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Abstract We consider piecewise-deterministic Markov processes that occur as scal-
ing limits of discrete-time Markov chains that describe the Transmission Control Pro-
tocol (TCP). The class of processes allows for general increase and decrease profiles.
Our key observation is that stationary results for the general class follow directly from
the stationary results for the idealized TCP process. The latter is a Markov process
that increases linearly and experiences downward jumps at times governed by a Pois-
son process. To establish this connection, we apply space–time transformations that
preserve the properties of the class of Markov processes.
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1 Introduction

This paper deals with a class M(r,α;λ,β;FQ) of piecewise-deterministic Markov
processes (PDMPs) related to the Transmission Control Protocol (TCP) for data
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transmission over the Internet. The process X(t) ∈ M has the following behavior.
Between random collapse times (τk)k∈N the evolution is deterministic according to

d

dt
X(t) = rX(t)α, r > 0.

The random times τk are governed by a state-dependent Poisson process with rate
λX(t)β and β > α −1, and at τk the process is multiplied by a random variable Qk in
[0,1) with distribution FQ(x), i.e., X(τk) = QkX(τk−), where the random variables
(Qk)k∈N are independent of {X(t) : t ≤ τk}. If α = 0 and β = 0, the PDMP X(t) has
a linear increase profile and independent losses and is known as the additive-increase
multiplicative-decrease (AIMD) algorithm, also referred to as idealized TCP [21]. In
general, if X(0) = x, the process X(t) increases deterministically as

φ(x, t) =
{

(x1−α + (1 − α)rt)
1

1−α , α �= 1,

xert , α = 1,
(1)

until the time τ1 of the first jump. It is clear that a larger α leads to a more aggressive
increase profile. Also, a larger β will lead to a more aggressive decrease profile,
because jumps will occur more frequently. All possible combinations of α and β

together present a diverse pallet of increase-decrease profiles for the dynamics of
TCP.

The dynamical behavior of TCP was originally modeled as a discrete-time Markov
chain [21]. Several research papers [11, 15, 17, 18, 20, 21] deal with establishing
scaling limits under a “low loss” scenario for such Markov Chains. Challenges were
to establish weak convergence of processes to a limiting process, and to establish
weak convergence of stationary distributions to the limiting stationary distribution.

Reference [17] studies a very general class of TCP control mechanisms for which
it conjectures limiting behaviors. The limiting processes include what in this paper
is α < 1, β = 0, Q = c with c a constant. [18] proves weak convergence of station-
ary distributions for α < 1, β = 0, Q = c without establishing weak convergence of
processes, but includes rate of convergence results. [20] proves all results conjectured
in [17]: weak convergence of processes as well as of stationary distributions. [15] ex-
tends the results for Q = c to a random Q. The class M is the class of scaling limits
that occurs in [15].

In this paper we deal solely with the stationary behavior for processes in M. Re-
cent time-dependent results can be found in [14, 19]. The key parameters in the de-
scription of M are α and β for which we assume that β > α − 1. This is necessary
to guarantee that the process is stable and admits a stationary distribution, cf. The-
orem 1. Our contribution lies in the application of space–time transformations. We
show that by a state-space transformation of the type Y(t) = γX(t)δ and a time trans-
formation Z(u) = X(t(u)) with t (u) = ∫ u

0 X(t(s))−ν ds, stationary results for the
process X(t) ∈ M(r,α;λ,β;FQ) follow directly from the stationary results for the
idealized TCP process Y(t) ∈ M(1,0;λ,0;FQ). In this way, all known stationary
results for idealized TCP can be transferred directly to results for any process in M.

For a discussion of general PDMPs we refer to [7]. The processes in this paper
belong to the special class of growth-collapse processes for which we refer to [6].
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Growth-collapse processes are also referred to as stress release models [16, 22, 23].
There is also a close relationship to so-called repairable systems (see [13] and [12]).
In [5] and [4] a different class of stress release models with additive jumps is dis-
cussed. The papers [24] and [12] give conditions for ergodicity of a very general
class of growth collapse models, including our setting (model 4 in [24] and model 1
in [12]); the latter paper also gives conditions for non-explosiveness.

Space–time changes for general Markov processes can be found in the classical
literature [9, 10]. For the special class of PDMPs in this paper, such space–time
changes allow us to unify several earlier results. Ott et al. [21] use a space trans-
formation to solve the idealized TCP case for “packet time” (α < 1, β = 0,Q = c)
and use a time transformation to obtain the limiting stationary distribution for “clock
time” (α = 0, β = 1,Q = c). Dumas et al. [8] consider the case α = 0, β > −1, and
present the stationary distribution for β = 1. Altman et al. [1] consider the case α < 1
and give an explicit analysis of β = 0,1 using rather general mappings that involve
both space and time transformations. Baccelli et al. [3] consider a more general class
of models for non-persistent flows, that includes our model for the case α = 0, β ≤ 0.
They show that results for the throughput for β > 0 follow from the case β = 0 by
applying appropriate substitutions to a differential equation. Maulik and Zwart [15]
treat the case α ∈ [0,1] and β > 0 and obtain explicit expressions for the stationary
moments (cf. Sect. 3).

The remainder of this paper is structured as follows. In Sect. 2 we present our main
results concerning the transformations that can be used to relate any two processes
in M. In Sect. 3 we combine a state-space transformation with a time transformation
to express the stationary moments of X(t) in terms of the stationary moments of
idealized TCP. We also discuss the special cases of deterministic Q and (generalized)
uniform Q. As for the moments, the stationary distribution for idealized TCP then
yields immediately the stationary distribution for any process X(t) ∈ M. Some of
the more formal proofs in this paper are provided in Appendices B and C, following
a short introduction to the generator of the Markov process in Appendix A.

2 Main results

We denote by qQ(s) = EQs = Ee−s log(1/Q) the Laplace–Stieltjes transform of the
non-negative random variable log(1/Q). Hence, there exists an s0 ≤ 0 such that qQ(s)

is infinite for s < s0 and finite for s > s0. We also define the auxiliary function

ψQ(s) = 1 − qQ(s)

s
, s > 0,

and let ψQ(0) = lims→0 ψQ(s) = E(log(1/Q)).
Next we properly define the class M of PDMPs.

Definition 1 Let M(r,α;λ,β;FQ) denote the class of PDMPs described in Sect. 1.
Here r, λ > 0 are real constants, FQ is a distribution function on [0,1], and α and β

are real constants with

β > α − 1. (2)
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Moreover, FQ and α are chosen in a way such that s0 < 0 and

s0 < 1 − α. (3)

The condition s0 < 0 ensures that the distribution of Q is reasonably well behaved
in the sense that all moments E(log(1/Q)n) are finite. Condition (3), which is redun-
dant if α ≤ 1, is required to have a stable process.

We now first present some results for the stationary distribution that follow from
the general theories of PDMPs and regenerative processes. Let ⇒ denote conver-
gence in distribution. For a random variable A we denote throughout the paper by
ΠA(u) its distribution function, and by πA(u) its density.

Theorem 1 Let X(t) ∈ M(r,α;λ,β;FQ). Then X(t) stays finite for finite t and
X(t) ⇒ X as t → ∞, where X is a random variable with X > 0 a.s. The distribution
function ΠX(u) of X admits a density πX(u) satisfying

πX(u) = λ

r
u−α

∫ ∞

u

yβFQ(u/y)πX(y)dy. (4)

We give a proof of this theorem in Appendix B (see also [15]). The idea of the
proof is to show that under conditions (2) and (3), the process has negative drift
outside [0, y] for some y and positive drift inside [0,w] for some w ≤ y. It then
follows that the regenerative process X(t) has a finite cycle mean, which in turn
proves the convergence result.

We next present a recursion relation for the moments of the random variable X

that follows the stationary distribution of X(t).

Theorem 2 Let X(t) ∈ M(r,α;λ,β;FQ). If qQ(s − α + 1) < ∞ for some s ∈ R,
then E(Xs) < ∞ and

E
(
Xs

) = λ

r
ψQ(s − α + 1)E

(
Xs+β−α+1). (5)

Theorem 2 is proved in Appendix C. Replacing the variable s in (5) by s + (k −
1)(β − α + 1), with k ≥ 1 an integer, gives upon iteration

E
(
Xs+n(β−α+1)

) = E
(
Xs

) rn

λn

n∏
k=1

1

ψQ(s + (k − 1)β − k(α − 1))
, (6)

which is particularly helpful for s = 0.
We now introduce a state-space transformation M → M that preserves stationar-

ity.

Proposition 1 (State-space transformation) Let X(t) ∈ M(r,α;λ,β;FQ) and define
a new process Y(t) = γX(t)δ with δ > 0. Then

Y(t) ∈ M
(

rδγ
1−α

δ ,1 + α − 1

δ
;λγ −β/δ,

β

δ
;FQδ

)
.
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Proof We have on the deterministic part of the trajectory

d

dt
Y (t) = rγ δX(t)α+δ−1 = rδγ

1−α
δ Y (t)1+ α−1

δ .

Let ϕ(x) = γ xδ , so that Y(t) = ϕ(X(t)). The probability of a jump during [t, t + h]
is given by

λϕ−1(Y(t)
)β

h + o(h),

where ϕ−1 denotes the inverse function of ϕ, and hence the jump intensity is given
by λγ −β/δY (t)β/δ . Further notice that

Y(τk−)

Y (τk)
= γX(τk−)δ

γX(τk)δ
= Qδ.

Condition (2) is invariant under the state-space transformation, since β ≥ α − 1 iff
β/δ ≥ (α − 1)/δ. Letting QY := Qδ and qQY

(s) := E(Qs
Y ) = qQ(δs), it is obvious

that condition (3) is fulfilled for Y(t). �

The following result characterizes the relation between the stationary distributions
of the processes X(t) and Y(t) that are both in M.

Theorem 3 Let X(t) ∈ M(r,α;λ,β;FQ) and let Y(t) = γX(t)δ , δ > 0 as in Propo-

sition 1. Let X be the limit of X(t) as given in Theorem 1. Then Y(t) ⇒ Y
d= γXδ ,

where Y has a distribution with density

πY (x) = πX

(
(x/γ )1/δ

) · x1/δ−1

δγ 1/δ
(7)

and E(Y s) = γ s
E(X

sδ
) for all s with qQ(sδ−α+1) = qQY

(s − (α−1
δ

+1)+1) < ∞.

Proof The first part follows from the continuous mapping theorem, and the moment
relation is trivial. �

Next we define the random process

ϑ(t) =
∫ t

0
X(s)ν ds, (8)

for t ≥ 0, and ν some real constant, and with inverse function

ϑ−1(u) =
∫ u

0

1

X(ϑ−1(s))ν
ds.

Throughout this section we use u = ϑ(t) and t = ϑ−1(u). The time transformation
of X(t) is defined as follows.
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Proposition 2 (Time transformation) Let ν be a real number, such that

qQ(ν − α + 1) < ∞. (9)

Suppose that X(t) ∈ M(r,α;λ,β;FQ). Define the time-changed process by Z(u) =
X(ϑ−1(u)). Then

Z(u) ∈ M(r,α − ν;λ,β − ν;FQ). (10)

Proof We have, in between two jumps,

d

du
Z(u) = d

du
X

(
ϑ−1(u)

) = rZ(u)α−ν .

Then

P
(
Z(u) jumps during [u,u + h]) = P

(
X

(
ϑ−1(u)

)
jumps during [u,u + h]).

Since ϑ−1(u) = t and

ϑ−1(u + h) = ϑ−1(u) +
∫ u+h

u

X
(
ϑ−1(s)

)−ν
ds = t + hZ(t)−ν + o(h),

as h → 0, it follows that

P
(
Z(u) jumps during [u,u + h]) = P

(
X(t) jumps during

[
t, ϑ−1(u + h)

])
= λZ(t)β−νh + o(h).

The intensity of the time-changed process is therefore given by λZ(t)β−ν .
The jump sizes are not affected by a time change, hence leaving the jump distrib-

ution FQ unchanged, so condition (3) is still fulfilled for the time-changed process.
Condition (2) remains unaltered under the time change, and (10) follows. �

Note that X(t) and Z(t) are both regenerative processes, with cycles CX(y) and
CZ(y) defined by successive visits to some fixed state y. We point out the following
interesting property of the time-changed process, which links the cycle means to the
stationary moments.

Proposition 3 Let X(t) ∈ M(r,α;λ,β;FQ) and let Z(t) be the time-changed
process as in Proposition 2, and assume that (9) holds. Then E(Xν) < ∞,
E(CX(y)) < ∞, E(CZ(y)) < ∞ and, for all y > 0,

E
(
CZ(y)

) = E
(
CX(y)

)
E

(
Xν

)
.

Proof It is shown in Appendix B that under condition (2) the cycle CX(y) has a finite
mean for some y ∈ (0,∞). We have CZ(y) = ϑ(CX(y)) = ∫ CX(y)

0 dϑ(s) and hence

E
(
CZ(y)

) = E
(
ϑ

(
CX(y)

)) = E

(∫ CX(y)

0
X(s)ν ds

)
= E

(
CX(y)

)
E

(
Xν

)
, (11)
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where the last equality follows from regeneration theory. Since E(Xν) < ∞ by The-
orem 2, we have that E(CZ(y)) < ∞. �

Theorem 4 Let X(t) ∈ M(r,α;λ,β;FQ) and let Z(ϑ) = X(t) be the time-changed
process as in Proposition 2. Let X denote the limit of X(t) given in Theorem 1. Then
Z(t) ⇒ Z, and the distribution of Z admits a density that satisfies

πZ(x) = xν

E(Xν)
πX(x). (12)

For all s such that qQ(ν + s − α + 1) < ∞ the sth moment of Z is given by

E
(
Zs

) = E(Xs+ν)

E(Xν)
. (13)

Proof In Appendix B it is shown that E(CX(y)) < ∞, so that by Proposition 3 we
have that E(CZ(y)) < ∞. It follows that Z(t) has a unique stationary distribution.
Moreover, again by the well-known limit theorems for regenerative processes and
Proposition 3,

P(Z ≤ y) = E(
∫ CZ(y)

0 1{Z(s)≤y} ds)

E(CZ(y))
= E(

∫ ϑ(CX(y))

0 1{Z(s)≤y} ds)

E(CX(y))E(Xν)

= E(
∫ CX(y)

0 1{X(t)≤y}X(t)ν dt)

E(CX(y))E(Xν)
= E(1{X≤y}Xν)

E(Xν)
,

so that (12) follows. If qQ(ν + s − α + 1) < ∞ then E(Xs+ν) < ∞ and formula (13)
follows immediately from (12). �

We conclude this section by a discussion on how to combine the introduced trans-
formations. Denote by V the admissible region in the (α,β)-plane for which con-
dition (2) is fulfilled. The transformations can be represented as mappings from
V → V , see Fig. 1, where the grey areas represent V . A state-space transformation
is represented as a movement on radial lines, meeting in the point (1,0), while a time
change is represented as a movement parallel to the β = α − 1 line.

By using the transformations, each point (α,β) in V can be mapped to any other
point (α′, β ′) in V by first applying a state-space transformation as in Proposition 1
with

δ = β − α + 1

β ′ − α′ + 1
(14)

and then the time change in (10) with

ν = β
β ′ − α′ + 1

β − α + 1
− β ′. (15)
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Fig. 1 State-space transformation (left) and time change (right) in the (α,β)-plane

Note that the order of the two transformations is important here. If first a time change
is performed, the appropriate parameter is

ν = β − β − α + 1

β ′ − α′ + 1
β ′,

followed by the δ from (14) for the subsequent state-space transformation.

3 Stationary moments and distribution

With the transformations of Sect. 2 in our hands, the stationary results for one process
in M(r,α;λ,β;FQ) yield stationary results for all other combinations of α,β in the
admissible region V . In this section we shall use known results for the idealized
TCP class M(1,0;λ,0;FQ) to derive expressions for the stationary moments and
the stationary distribution of any process in the class M.

Theorem 5 Let X(t) ∈ M(r,α;λ,β;FQ). Then

E
(
Xs

) =
(

r(1 − α + β)

λ

) s
1−α+β �( 1−α+s

1−α+β
)

�( 1−α
1−α+β

)

×
∞∏

k=1

1 − qQ(s − β + k(1 − α + β))

1 − qQ(−β + k(1 − α + β))
, (16)

for all s for which qQ(s − α + 1) < ∞.

Proof Let Z(t) ∈ M(1,0;λ,0;FQ∗) with Q∗ = Q1−α+β . It is known that

E
(
Zs

) = �(s + 1)

λs

∞∏
k=1

1 − qQ∗(s + k)

1 − qQ∗(k)
, (17)
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see [11, 14, 21]. Following Proposition 1 and (14), a state-space transformation with
δ = 1/(1 − α + β) and γ = (r(1 − α + β))1/(1−α+β) maps Z(t) to

Y(t) = (
r(1 − α + β)Z(t)

)1/(1−α+β)
,

with Y(t) ∈ M(r,α − β;λ,0;FQ). Since qQ∗(s) = qQ(s(1 − α + β)), we obtain

E
(
Y s

) = (
r(1 − α + β)

)s/(1−α+β)
E

(
Zs/(1−α+β)

)
=

(
r(1 − α + β)

λ

)s/(1−α+β)

�

(
s

1 − α + β
+ 1

)

×
∞∏

k=1

1 − qQ(s + k(1 − α + β))

1 − qQ(k(1 − α + β))
. (18)

Applying a time transformation according to Proposition 2 and (15) with ν = −β

then yields the process X(t). Formula (16) follows immediately from (13). �

Theorem 5 is due to Maulik and Zwart [15], who derive (16) by solving a differ-
ence equation for the Mellin transform. With l = 1−α +β and γ∗ the Euler constant,
they find that, for s > α − 1, α < 1 and r = λ = 1,

E
(
Xs

) = (
le−γ∗) s

l
1 − α

s + 1 − α

1 − qQ(s + 1 − α)

1 − qQ(1 − α)

×
∞∏

k=1

e
s
kl

1 − qQ(kl + s + 1 − α)

1 − qQ(kl + 1 − α)

kl + 1 − α

kl + s + 1 − α
. (19)

It can be easily verified that (16) and (19) correspond.
Let us next turn to the stationary distribution. In [11], Proposition 5, it is shown

that for Z(t) ∈ M(1,0;λ,0;FQ) the Laplace–Stieltjes transform of the stationary
distribution is given by

E
(
e−sZ

) = E

( ∞∏
n=0

1

1 + (s/λ)
∏n

k=1 Qk

)
, (20)

and alternatively (see [14])

E
(
e−sZ

) =
∞∑

n=0

(−s/λ)n∏n
k=1(1 − qQ(k))

, 0 ≤ s ≤ λ. (21)

However, both expressions do not lead (in general) to tractable explicit representa-
tions for the stationary density. Fortunately, the classical case of deterministic jumps
does give an explicit form for the density.
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3.1 Deterministic jumps

In the case where Q is always a constant c, we have that qQ(u) = cs and hence
s0 = −∞. Consequently all moments of X exist, and from (4) we conclude that the
stationary density fulfills

πX(u) = λ

ruα

∫ u/c

u

yβπX(y)dy.

If Z(t) ∈ M(1,0;λ,0;FQ∗) then

πZ(u) = λ
(
ΠZ(u/c) − ΠZ(u)

)
. (22)

In [21] the solution to (22) was found to be

πZ(u) = λ

(c; c)∞
∞∑

k=0

(−1)kc
1
2 k(k−1)

(c; c)k e−λc−ku, (23)

with (q;q)k = ∏k
j=1(1 − qj ) the q-Pochhammer symbol. Alternatively, (23) can be

written as

πZ(u) = λ

(c; c)∞
∞∑

k=0

c−k∏k
j=1(c

−j − 1)
e−λc−ku, (24)

in which form the solution to (22) was derived in [8, 11].
We now employ our transformations to obtain the stationary distribution for the

general (α,β)-case.

Theorem 6 If Q = c a.s. then

πX(x) = 1

rxα

(
r(1 − α + β)

λ

) β
1−α+β πZ( x1−α+β

r(1−α+β)
)

�( 1−α
1−α+β

)

∞∏
k=1

1 − ck(1−α+β)

1 − ck(1−α+β)−β
. (25)

Proof Let Z(t) ∈ M(1,0;λ,0;FQ∗) with Q∗ = c1−α+β . As in the proof of The-
orem 5 we apply a state-space transformation with δ = 1/(1 − α + β) and γ =
(r(1 − α + β))1/(1−α+β) to Z(t), yielding a process Y(t) ∈ M(r,α − β;λ,0;FQ),
where FQ in this case is the distribution function having mass 1 at c. According to (7),

πY (x) = πZ

(
x1−α+β

r(1 − α + β)

)
xβ−α

r
.

Next we perform a time change with ν = −β , yielding a process X(t) in the class
M(r,α;λ,β;FQ). From (12) it follows that

πX(x) = x−β

E(Y−β)
πY (x).
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According to (18), we have

E
(
Y−β

) =
(

λ

r(1 − α + β)

) β
1−α+β

�

(
1 − α

1 − α + β

) ∞∏
k=1

1 − ck(1−α+β)−β

1 − ck(1−α+β)
, (26)

and (25) follows. �

3.2 Another special case

If Q = U1/κ , with some κ > 0 and U having a uniform distribution on [0,1], then

qQ(s) = E
(
Qs

) =
∫ 1

0
xs/κ dx = κ

κ + s
,

so that s0 = −κ and qQ(s0) = ∞. It follows that E(Xs) < ∞ if s > α − 1 − κ .

Theorem 7 If Q = U1/κ with κ > 0 then

πX(x) = �( κ−α+1
β−α+1 )

β − α + 1

(
λ

r(β − α + 1)

)− κ−α+1
β−α+1

xκ−αe− λ
r(β−α+1)

xβ−α+1
. (27)

Proof We derive the proposition directly for all admissible α and β , without using
the transformations. From (4) we obtain

πX(u) = λuκ−α

r

∫ ∞

u

yβ−κπX(y)dy (28)

and hence

π ′
X(u) =

(
κ − α

u
− λuβ−α

r

)
πX(u). (29)

For y < x,

πX(x) = πX(y)

yκ−α
xκ−α exp

(
− λ

r(β − α + 1)

(
xβ−α+1 − yβ−α+1)).

Letting y → 0, and assuming that the limit C = limy→0 πX(y)yα−κ exists, we obtain

πX(x) = Cxκ−α exp

(
− λ

r(β − α + 1)
xβ−α+1

)
.

The constant follows upon normalization. �

We note that (27) was derived for the case κ = α = β = 0 in [11], p. 99.
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Appendix A: PDMPs, generator, domain

Let Ex(·) = E(·|X(0) = x). For bounded measurable functions f the infinitesimal
generator refers to the linear operator defined by the limit

A∗f (x) = lim
t→0

(
Exf

(
X(t)

) − f (x)
)
/t,

in the strong sense, that is with respect to the sup norm. It is well known that for
functions for which this limit exists, the process

f
(
X(t)

) −
∫ t

0
A∗f

(
X(s)

)
ds

is a martingale. The extended generator Af is a generalization of this operator and is
defined as any measurable function g, for which f (X(t)) − ∫ t

0 g(X(s)) ds becomes
a martingale. Following the exposition in [7] we see that our Markov process X(t) is
a PDMP and has the extended generator

Af (x) = rxαf ′(x) + λxβ

∫ 1

0

(
f (xy) − f (x)

)
dFQ(y). (30)

For PDMPs Davis [7] has given criteria for a measurable function f to belong to the
domain D(A) of the extended generator. The domain D(A) contains all measurable
functions f : E → R for which f is absolutely continuous and

Ex

Nt∑
i=1

∣∣f (
X(τi−)

) − f
(
X(τi)

)∣∣ < ∞, ∀x ∈ [0,∞), t ≥ 0.

If f is absolutely continuous and locally bounded on [0,∞) then f ∈ D(A) follows
immediately from the fact that according to (1) X(t) has a deterministic upper bound.
Since the domain of A is probably much larger, it is desirable to know whether D(A)

comprises function that are not locally bounded. From Lemma 1 in [14] we obtain
the following result:

Lemma 1 (Domain) The function fs(x) = xs is in the domain D(A) if qQ(s) < ∞.

We define the counting process Nt = inf{n ∈ N : τn ≥ t}. In order to use the
methodology of PDMPs we have to assure that E(Nt ) < ∞.

Lemma 2 ExNt < ∞ for all t > 0, x ≥ 0.
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Proof If β = 0 then the jump intensity is just λ and clearly ENt = λt is finite for all
t > 0. The general case with β > 0 can be transformed via a time change as described
in Propositions 2 and 3 to the β = 0 case (see Fig. 1). �

Next we show that the process will not escape to infinity in finite time.

Lemma 3 T∞ := sup{t > 0 : X(t) < ∞} = ∞ a.s.

Proof If α < 1 then this follows from the fact that φ(x, t) is finite for all t > 0 and
X(t) ≤ φ(x, t). If α ≥ 1, a time change with ν = β transforms the process into a
process Z(t) with increase rate parameter α −β < 1 and constant jump intensity (see
Proposition 2). T∞ = ∞ iff

ϑ−1(u) =
∫ u

0

1

Z(s)β
ds < ∞

for all u > 0. Since Nt < ∞ for all t (see Lemma 2), we have min{Z(s) : 0 ≤ s ≤
t} > 0 and hence ϑ−1(u) ≤ u(min{Z(s) : 0 ≤ s ≤ t})−β < ∞. �

Appendix B: Proof of Theorem 1

Lemma 3 proves that X(t) stays finite for finite t . We now prove Theorem 1 for the
case β = 0. The general form of Theorem 1 then follows by applying a time change
as described in Propositions 2 and 3.

Theorem 8 Let X(t) ∈ M(r,α;λ,0;FQ). Then X(t) ⇒ X as t → ∞, where X is
a random variable with X > 0 a.s. The distribution function ΠX(u) of X admits a
density πX(u) satisfying

πX(u) = λ

r
u−α

∫ ∞

u

FQ(u/y)πX(y)dy. (31)

We need two lemmas and the following definitions for the proof of Theorem 8.
Let T ∗

y = inf{t > 0 : X(t) ≤ y} and Ty = inf{t > 0 : X(t) = y} denote the first time
the process jumps below y and the first hitting time of y. Note that we have α < 1
throughout the proof.

Lemma 4 There is a y ∈ (0,∞) such that ExT
∗
y < ∞ for all x ≥ y.

Proof Recall that fs(x) = xs and that fs ∈ D(A) if qQ(s) < ∞. We first show that
there is an s > 0, such that lim supx→∞ Afs(x) < 0 as x → ∞. We have

Afs(x) = srxα+s−1 − λxs
(
1 − qQ(s)

) = xs
(
srxα−1 − λ

(
1 − qQ(s)

))
.

Let s > 0, then xs → ∞ and xα−1 → 0 as x → ∞, hence Afs(x) → −∞ and thus
lim supx→∞ Afs(x) < 0 (note that (1 − qQ(s)) > 0 since s > 0).
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We have shown that there is a y ∈ (0,∞), such that Afs(x) < −ε for all x ≥ y

and some s > 0. Pick one such x and recall from the definition of the extended gen-
erator that the process Mt = fs(X(t)) − fs(x) − ∫ t

0 Afs(X(s)) ds is a zero-mean
martingale. Optional sampling yields ExMt∧T ∗

y
= 0, and hence

0 = Ex

(
fs

(
X(t ∧ T ∗

y )
) − fs(x) −

∫ t∧T ∗
y

0
Afs

(
X(s)

)
ds

)
. (32)

It follows that Ex(fs(X(t ∧ T ∗
y )) − fs(x) + (t ∧ T ∗

y )ε) ≤ 0. Consequently,

Ex(t ∧ T ∗
y ) ≤ 1

ε

(
fs(x) − Exfs

(
X(t ∧ T ∗

y )
)) ≤ fs(x)

ε
.

Letting t → ∞ it follows that ExT
∗
y < ∞. �

Next we show that the mean of the hitting time ExTw is also finite for some w.

Lemma 5 There is a w ∈ (0,∞) such that ExTw < ∞ for all x ≤ y.

Proof It is enough to show that Lemma 4 holds for the reciprocal process R(t) =
X−1(t), which is the case if we can show that lim supx→∞ ARfs(x) < 0, where

ARf (x) = −rx2−αf ′(x) + λ

∫ 1

0

(
f (x/y) − f (x)

)
dFQ(y)

is the generator of the Markov process R(t). By following the proof of Lemma 1 it is
clear that fs is in the domain of AR if qQ(−s) < ∞. We have

ARfs(x) = −srx1−α+s + λxs
(
qQ(−s) − 1

)
= x1−α+s

( − sr + λxα−1(qQ(−s) − 1
))

.

Let 0 < s < −s0. Then fs is in the domain of AR . Since x1−α+s → ∞ and xα−1 → 0
as x → ∞, it follows that lim supx→∞ ARfs(x) < 0. The result then follows along
the lines of the second part of the proof of Lemma 4. �

Proof of Theorem 8 The process X(t) is a regenerative process with regeneration
cycles CX(y) starting at upcrossings of y.

Under the stated conditions the assertions of Lemmas 4 and 5 are both fulfilled,
i.e. there are y,w ∈ (0,∞) such that ExT

∗
y < ∞ for all x ≥ y and ExTw < ∞ for all

x ≤ y. Without loss of generality we can assume that w < y.
We will show that EwTy < ∞. Then ExTy for all x ≤ y and we have already

shown that under the given conditions EyT
∗
y < ∞. It follows then that for the regen-

erative process X(t), with regeneration cycles starting at upcrossings of y, the cycle
length has a finite mean and the assertion of the lemma follows.

To prove EwTy < ∞ consider a process W(t) which behaves similarly to X(t)

if X(t) ∈ [0,∞) \ [w,y], but has the following behavior if W(t) ∈ [w,y]: it jumps
with intensity λ and if there is a jump at time t then W(t) = w ∧ (W(t−) · Q). We
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can construct X(t) and W(t) on a common probability space, such that X(t) ≥ W(t)

w.p. one. Consequently, W(t) will reach y later than X(t), so it remains to show that,
starting in W(0) = w, the expected time to reach y is finite.

Starting in w the process W(t) will reach y without any jump with some positive
probability, or it jumps down into the set [0,w]. We proved in Lemma 4 that the
time until the process returns to w has finite mean. It follows that the time until W(t)

reaches y is a geometric sum of random variables with finite mean, and hence has
finite mean.

We have seen that the regeneration cycles CX(y) of X(t) have finite mean, hence
X(t) ⇒ X as t → ∞ follows from regeneration theory (see e.g. [2]). But we have
actually shown more. Under the given conditions, Lemma 5 shows that also the recip-
rocal process R(t) = X−1(t) tends to a finite limit, hence X is not zero.

To prove (4) we use the fact that
∫ ∞

0 Af (x)πX(x)dx = 0 for bounded func-
tions f ∈ D(A). Let gn(x) = n

∫ x

0 1{w∈[u−1/n,u+1/n]} dw, then gn is bounded and
absolutely continuous. We have

∫ ∞

0
rxαg′

n(x)πX(x)dx = n

∫ u+1/n

u−1/n

rxαπX(x)dx

which tends to ruαπX(u) as n → ∞. Since gn(x) → 1{x≥z}, we obtain

∫ ∞

0

(
λ

∫ 1

0

(
gn(xy) − gn(x)

)
dFQ(y)

)
πX(x)dx

→
∫ ∞

0
λ

(∫ 1

0
1{xy≥u} dFQ(y) − 1{x≥u}

)
πX(x)dx

=
∫ ∞

u

λ

(∫ 1

u/x

dFQ(y) − 1

)
πX(x)dx = −

∫ ∞

u

λFQ(u/x)πX(x)dx.

Hence (31) follows. �

Having proved Theorem 8 the final step to establish Theorem 1 is an application
of the time change, which transforms the β = 0 case to the β �= 0 case (Proposition 2
with ν = β). Note that according to Proposition 3, we have to fulfill (9), which yields
the extra condition (3) in Definition 1.

Appendix C: Proof of Theorem 2

We shall now prove that Ex(X
s) < ∞ if qQ(s − α + 1) < ∞ and that (5) holds. Let

fs,w(x) = 1{x≤w}xs−α+1. Since qQ(s − α + 1) < ∞, it follows from Lemma 1 that
fs,w ∈ D(A). Then

Afs,w(x) = (
r(s − α + 1)xs + λ

(
qQ(s − α + 1) − 1

)
xs+β−(α−1)

)
1{x≤w}

+
(

λxs+β−(α−1)

∫ w/x

0
ys−α+1 dFQ(y)

)
1{x>w}.
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Since fs,w is bounded, it follows from
∫ ∞

0 Af (x)πX(x)dx = 0 that∫ w

0
xsπX(x)dx = λ

r
ψQ(s − α + 1)

∫ w

0
xs+β−(α−1)πX(x) dx − C(w), (33)

where C(w) = λ
r(s−α+1)

∫ ∞
w

xs+β−(α−1)
∫ w/x

0 ys−α+1 dFQ(y)πX(x)dx. We have

∫ w/x

0
ys−α+1 dFQ(y) ≤

∫ 1

0
ys−α+1 dFQ(y) = qQ(s − α + 1),

and hence

0 ≤ C(w) ≤ λqQ(s − α + 1)

r(s − α + 1)

∫ ∞

w

xs+β−(α−1)πX(x) dx.

We see that C(w) → 0 when w → ∞. Consequently, relation (5) follows from (33)
by dominated convergence.

To prove that Ex(X
s) < ∞, we first assume that s = 0. Then qQ(s − α + 1) =

qQ(1 − α) < ∞ and since Ex(X
s) = 1 < ∞ it follows that Ex(X

β−(α−1)) < ∞. We
thus have Ex(X

t ) < ∞ for all t ∈ [0, β − (α − 1)] and by induction Ex(X
t ) < ∞ for

all t > 0.
On the other hand, if s < 0 and qQ(s −α +1) < ∞, then there is a k ∈ N, such that

sk = s + k(β − (α − 1)) ≥ 0 and hence Ex(X
sk ) < ∞. Moreover, sk − β ≥ s − α + 1

and also qQ(sk − β) < ∞. It follows then from Ex(X
sk ) < ∞ that Ex(X

sk−1) < ∞
and by induction Ex(X

s) < ∞.
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