that the optimal robust control for our model is of threshold type.

The paper can be extended in several directions. One possibility is to consider
state-dependent capacity limits. Another extension is to consider multistage net-
works. Finally it would be interesting to consider a decentralized version of our prob-
lem where arrivals and departures are controlled by separate entities.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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