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Abstract We derive rough and exact asymptotic expressions for the stationary distri-
bution π of a Markov chain arising in a queueing/production context. The approach
we develop can also handle “cascades,” which are situations where the fluid limit of
the large deviation path from the origin to the increasingly rare event is nonlinear. Our
approach considers a process that starts at the rare event. In our production example,
we can have two sequences of states that asymptotically lie on the same line, yet π

has different asymptotics on the two sequences.
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1 Introduction

We are interested in estimating the probability of rare events related to the stationary
distribution π of Markov chains of the type that typically arise in modeling queueing
networks. Unless π can be computed explicitly, such results are usually difficult to
obtain—even through simulation. In this paper, we develop an approach to deriving
the exact asymptotics of π that allows us to analyze situations where the fluid limit of
excursions to the (increasingly) rare event is nonlinear. This nonlinear behavior can
arise in a pair of stable, M/M/1 queues in tandem. Let (x, y) denote the joint queue
length where x is the number in the downstream node, and let π denote the stationary
distribution of the joint queue length. If we are interested in π(�, y), think of � as a
large integer, we are interested in excursions from the origin to (�, y). If the down-
stream server is substantially faster than the upstream server, and “substantially” can
be determined from (2.3) in [9], it will be easier to initially accumulate a large num-
ber of customers in the upstream server while the number in the downstream server
remains small. When a sufficient number have accumulated, customers cascade from
the upstream server to the downstream server. Thus, most excursions from the origin
that reach (�, y) will initially climb along the y-axis to a state near (0, c�) with c > 0
before changing directions and heading towards (�, y). The fluid limit or functional
strong law, computed by dividing the joint queue length process by �, speeding up
time by �, and letting � → ∞, will be piecewise linear, first climbing the y-axis from
the origin to (0, c) and then changing direction and heading southeast to (1,0). On
the other hand, if the downstream server were substantially slower than the upstream
server, excursions to (�,0) would stay close to the x-axis, and the fluid limit would
be a line segment going directly from the origin to (1,0).

Exact asymptotics for π in linear cases have been studied in [1, 7, 8, 16]. The ap-
proach in [1] is somewhat different from the other three papers, and we will have more
comments about [1] in our concluding remarks. The linear cases in [7, 8, 16] were
connected to a particular transition matrix having convergence parameter R = 1 and
being either 1-positive recurrent in the “jitter” case studied in [7, 16] or being either
1-null recurrent or 1-transient in the “bridge” cases studied in [8]. In the nonlinear
case that transition matrix has convergence parameter R > 1. The approach devel-
oped here and in [10] can handle both linear and nonlinear situations. The essence
of the approach is to consider a stochastic process that starts at the distant state and
closely approximates the time reversal of the Markov chain. The primary method-
ological result is Lemma 7, which is further developed in [10].

To illustrate the power of the approach, we completely describe the exact asymp-
totics of π for a production model in all directions and for all stable parameter set-
tings. The production model, described in the next section, has unbounded jumps;
at every point in the state space, the boundaries influence the possible transitions. In
addition, for certain regions of the parameters, the fluid limits of excursions to the
rare events are nonlinear.

2 Production model and results for the production model

To illustrate the approach, consider a production system consisting of two parallel
machines, labeled m1 and m2. In front of the machines, there is a central buffer with
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infinite capacity where jobs await processing. The processing times are independent,
exponential random variables, with rate μ1 at machine m1 and with rate μ2 at ma-
chine m2. There are two types of jobs: a and b. Type a jobs have the advantage
that they can be processed at either machine. Type b jobs can only be processed at
machine m1; that is, machine m2 only processes jobs of type a.

Such a situation can arise in a variety of contexts. In some situations, machine m2
may have been restricted to processing jobs of type a since type a jobs have a higher
priority; in other situations, machine m2 may be incapable of processing certain jobs.
For example, suppose the machines insert chips on circuit boards and the set of chip
types available at machine m2 is a proper subset of the set at m1. A circuit board
needing only chips available at machine m2 would be a type a job, but any circuit
board needing a chip that is only at machine m1 would be a type b job.

We assume that the two job types arrive according to independent Poisson streams
with rate λa and λb . We also assume that the service times and arrival processes are
independent. Machine m1 is never idle when there are jobs waiting in the system, and
machine m2 is never idle when there are type a jobs waiting for service.

We still need to describe the service discipline. Basically, the system tries to
process the jobs in order of arrival except that machine m2 can only process type
a jobs. Thus, machine m1 will always choose the job at the head of the buffer, but
machine m2 may have to search through the buffer for the oldest type a job. Lastly,
when both machines are idle and a type a job arrives, assume that the job will be
processed by m1 with probability η. Hence, the system has five parameters: λa , λb,
μ1, μ2, and η.

We will model the system as a Markov process, and we are interested in its sta-
tionary distribution π . If any one of the four parameters λa , λb , μ1, and μ2 is zero,
the system becomes much simpler to analyze; hence, unless otherwise mentioned, we
assume that

λa > 0, λb > 0, μ1 > 0, μ2 > 0. (1)

We will also assume that

α ≡ λa + λb

μ1 + μ2
< 1, β ≡ λb

μ1
< 1, (2)

which are the necessary and sufficient conditions for stability, which in this paper is
equivalent to having a unique stationary distribution π . It will be convenient to define
γ ≡ λb/(λa + λb), which is the probability that a job is of type b.

If the state of the process were simply the number of jobs of each type in the
system, the process would not be Markovian. Instead, we model the system as a
Markov process by delaying the discovery of a job’s type until a machine needs to
know the type, and only machine m2 ever needs to discover a job’s type. We represent
the system as a Markov process with a two-dimensional state space and define the
states as:

• (0,0): the system is empty.
• (1,0): there is one job in the system, and machine m2 is working on that job.
• (0, y) with y > 0: machine m2 is idle, machine m1 is working on a job, and there

are y − 1 type b jobs waiting in the queue.
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Fig. 1 Transition rates out of selected states (lower left node is (0,0))

• (x, y) with x > 0 and y > 0: both machines are working, x − 1 jobs of unknown
type and y − 1 jobs of type b are waiting in the queue.

Let S denote the state space; note that (2,0), (3,0), . . . are not in S since these states
would correspond to m1 being idle, but m1 is never idle when there is more than one
job in the system. States on the y-axis correspond to states with m2 idle. Also note
that state (x, y) means that there are x + y jobs in the system. Any type b jobs in the
system must have arrived earlier than the rest of the jobs in the system, which are of
unknown type, and machine m2 must have inspected the type b jobs to have learned
their type. The state space and transition rates from five selected states are depicted
in Fig. 1.

Under (1) and (2), the Markov process is irreducible and has a unique stationary
distribution, which will be denoted by π ; the argument is delayed until Sect. 2.1. Our
first proposition gives bounds on π ; the rough asymptotics of π follow directly from
these bounds.

Proposition 1 There exist constants c1 and c2 such that

0 < c1α
xβy ≤ π(x, y) ≤ c2α

xβy < ∞. (3)

Since the proof is tangential to our main interest, we have placed the proof in
Appendix A.
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By x� ∼ y� we mean that x�/y� → 1, where here and throughout this paper
→ means as � → ∞. In this paper, “the exact asymptotics of π” means deriving
an asymptotic expression for π(x�, y�), that is, deriving an expression of the form
π(x�, y�) ∼ f�, where (x�, y�) is some divergent sequence of states. The “rough as-
ymptotics of π ,” means deriving an asymptotic expression for logπ(x�, y�). From
(3), it is straightforward to derive the rough asymptotics of π .

Corollary 1 Let (x�, y�) be any sequence of states with x� + y� → ∞ and x�/

(x� + y�) converging to a constant. Then

logπ(x�, y�) ∼ x� logα + y� logβ.

The next two propositions give the exact asymptotics of π near an axis, assuming
the “jitter” condition holds along that axis. A certain “drift vector”

d∗ = (
d∗

1 , d∗
2

) = (
(μ1 + μ2)(λa − μ2)/μ2,μ1(λb/μ1 − λa/μ2)

)
(4)

will arise in the analysis, which gives insight into several aspects of the behavior of
this system and can be used to define the jitter conditions. Under our assumptions, at
least one of the components of the drift vector d∗ will be negative. The following are
equivalent:

• the jitter condition holds along the x-axis
• λb/μ1 < λa/μ2

• β < α, and
• d∗

2 < 0.

Similarly, the following are equivalent:

• the jitter condition holds along the y-axis
• λa/μ2 < 1, and
• d∗

1 < 0.

Proposition 2 If d∗
2 < 0, then

π(�, y) ∼ ψv(�, y) (5)

where

ψv(�, y) ≡
⎧
⎨

⎩

cv
α

μ1+μ2−λa−λb

λa/μ2−λb/μ1
λb/μ1

α�−1 for y = 1,

cv
α

μ1+μ2−λa−λb

λa/μ2−λb/μ1
λb/μ1

μ2
μ1+μ2

α�−1βy−1 for y = 2,3, . . . ,

and cv is defined in (12).

Proposition 3 If d∗
1 < 0, then

π(x, �) ∼ ψw(x, �) (6)
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where

ψw(x, �) ≡
⎧
⎨

⎩

cw
β

μ1−λb
(1 − λa

μ2
)β�−1 for x = 0,

cw
β

μ1−λb
(1 − λa

μ2
) λa

μ1+μ2
αx−1β�−1 for x = 1,2, . . . ,

and cw is defined in (23).

The proofs for Propositions 2 and 3 appear in Sects. 3 and 5, respectively. Proposi-
tions 2 and 3 describe the exact asymptotics of π near an axis when the jitter condition
for that axis holds. The next three propositions complete a rather general descrip-
tion of the exact asymptotics of π in the rest of the state space. The proofs of these
three propositions use the approach to deriving exact asymptotics that is developed
in Sect. 4.

Intuitively, our approach to obtaining asymptotic expressions for π considers an
approximate time reversed process that starts at some distant state (x, y). The hy-
potheses of the next three propositions partition the stability region into three cases
depending on whether (i) the x-axis jitter condition holds and the y-axis jitter con-
dition does not (d∗

1 < 0, d∗
2 ≥ 0), (ii) vice versa (d∗

1 ≥ 0, d∗
2 < 0), and (iii) the jit-

ter conditions hold on both axes (d∗
1 < 0, d∗

2 < 0). If neither jitter condition holds
(d∗

1 ≥ 0, d∗
2 ≥ 0), then the process is not stable.

Since Proposition 3 already gave the asymptotics near the y-axis under the condi-
tions of the following proposition, we will let x� → ∞ in the following proposition.

Proposition 4 Let (x�, y�) be any sequence of states with x� → ∞. If d∗
1 < 0 and

d∗
2 ≥ 0, then π(x�, y�) ∼ χv(x�, y�) where

χv(x�, y�) ≡
⎧
⎨

⎩

cw
β

μ1−λb
(1 − λa

μ2
) λa

μ2
αx�−1 for y� = 1,

cw
β

μ1−λb
(1 − λa

μ2
) λa

μ1+μ2
αx�−1βy�−1 for y� = 2,3, . . . .

Since Proposition 2 already gave the asymptotics near the x-axis under the condi-
tions of the following proposition, we will let y� → ∞ in the following proposition.

Proposition 5 Let (x�, y�) be any sequence of states with y� → ∞. If d∗
1 ≥ 0 and

d∗
2 < 0, then π(x�, y�) ∼ χw(x�, y�) where

χw(x�, y�) ≡
⎧
⎨

⎩

cv
μ2
λa

α
μ1+μ2−λa−λb

λa/μ2−λb/μ1
λb/μ1

βy�−1 for x� = 0,

cv
α

μ1+μ2−λa−λb

λa/μ2−λb/μ1
λb/μ1

μ2
μ1+μ2

αx�−1βy�−1 for x� = 2,3, . . . .

In the next proposition, the jitter conditions hold on both axes. Hence, Proposi-
tions 2 and 3 already give the asymptotics of π near the axes, and we have different
asymptotics depending upon which axis the sequence is near. Thus, it should be no
surprise that the asymptotics in the interior fall into different cases. There are three
cases depending on whether the sequence (x�, y�) asymptotically lies above, below
or on the line going through the origin with slope d∗

2 /d∗
1 . When the sequence asymp-

totically lies on this “drift line,” additional conditions are needed for the asymptotics
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to exist, and the exact asymptotics become a delicate mixture of the first two cases.
In this last case, we assume that � is asymptotically the number of jobs to simplify
notation. By choosing the sequence of states appropriately, q can take any value in
[0,1]. Thus, two different sequences of states may lie on the same line asymptoti-
cally, yet the stationary distribution for these sequences of states can have different
asymptotics. Assume that the sequence (x�/�, y�/�) has a limit (x̄, ȳ).

Proposition 6 Assume that d∗
1 < 0 and d∗

2 < 0. Let (x�, y�) be any sequence of states
with x� > 1 and (x�/�, y�/�) → (x̄, ȳ) where 0 < max(x̄, ȳ) < ∞.

1. If ȳ/x̄ > d∗
2 /d∗

1 , then

π(x�, y�) ∼ χv(x�, y�).

2. If ȳ/x̄ < d∗
2 /d∗

1 , then

π(x�, y�) ∼ ψv(x�, y�).

3. If ȳ/x̄ = d∗
2 /d∗

1 , and there exists (r, s) such that

√
�

[(
x�

�
,
y�

�

)
−

(
x̄, ȳ

)]
→ (r, s),

then

π(x�, y�) ∼ qχv(x�, y�) + (1 − q)ψv(x�, y�)

where q = Φ[−(r − sd∗
1 /d∗

2 )/σ ], Φ is the c.d.f. of a standard normal distribution,
and σ 2 is given in (26).

All quantities in the exact asymptotic expressions for π in the last five proposi-
tions are explicitly known except for cv and cw , which are defined in (12) and (23).
Under the conditions of Proposition 2, cv is a finite, strictly positive constant that
depends on the five system parameters, and similarly for cw under the conditions of
Proposition 3. Because of the form of (5) and (6), we know that there are no subex-
ponential terms like �−1/2 or �−3/2 such as encountered in [8]. Both constants can
be estimated through simulations that do not involve simulating rare events. In the
special case when η = λa/(2λa + λb), we know both cv and cw explicitly. Under the
conditions of Lemma 1, cv is easily obtained from ψw(0, �) = π∗(0, �) and cw from
ψv(�,1) = π∗(�,1).

Our production system has one unusual property that we exploit. Even though π

cannot be computed in general, π can be explicitly computed at one specific, non-
degenerate value of the parameter η. By taking advantage of the explicit stationary
distribution at that one parameter value, we can more easily prove two technical con-
ditions needed in deriving our asymptotic results for the production model. However,
even if we did not have this unusual property, we would still be able to obtain all of
our exact asymptotic results provided we showed that

∑∞
y=1 π(1, y)α−y < ∞ when

d∗
2 < 0 and that

∑∞
z=0 π(z,1)β−z < ∞ when d∗

1 < 0. Such inequalities can be estab-
lished by finding the appropriate Lyapunov functions as done in [7].

The unusual property of this production system is described in the following
lemma.
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Lemma 1 If η = η∗ ≡ λa/(2λa + λb), then π(x, y) = π∗(x, y) where

π∗(x, y) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c∗ for (x, y) = (0,0),

c∗ (1−η∗)λa

μ2
for (x, y) = (1,0),

c∗ η∗λa+λb

μ1
βy−1 for x = 0, y > 0,

c∗ η∗λa(λa+λb)
2

μ1μ2
αx−1 for x > 0, y = 1,

c∗ λa

μ1+μ2

η∗λa+λb

μ1
αx−1βy−1 for x > 0, y > 1,

and

c∗ ≡
(

1 + (1 − η∗)λa

μ2
+ η∗λa + λb

μ1(1 − β)
+ η∗λa(λa + λb)

2

μ1μ2(1 − α)

+ λa(η
∗λa + λb)β

(μ1 + μ2)μ1(1 − α)(1 − β)

)−1

.

To prove Lemma 1, simply verify that π∗ is a distribution satisfying the balance
equations. By the way, with a finite capacity buffer, π∗ is an invariant measure if
η = η∗, but c∗ is not the correct normalization constant.

2.1 Uniformization and stability

Generally, we will find it more convenient to work with the discrete time Markov
chain obtained by uniformizing the continuous time process. The equivalent discrete
time Markov chain will be denoted by X0,X1, . . . , and we let K be its transition
kernel. We refer to this Markov chain as the uniformized chain. Of course, π is the
stationary distribution for the uniformized chain if and only if π is the stationary
distribution for the continuous time process. For convenience and without loss of
generality, assume that λa + λb + μ1 + μ2 = 1; thus, the transition probabilities off
the diagonal of K are just the corresponding transition rates of the continuous time
Markov process. Figure 1 needs only minor changes to show the one-step transition
probabilities from the same 5 states. State (0,0) needs to have an arrow going to
itself with probability μ1 + μ2. State (0,6) needs to have an arrow going to itself
with probability μ2.

We stated that the necessary and sufficient conditions for stability are that α < 1
and β < 1. In the special case when η = η∗, the result is obvious from Lemma 1.
We claim that the same conditions hold for η 
= η∗. Note that the expected time from
(0,1) to (0,0) and from (1,0) to (0,0) do not depend on η. Thus, if the expected return
to (0,0) is finite (infinite) for η = η∗, then it is finite (infinite) for all η.

3 Exact asymptotics along the x-axis under x-jitter conditions

This section proves Proposition 2. We will derive exact asymptotic expressions for
π(�, y) using the same approach as in [7]. The condition needed for jittering along
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the x-axis will turn out to be λb/μ1 < λa/μ2 or equivalently d∗
2 < 0. Again, we will

work with the discrete time Markov chain X0,X1, . . . with one-step transition kernel
K obtained by uniformizing the continuous time Markov process and assume that
λa + λb + μ1 + μ2 = 1. In Sect. 5, we will perform a similar analysis along the y-
axis. To simplify notation, the definitions of 
, K∞, �, h, K∞, and ϕ given in this
section will be redefined in Sect. 5 when we perform the analogous analysis along
the other axis. When we want to emphasize that a quantity is based on the definitions
given in this section, we add a subscript “v”; we add a subscript “w” to emphasize
that the quantity is based on the definitions in Sect. 5.

Our starting point is Orey’s representation of π as

π(�, y) =
∑

(x,z)∈


π(x, z)E(x,z)

[
N
(�, y)

]
(7)

where Δ is some set of states and NΔ(�, y) is the number of visits to (�, y) before
returning to Δ. More precisely, if TΔ = inf{n > 0 : Xn ∈ Δ} and 1A is the indicator
of A, then NΔ(�, y) = ∑TΔ

n=1 1{Xn=(�,y)}.

3.1 The free process K∞

The next step is to define Δ and a Markov additive process dubbed the free process
that captures the behavior of the uniformized chain on excursions from Δ to the rare
events. The one-step transition kernel of the free process will be denoted by K∞.
Since we are interested in large deviations in the first coordinate, the first coordinate
needs to be the additive part and the second coordinate the Markovian part. Let Δ =
Δv = {(x, y) ∈ S : x ≤ 1}. (The subscript “v” was chosen since Δ looks like a vertical
strip near the y-axis.) Let K∞((m, z); (x + m,y)) = K∞((0, z); (x, y)) where

K∞(
(0, z); (x, y)

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λa + λb for x = 1, y = z,

μ1 for x = 0, y = z − 1 ≥ 1,

μ1 + μ2(1 − γ ) for x = −1, y = z = 1,

μ2(1 − γ ) for x = −1 and y = z > 1,

μ2γ
m(1 − γ ) for y − z = m > 0, x = −(m + 1).

Since we have removed the boundary Δ, the free process is free to wander over all of
Z×N where Z ≡ {. . . ,−2,−1,0,1,2, . . . } and N ≡ {1,2, . . . }. Let � = Δ∪{(x, y) :
x < 0, y ≥ 1}, which is Δ plus all of the new states. Selected transition probabilities
are shown from two states in Fig. 2 where � denotes a new state. We cannot show
all transitions out of any state since there are an infinite number of transitions. The
transition probabilities can be translated horizontally without change, which is the
Markov additive property. States (0,0) and (1,0) are not accessible from any state
(x, y) with y ≥ 1; the transition probabilities out of these states will be unimportant,
and we define them by K∞((0,0), (0,1)) = 1. Since K is positive recurrent, we
would expect the free process to be transient and drift westerly.
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Fig. 2 Selected transition probabilities of the free process (lowest left Δ is (0,0))

If the free process starts in S, the free process and X0,X1, . . . have the same tran-
sition probabilities until leaving S \ Δ; that is, until hitting �. (In particular, K and
K∞ agree for transitions from states in Δ to S \ Δ. In other examples, they might
disagree; see [10].) For (�, y) ∈ S \ Δ, we can rewrite (7)

π(�, y) =
∑

(x,z)∈Δ

π(x, z)E(x,z)

[
N�(�, y)

]
(8)

where N�(�, y) is the number of visits to (�, y) by the free process until hitting �.
Note that if either process starts in (0,0) or (1,0), there is no contribution to the ex-
pectation.

3.2 The twisted free process

To define the twisted free process, we need to find a harmonic function h = hv for
the transition kernel K∞ of the form h(x, y) = axĥ(y), where in a temporary abuse
of notation a has nothing to do with customer type. By harmonic, we mean that
h satisfies K∞h = h. The rough asymptotics will be given by 1/a, but we already
know from Corollary 1 that the rough asymptotics for states (�, y) are given by α;
hence, 1/a = α. If, in a second abuse of notation, we guess that ĥ(y) = by−1, our
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guess for h is h(x, y) = α−xby−1. If we insert our guess into K∞h = h and solve,
we discover that ĥ(y) = α−(y−1) and h(x, y) = α−(x+y−1).

With this harmonic function we can define the h-transform or twisted kernel
K((0, z); (x, y)) ≡ K∞((0, z); (x, y))h(x, y)/h(0, z) yielding

K
(
(0, z); (x, y)

) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μ1 + μ2 for x = 1 and y = z,

μ1α for x = 0 and y = z − 1 ≥ 1,

(μ1 + μ2(1 − γ ))α for x = −1 and y = z = 1,

μ2(1 − γ )α for x = −1 and y = z > 1,

μ2γ
m(1 − γ )α for y − z = m > 0 and x = −(m + 1).

We refer to this Markov additive process with kernel K as the twisted free process.
The transition diagram is simply a reweighting of the arcs in Fig. 2. Let N�(�, y)

denote the number of visits to (�, y) by the twisted free process before hitting �. As in
[7], E(x,z)[N�(�, y)] = (h(x, z)/h(�, y))E(x,z)[N�(�, y)]; hence, for (�, y) ∈ S \ Δ,
we can rewrite (8) as

π(�, y)h(�, y) =
∑

(x,z)∈Δ

π(x, z)h(x, z)E(x,z)

[
N�(�, y)

]
, (9)

where we are taking advantage of the fact that transitions from Δ to S \ Δ also fol-
low K∞.

It will be important to know whether the Markovian part of the twisted free process
is positive recurrent or not. From Foster’s criteria, we can simply check whether the
vertical drift for any state (0, z) with z > 1 is negative or not. The only downward
jumps are to state (0, z − 1) with probability μ1α. The process jumps up m > 0
levels with probability μ2γ

m(1−γ )α. The expected change in the second component
is

∑∞
m=1 mμ2γ

m(1 − γ )α − μ1α, which simplifies to (μ2λb/λa − μ1)α. Thus, the
process is positive recurrent if and only if λb/μ1 < λa/μ2; that is, if and only if the
load on machine m2 from type a jobs is greater than the load on server one from type
b jobs alone. This jitter condition along the x-axis can also be expressed as β < α or
as d∗

2 < 0. Consequently, we need to split the analysis into two cases. In the remainder
of this section, we assume that the jitter condition along the x-axis holds. The other
case will be handled in Sect. 4.

Since the Markovian part is positive recurrent, the twisted free process will tend
to hug or jitter near the bottom of the state space. Let ϕ = ϕv denote the station-
ary distribution of the Markovian part of the twisted free process. Solving for ϕ

yields

ϕ(y) =
⎧
⎨

⎩

λa/μ2−λb/μ1
λb/μ1

for y = 1
λa/μ2−λb/μ1

λb/μ1

μ2
μ1+μ2

(
β
α
)y−1 for y = 2,3, . . . .

Next we compute the stationary horizontal drift of the twisted free process. Let
d̃v be the stationary horizontal drift of the twisted free process. Conditioned on the
Markovian part being in state y, the horizontal drift is almost independent of y except
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for a slight extra probability of going one step to the left when y = 1. Thus,

d̃v = μ1 + μ2 −
∞∑

m=1

mμ2(1 − γ )γ m−1α − ϕ(1)μ1α

= μ1 + μ2 − λa − λb,

which is greater than 0 so the twisted free process drifts to the right, while bounc-
ing along the bottom of the state space. Kesten’s Theorem 2 in [13] suggests that
as � → ∞, the expected number of visits to (�, y) by the (aperiodic) twisted free
process starting from any fixed state (x, z) converges to the intuitively reasonable
quantity ϕ(y)/d̃v . However, Kesten’s Theorem 2 has a non-lattice condition (I.3) on
the additive part, which does not hold in our example. Also, Kesten’s Theorem gives
the asymptotics of the expected total number of visits to (�, y) rather than the number
of visits before hitting �. Let Hv(x, z) be the probability that the twisted free process
starting from (x, z) never hits �, and note that Hv(1, z) > 0 for z > 0. Under our
conditions,

E(x,z)

[
N�(�, y)

] → Hv(x, z)
ϕ(y)

d̃v

, (10)

and Appendix B contains the justification of (10). Since β < α, Proposition 1 implies
that πh1Δ < ∞; furthermore, since the expectation is bounded,

∑

(x,z)∈Δ

π(x, z)h(x, z)E(x,z)

[
N�(�, y)

] → cv

ϕ(y)

d̃v

(11)

where

cv ≡
∑

(x,z)∈Δ

π(x, z)h(x, z)Hv(x, z)

=
∞∑

z=1

π(1, z)α−zHv(1, z) (12)

since Hv(x, z) > 0 only if x = 1 and z > 0. Note that 0 < cv < ∞. Hence, the r.h.s.
of (11) is a finite, positive function of y, and from (9), we have the asymptotic result

π(�, y) ∼ cvϕv(y)

d̃vhv(�, y)
.

Putting in our expressions for d̃v , ϕv , and hv shows that π(�, y) ∼ ψv(�, y), which
is (5).

Remark 1 Showing that
∑

(x,z)∈Δ π(x, z)h(x, z) is finite can be the difficult part in
many applications; see pp. 597–600 or 604–606 in [7] for examples. For the model
analyzed in this paper, the bounds on π made the condition easy to verify.
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4 Cascades, bridges and a new approach to deriving exact asymptotics

At this point, we could derive analogous results for π(x, �) when the jitter condition
holds along the y-axis. This would entail redefining Δ and all related quantities.
Instead, we delay the analogous analysis to Sect. 5, leave the definition of Δ = Δv

unchanged, and pursue asymptotics for π(�, y) when the jitter condition along the
x-axis fails to hold. This requires an alternative approach since when d∗

2 > 0, the
important paths to (�, y) turn out to be “cascades” where the initial segment “jitters”
up the y-axis to a height roughly proportional to � before turning and heading in a
southeasterly direction to (�, y).

To introduce the alternative approach, let us re-obtain the exact asymptotic results
for π(�, y) in the jitter case of Sect. 3 when d∗

2 < 0; that is, when the important paths
jitter near the x-axis. Then we modify this alternative approach to handle the cascade
(and bridge) cases, which avoid the x-axis. The previous approach studied the twisted
process starting from Δ as it wandered out to the rare event (�, y). The essence of the
new approach is that instead of studying the twisted free process starting on Δ, we
study the time reversal of the twisted free process starting from the rare event (�, y).

4.1 An alternative derivation of Proposition 2

Temporarily, assume that β < α so that ϕ, the stationary distribution of the twisted
free process, exists. The definitions of Δ, K∞, h and K are the same as in Sect. 3.
Let X ≡ X (0), X (0), . . . be the twisted free process, which has transition kernel K.

Let
←−X be the time reversal of the twisted free process with respect to ϕ. The process←−X is also a Markov additive process with kernel

←−K that satisfies the relationship

ϕ(z)K
(
(0, z); (x, y)

) = ϕ(y)
←−K

(
(0, y); (−x, z)

)
. (13)

The transition structure is shown in Fig. 3. Notice that the long jumps are towards the
southeast; however, they are no longer unbounded. Instead, they are truncated by the
bottom of the state space.

If we assume that the twisted free process has initial distribution π , (9) can be
written as

π(�, y)h(�, y) = E
[
1Δ

(
X (0)

)
h
(

X (0)
)

N�(�, y)
]

for any (�, y) ∈ S \ Δ. (14)

Let T be the number of steps until
←−X hits � at

←−X (T ) ≡ (
←−X 1(T ),

←−X 2(T )) =
(1,

←−X 2(T )). By looking at the time reversal, (14) can be written as

π(�, y)
h(�, y)

ϕ(y)
= E(�,y)

[
1


(←−X (T )
)
π

(←−X (T )
) h(

←−X (T ))

ϕ(
←−X 2(T ))

]
, (15)

where 1Δ(x) ≡ 1{x∈Δ}; see Appendix C for a more detailed justification of (15). If
the r.h.s. of (15) converges to a finite positive constant as � tends to infinity, then we
have an exact asymptotic expression for π(�, y). Now we investigate the convergence
of the r.h.s. under different conditions.
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Fig. 3 The time reversal of the twisted free process (lowest left Δ is (0,0))

When the Markovian part of the Markov additive process is positive recurrent
with stationary distribution ϕ, the time reversal drifts west and hits �. The limiting
distribution as � → ∞ of the hitting location on � can be obtained from Kesten’s
Theorem 1 in [13]; see also Proposition 2.4 in [16] and Appendix A in [4]. For our
situation, Kesten’s result simplifies to

Pr (�,y)

{←−X (T ) = (x, z)
} → ϕ(z)Hv(x, z)

d̃v

(16)

where the probability Hv(x, z) is the probability the time reversal of
←−X (which is

just X ) leaving from (x, z) never returns to �. If we can justify the convergence in
the following,

E(�,y)

[
1Δvπ

(←−X (T )
) hv(

←−X (T ))

ϕv(
←−X 2(T ))

]
→

∑

(x,z)∈Δ

ϕ(z)Hv(x, z)

d̃v

π(x, z)
hv(x, z)

ϕv(z)
(17)

= cv/d̃v, (18)

then we have an alterative derivation of (11) and Proposition 2.
To justify the convergence in (17), the l.h.s. can be expressed as E(0,y)[gv(X

#(�))]
where gv(x, z) ≡ 1Δv (x, z)π(x, z)hv(x, z)/ϕv(z) and X# is Kesten’s overshoot
Markov chain (see between (3.2) and (3.3) in [13] or Sect. 2.2 in [16]), which has
stationary distribution given by the r.h.s. of (16). The convergence follows if gv is
integrable with respect to the stationary distribution of X# (e.g., Theorem 14.0.1 in
[17]), but the integrability follows from πh1Δ < ∞.
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4.2 Cascades, bridges, and a proof of Proposition 4

Now we modify the argument in the previous subsection to handle the non-jitter
cases. Assume that d∗

2 > 0. The first difficulty appears to be that the Markovian part
of the twisted free process does not have a stationary distribution ϕ. However, the
Markovian part does possess an invariant measure that is unique up to rescaling. Re-
define ϕ = ϕv to be the invariant measure

ϕv(y) =
{

1 for y = 1,
μ2

μ1+μ2
(
β
α
)y−1 for y = 2,3, . . . .

This invariant measure ϕv can be used in (13) to define the kernel for the time re-
versal of the twisted free process. The argument continues without changes until just

after (15). Under the jitter conditions, the location
←−X (T ) where the time reversal

hits Δv converged to a proper distribution as � → ∞. However, when d∗
2 > 0, the

Markovian part of the twisted free process is not stable, and the time reversal of
the twisted free process drifts northwesterly. To see this, compute the drift ignoring
the truncation along the x-axis (or compute the expected drift from state (x, y) as
y → ∞), to obtain d∗ as given in (4). Since 1 > β > α, d∗

1 is negative, and d∗
2 is

positive. Including the truncation would push the process even more northwesterly.
Consequently, as the starting location (�, y) increases with �, the hitting location←−X (T ) ≡ (

←−X 1(T ),
←−X 2(T )) = (1,

←−X 2(T )) diverges; that is, Pr (�,y){←−X 2(T ) > a} →
1 for all a.

The fact that
←−X (T ) diverges would seem to sound the death knell for (15) con-

verging to a finite positive constant. However, just when all appears lost, note that
π(1, �)h(1, �)/ϕ(�) = (μ1+μ2)

μ2

β
α
π(1, �)β−� for � > 0; furthermore, the hypothesis of

Proposition 3 holds, so π(1, �)β−� converges to the constant ψw(1,0). (Even though
the proof of Proposition 3 appears in a later section, the proof does not rely on results
from this section. Also, even though the convergence of π(1, �)hv(1, �)/ϕv(�) ap-
pears to be a fluke arising in this example, [10] shows that this property holds much
more generally.) Since the integrand is bounded,

E(�,y)

[
1


(←−X (T )
)
π

(←−X (T )
) hv(

←−X (T ))

ϕv(
←−X 2(T ))

]
→ (μ1 + μ2)

μ2

β

α
ψw(1,0)

= cw

β

α

1

μ1 − λb

(
1 − λa

μ2

)
λa

μ2
, (19)

which is enough to determine the exact asymptotics of π(�, y) when β > α. However,
rather than giving the exact asymptotics of π(�, y), we extend the argument in two
different ways: first to include sequences of states away from the axes, and second to
include β = α.

To extend the argument to include sequences of states away from the x-axis, use
(30) to write

π(x�, y�)
hv(x�, y�)

ϕv(y�)
= E(x�,y�)

[
1


(←−X (T )
)
π

(←−X (T )
) hv(

←−X (T ))

ϕv(
←−X 2(T ))

]
, (20)
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where (x�, y�) are states in S \ Δ with (x�, y�) where x� → ∞. Now, conditioned on
starting in (x�, y�), we still have Pr (x�,y�){

←−X 2(T ) > a} → 1 for all a so that we still
have

E(x�,y�)

[
1


(←−X (T )
)
π

(←−X (T )
) hv(

←−X (T ))

ϕv(
←−X 2(T ))

]
→ (μ1 + μ2)

μ2

β

α
ψw(1,0). (21)

When β = α, the Markovian part is null recurrent, and we are in a bridge case.
To see that the Markovian part is recurrent, suppose the Markovian part is 1. After
a finite number of steps, the Markovian part is 2. Now the Markovian part behaves
like a random walk with drift 0 until the random walk hits {. . . ,−1,0,1}. In other
words, the Markovian part and a random walk with drift 0 can be coupled so that the
two processes starting from 2 agree until the random walk hits {. . . ,−1,0,1}. When
the random walk hits {. . . ,−1,0,1}, the Markovian part is reset to 1. Using (2.7)
from Chap. 3 in [5], the random walk hits {. . . ,−1,0,1} with probability 1. Conse-
quently, the Markovian part returns to state 1 with probability one. By irreducibility,
the Markovian part is recurrent. The Markovian part must be null recurrent since the
invariant measure is not summable when β = α.

We now argue that we still have Pr (x�,y�){
←−X 2(T ) > a} → 1 for all a. To see this,

let us consider the Markovian part at strictly descending ladder heights of the additive
part. The Markovian part at descending latter heights forms a Markov chain that
we call the ladder chain. The ladder chain takes exactly x� − 1 steps to hit Δ at

(1,
←−X 2(T )). We will show that this ladder chain is either null recurrent or transient,

which will imply that Pr (x�,y�){
←−X 2(T ) = a} → 0 since x� → ∞.

Assume that the Markov additive process starts at (x�, y�). Let Y denote the
Markovian part at the first time that the additive part of the time reversal hits x� − 1,
which corresponds to one step of the ladder chain. We will show that E[Y − y�] ≥ 0,
which will allow us to appeal to the drift criteria in [17] to prove that the ladder chain
is either null recurrent or transient.

Let R denote the number of steps taken by the Markov additive process until the
additive part reached x� − 1, so

Y − y� =
R∑

k=1

Ak,

where

Ak
.= [←−X 2(k) − ←−X 2(k − 1)

]
.

Let μ(y)
.= E[A1 | ←−X 2(0) = y], and let Fn

.= σ(
←−X (0), . . . ,

←−X (n)). Note that
∑n

k=1[Ak −μ(
←−X 2(k − 1))] is a martingale w.r.t. Fn, and R is a stopping time. Since

the time reversal is drifting left, E[R] < ∞. In addition, the sequence μ(y) is positive
with limit 0 so the sequence is bounded. Consequently,

E[Y − y�] = E

[
R∑

k=1

Ak

]

= E

[
R∑

k=1

μ
(←−X 2(k − 1)

)
]

> 0.



Queueing Syst (2009) 62: 311–344 327

Now we can appeal to Theorem 11.5.1 in [17] with V being the identity function to

show that the ladder chain is not positive recurrent. Consequently, Pr(x�,y�){
←−X 2(�)

= a} → 0 so Pr (x�,y�){
←−X 2(T ) > a} → 1 for all a. Thus,

π(x�, y�) ∼ (μ1 + μ2)

μ2

β

α
ψw(1,0)

ϕ(y�)

h(x�, y�)
= χv(x�, y�),

which completes the proof of Proposition 4.

5 A proof of Proposition 3

We derive the exact asymptotics of π(x, �) under jitter conditions along the y-axis
using the same approach as in Sect. 3. The condition needed for a jitter along the
y-axis is d∗

1 < 0. Again, we work with the discrete time Markov chain X0,X1, . . .

with transition kernel K obtained by uniformizing the continuous time Markov
process. We redefine many of the terms introduced in the previous section includ-
ing Δ, K∞, �, h, K, and ϕ. When we want to emphasize that a quantity is based on
the definitions given in this section, we add a subscript “w.”

Since we are interested in large deviations in the second coordinate, we look
for a Markov additive process where the first coordinate is the Markovian part and
the second coordinate is the additive part. Let the boundary Δ = Δw = {(x, y) ∈
S : y ≤ 1}. (The subscript w comes from Δ in this section looking like a wide
set.) Let K∞ denote the transition kernel of the Markov additive process. Define
K∞((z,m); (x, y + m)) = K∞((z,0); (x, y)) where

K∞(
(z,0); (x, y)

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λa + λb for z > 0, x = z + 1 and y = 0,

μ1 for x = z and y = −1,

μ2(1 − γ ) for z > 1, x = z − 1 and y = 0,

μ2 for z = 1, x = z − 1 and y = 0

μ2 for z = x = y = 0,

λb for z = 0, x = 0, y = 1,

λa for z = 0, x = 1, y = 0,

μ2γ
y(1 − γ ) for 0 < x = z − (y + 1), y = 1,2, . . . , z − 2,

μ2γ
y for z > 1, x = 0, y = z − 1.

Again, we refer to the Markov additive process with kernel K∞ as the free process,
since we have removed the boundary Δ. In this case, the process is free to wander
over the right two quadrants Z+ × Z where Z+ ≡ {0,1,2, . . . }. Let � = {(x, y) :
x ≥ 0, y ≤ 1}, which is Δ and all of the new states for the free process. Since K is
positive recurrent, we would expect the free process to be transient.

The next step is to find a harmonic function h = hw for the transition kernel K∞ of
the form h(x, y) = ĥ(x)by . From Corollary 1, the rough asymptotics for states (x, �)
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are given by β; hence, 1/b = β . Let ĥ(0) = 1. If we insert our guess into K∞h = h,
we discover that

ĥ(x) =
⎧
⎨

⎩

1 for x = 0,

(
λa+μ1
λa+λb

)x−1 for x = 1,2, . . . .

We use the harmonic function h(x, y) = ĥ(x)β−y to define the h-transform or
twisted kernel K((z,0); (x, y)) ≡ K∞((z,0); (x, y))h(x, y)/h(z,0) yielding

K
(
(z,0); (x, y)

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λa + μ1 for z > 0, x = z + 1 and y = 0,

λb for x = z and y = −1,

μ2λa/(λa + μ1) for z > 1,x = z − 1 and y = 0,

μ2 for z = 1, x = 0 and y = 0

μ2 for z = x = y = 0,

μ1 for z = 0, x = 0, y = 1,

λa for z = 0, x = 1, y = 0,

μ2
λa

λa+μ1
(

μ1
λa+μ1

)y for 0 < x = z − (y + 1),

y = 1,2, . . . , z − 2,

μ2(
μ1

λa+μ1
)y for z > 1, x = 0, y = z − 1.

If λa/μ2 < 1, then the stationary distribution ϕw for the Markovian part of the
twisted free process exists and is given by

ϕw(x) =
⎧
⎨

⎩

(1 − λa

μ2
) for x = 0,

(1 − λa

μ2
) λa

μ1+μ2
(

λa+μ1
μ1+μ2

)x−1 for x = 1,2, . . . .

When the Markovian part is positive recurrent and in steady state, the vertical drift
of the process is

d̃w = −λb + μ1ϕ(0) +
∞∑

x=2

ϕ(x)

x−2∑

n=1

nμ2
λa

λa + μ1

(
μ1

λa + μ1

)n

+ (x − 1)μ2

(
μ1

λa + μ1

)x−1

= μ1 − λb

> 0,

which makes sense since the twisted free process, in essence, has interchanged two
rates: the arrival rate of type b customers with the service rate at machine m1.
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Starting from Orey’s representation of π and using arguments similar to those in
Sect. 3, we end up with

π(x, �)hw(x, �) =
∑

(z,y)∈Δ

π(z, y)hw(z, y)E(z,y)

[
N�(x, �)

]

→ cw

ϕw(x)

d̃w

, (22)

where

cw ≡
∑

(z,y)∈Δw

π(z, y)hw(z, y)Hw(z, y)

=
∞∑

z=0

π(z,1)β−zHw(z,1), (23)

and Hw(z, y) is the probability that the twisted free process as defined in this section
starting from (z, y) never returns to �. The “similar arguments” need πhw1Δw < ∞,
which follows from the bounds on π given in (3).

Using the bounds on π and noting that Hw(z,1) is strictly positive for z 
= 1, it
follows that cw is a finite, strictly positive constant. By putting in our expressions for
d̃w , h and ϕ, we obtain

π(x, �) ∼ cw ϕw(x)

d̃w hw(x, �)
= ψw(x, �).

This completes the proof of Proposition 3.

6 Using the time reversal to prove Proposition 5

We use the new approach to derive the exact asymptotics of π(x�, y�) when the jitter
condition along the y-axis does not hold; thus, we assume that λa/μ2 ≥ 1 or equiv-
alently d∗

1 ≥ 0. For stability the jitter condition along the x-axis must hold; that is,
d∗

2 < 0.
The definitions of Δ = Δw , K∞, �, h and K are still those of Sect. 5. Since the

Markovian part of the twisted free process does not have a stationary distribution, we
redefine ϕ = ϕw to be the invariant measure

ϕw(x) =
{

1 for x = 0,
λa

μ1+μ2
(

λa+μ1
μ1+μ2

)x−1 for x = 1,2, . . . .

Using ϕw we define the transition kernel
←−K of the time reversal of the twisted free

process from the relationship

ϕw(x)K
(
(x, y); (z,0)

) = ϕw(z)
←−K

(
(z,0); (x, y)

)
.
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This time reversal is remarkably similar to the time reversal depicted in Fig. 3
(though Δ is different and this time reversal lives in the right two quadrants instead
of the upper two quadrants). For example, the transition probabilities out of state
(4, 4) are identical, except that there is no truncation of the geometric distribution
of jumps to the southeast. Hence, the drift vector from (4, 4) and any state (x, y)

with x > 2 is the same as (4), which means that the time reversal will be drifting
southeasterly in the direction d∗ when x > 2. In our production example, d∗ turns out
to be the direction of drift for both time reversals asymptotically as their Markovian
parts become large. This similarity does not hold in general. In other examples, the
two may have different asymptotic drifts as discussed in [10].

From (22) and Lemma 7, we can obtain the analog of (20). Thus, for (x�, y�) ∈
S \ Δ,

π(x�, y�)
hw(x�, y�)

ϕw(x�)
= E(x�,y�)

[
1


(←−X (T )
)
π

(←−X (T )
) hw(

←−X (T ))

ϕw(
←−X 1(T ))

]
. (24)

There is one wrinkle to using the time reversal of the twisted free process defined
in Sect. 4 that we did not encounter previously. When leaving S \Δ, the time reversal

may leap completely over Δ landing in � \ Δ at
←−X (T ). Now note that

hw(x, y)

ϕw(x)
=

{
β−y for x = 0,
μ1+μ2

λa
α−(x−1)β−y for x = 1,2, . . . .

Hence, for � > 0, we have from Proposition 2

π(�,1)
hw(�,1)

ϕw(�)
= λa + λb

βλa

π(�,1)α−�

→ λa + λb

βλa

ψv(0,1).

The appropriate condition for the Markovian part
←−X 1(T ) to diverge (at least in prob-

ability) is that d∗
1 ≥ 0.

To handle the added wrinkle that
←−X (T ) might land in � \ Δ, we need the

Pr (x�,y�){
←−X 2(T ) = 1}, which is the probability of landing on Δ starting from (x�, y�).

There is more than one way to compute this quantity. The one-step transition proba-
bility of the time reversed twisted free process jumping downwards an amount y > 0
is

λa

(
μ1

μ1 + μ2

)y
μ2

μ1 + μ2
.

Thus, conditioned on jumping downwards, the distance jumped has a geometric dis-
tribution. Hence, the first time the process goes below 2, the probability of stopping
at 1 is μ2/(μ1 +μ2). Another way of computing this quantity is to use the expression
for (24) applied to the already derived asymptotic expression for π(�, y) with y > 1
given in Proposition 2.
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Let (x�, y�) be a sequence of states in S such that y� > 1 and x� + y� → ∞. For
such a sequence,

E(x�,y�)

[
1


(←−X (T )
)
π

(←−X (T )
) hw(

←−X (T ))

ϕw(
←−X 1(T ))

]

→ λa + λb

βλa

ψv(0,1)
μ2

μ1 + μ2

= cv

αμ2

βλa

1

μ1 + μ2 − λa − λb

λa/μ2 − λb/μ1

λb/μ1
,

which is a finite positive constant; Proposition 5 follows from knowing this constant
and (24).

7 Asymptotics of π(x�,y�) when jitter conditions hold on both axes
and a proof of Proposition 6

To complete the description of the asymptotics of π , we need to consider the asymp-
totics when d∗

1 < 0 and d∗
2 < 0, which is assumed to hold in this section. Under these

conditions, Propositions 2 and 3 already give the asymptotics near the axes. Hence,
we only need consider sequences of states (x�, y�) where both x� → ∞ and y� → ∞.
To obtain asymptotics away from the axes, we need to use one of the time reversals.
Let us call the time reversal studied in Sect. 4.1 where Δ = Δv was a vertical strip
near the y-axis as the v-time reversal; the time reversal where Δ = Δw was a hori-
zontal strip near the x-axis will be the w-time reversal. Since the jitter condition holds
for both time reversals, we assume that ϕv and ϕw are the stationary distribution of
the Markovian part of the v-time reversal and w-time reversal, respectively.

Let τ be the time that a time reversal exits the transient set {2,3, . . . }2. At time τ ,
the time reversal can hit either V = {1}×{2,3, . . . } or W = {(i, j) : j ≤ 1, i +j ≥ 3}.
Let q� be the probability that the time reversal starting from (x�, y�) ∈ {2,3, . . . }2 hits
V at time τ . The probability does not depend upon which of the two time reversals
we choose. Furthermore, the probability of hitting any particular state in V is the
same for both time reversals. This latter property does not hold on states in W since
the southeastern jumps are truncated for the v-time reversal, but not for the w-time
reversal. The next lemma says that the time reversal is far from the origin at time τ .

Lemma 2 Let
←−X be either time reversal of either twisted free process starting

from state (x�, y�) ∈ {2,3, . . . }2 where x� + y� → ∞. Then Pr(x�,y�){max{←−X 1(τ ),←−X 2(τ )} ≤ k} → 0 for all k.

Proof Consider a random walk that uses the same transition probabilities as the w-
time reversal when the time reversal is in some state (z,0) with z > 1. Suppose the
random walk starts in state (x�, y�). Let τ(n) be the first time that the random walk
hits the line with elements (w, z) where w + z = x� + y� − n; that is, the total has
decreased by n. Note that the random walk cannot jump over this line. Also note
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that the position on this line is the sum of n i.i.d. displacements where the mean can
be determined from the drift vector d∗. Lastly, note that the probability that a time
reversal hits within k of the origin is smaller than the probability that the random walk
at time τ(x� +y� −k) is between (k,0) and (0, k). If the variance of the displacements
is finite, then this probability goes to zero as � → ∞ by the central limit theorem.
If the variance is infinite, this probability also goes to zero, which completes the
argument. �

Since the process is far from the origin at time τ , the r.h.s. of (20) will be a mixture
of two cases depending on which coordinate of the time reversal is big at time τ . The
next lemma merely gives the mixture under the assumption that q� converges. We
delay determining limq� until Lemmas 4 and 5.

Lemma 3 If q� → q , then

E(x�,y�)

[
1


(←−X (T )
)
π

(←−X (T )
) hv(

←−X (T ))

ϕv(
←−X 2(T ))

]

→ q
(μ1 + μ2)

μ2

β

α
ψw(1,0)

1

ϕ(1)
+ (1 − q)

cv

d̃v

.

Proof Consider the v-time reversal; thus, we are interested in the asymptotic hitting
distribution on Δv as � → ∞ assuming that the process started at (x�, y�). The v-
process drifts southwest. From Lemma 2, the probability that the v-process is close
to the origin at time τ goes to zero as � → ∞. The v-process will either be in Δ far
above the origin with probability converging to q , or with probability converging to
(1 − q) at some distant state (�′,1). In both cases, we can compute the r.h.s. of (20).
In the former case, we have (21) except that ϕ is the invariant distribution; in the latter
case, the process jitters in giving (18), which completes the proof. �

To finish the proof of Proposition 6, we need to investigate limq�. The following
lemma will show that if (x�, y�) asymptotically lies above the drift line, then the time
reversal will hit Δv far above the origin, which means q� → 1. In this case, the r.h.s.
of (19) behaves as in the cascade case analyzed in Sect. 4.2. On the other hand, if
(x�, y�) asymptotically lies below the drift line, then the process hits some distant
point of W near the x-axis (q� → 0) and then jitters along the lower edge of the state
space until hitting Δv near the origin, which can be analyzed as in (17). Lemma 5
considers the delicate case when (x�, y�) asymptotically lies on the drift line, which
can be a mixture of the previous two cases. The mixing probability will be the limq�,
provided the limit exists.

Lemma 4 Assume d∗
1 < 0 and d∗

2 < 0. Let (x�, y�) be any sequence of states with
x� > 1 and (x�/�, y�/�) → (x̄, ȳ) where 0 < max(x̄, ȳ) < ∞. If ȳ/x̄ > d∗

2 /d∗
1 , then

q� → 1. If ȳ/x̄ < d∗
2 /d∗

1 , then q� → 0.
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Lemma 5 Assume d∗
1 < 0 and d∗

2 < 0. Let (x�, y�) be any sequence of states with
(x�/�, y�/�) → (x̄, ȳ) where 0 < max(x̄, ȳ) < ∞. If there exists (r, s) such that

√
�

[(
x�

�
,
y�

�

)
−

(
d∗

1

d∗
1 + d∗

2
,

d∗
2

d∗
1 + d∗

2

)]
→ (r, s),

then q� → Φ[−(s − rd∗
2 /d∗

1 )/σ ], Φ is the c.d.f. of a standard normal distribution,
and σ is defined in (26).

The proofs of Lemmas 4 and 5 will rely on Sects. 2 and 4 in Chap. 11 of Ethier
and Kurtz [6]. To use these results, we closely follow [6] by considering a family of
continuous time Markov processes

Ŷ�(t) = Ŷ�(0) +
∞∑

i=1

viNi(�βi t),

where Ŷ�(0) = (x� − 1, y� − 1), v1 = (−1,0), v2 = (0,1), v3 = (1,0), v4 =
(2,−1), . . . , the Ni ’s are independent Poisson processes with rate 1, β1 = (μ1 +μ2),
β2 = λb, and βk = μ2(1 − γ )α(γ α/β)k−3 for k = 3,4, . . . . A glance at Fig. 3 should
help to motivate the definitions of the vi ’s and βi ’s. The process Ŷ�(·) is a continuous
time Markov process with transitions that occur at rate �. For the first τ − 1 jumps,

the continuous time process Ŷ�(·) and the discrete time process
←−X (·) starting from

(x�, y�) can be coupled so that the jump sizes (one of the vk’s) are identical. Thus,
until exiting, when the latter is in state (x, y), the former is in state (x −1, y −1). The

reason for shifting the state is so that the exit time τ of
←−X (·) from {2,3, . . . }2 can be

expressed as the exit time from {1,2,3, . . . }2, which will make things slightly nicer.
The coupling can also be constructed so that if Ŷ�(·) hits state (x, y) when exiting
{1,2,3, . . . }2, then

←−X (τ ) =
{

(x + 1, y + 1) for x ≤ 0, y > 0,

(x + 1 + y,1) for x > 0, y ≤ 0.

This follows from the fact that westward exiting jump can only be of size v1 =
(−1,0) but southward exiting jumps of Ŷ�(·) can be quite large and may need to
be truncated.

Note that
∑

i>0 viβi = d∗. Let Y�(t) = Ŷ�(t)/�. Thus,

Y�(t) = Y�(0) +
∑

i>0

vi

�
Ñi(�βi t) + d∗t,

where Ñi(t) ≡ Ni(t) − t is the Poisson process centered at its mean. Let

τ� ≡ inf
{
t > 0 : min

(
Y�(t)

) ≤ 0
}
.

Hence, q� is the probability that the first coordinate of Y�(τ�) is zero. From Theo-
rem 2.1 in [6],

lim
�→∞ sup

s≤t

∣∣Y�(s) − (
(x̄, ȳ) + d∗t

)∣∣ = 0 a.s.
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If (x̄, ȳ) + d∗τ̄ exits the upper quadrant anywhere except at the origin, we immedi-
ately know lim�→∞ q�.

Proof of Lemma 4 If ȳ/x̄ > d∗
2 /d∗

y , then (x̄, ȳ) + d∗t for t ≥ 0 exits the upper quad-
rant through the y-axis above the origin implying lim�→∞ q� = 1. If ȳ/x̄ < d∗

2 /d∗
y ,

then (x̄, ȳ) + d∗t for t ≥ 0 exits the upper quadrant through the x-axis to the right of
the origin implying lim�→∞ q� = 0. �

When ȳ/x̄ = d∗
2 /d∗

y , then the fluid limit exits the upper quadrant at the origin at
time

τ̄ ≡ −ȳ/d∗
2 = −x̄/d∗

1 . (25)

To determine lim�→∞ q� = 1 in this case, we need a finer analysis, which will
be provided by applying the results in Sects. 11.2 and 11.4 in [6] to Z�(t) ≡√

� (Y�(s) − ((x̄, ȳ) + d∗t)). In particular, from Theorem 2.3 in [6], Z� ⇒ Z where

Z(t) = (r, s) +
∑

i>0

viWi(βi t),

and W1,W2, . . . are independent, standard Brownian motions. We are interested in
the hitting location Z�(τ�) since q� is the probability that the first coordinate of Z�(τ�)

is zero (and that the second coordinate is greater than zero). Unfortunately, we cannot
appeal to Theorem 4.1 in [6] since min (x, y) is not differentiable. Instead, we bound
q� as follows.

Proof of Lemma 5 Let ϕx(s, t) ≡ s and ϕy(s, t) ≡ t . Define the exit time from the
right two quadrants as τx

� = inf{t > 0 : ϕx(Z�(t)) ≤ 0}. Note that q̄� ≡ Pr{ϕy(Z�(t))

> 0} ≥ q�. The reason for the latter inequality is that Z� could have exited the up-
per right-hand quadrant by entering the lower right-hand quadrant, which would be
time τ�, and then reenter the upper right-hand quadrant before exiting the right two
quadrants and entering the upper left quadrant at time τx

� .
Since ϕx is continuously differentiable and the rest of the conditions of Theo-

rem 4.1 in Chap. 11 in [6] hold,

q̄� → Pr
{
ϕy

(
Z(τ̄ )

) − (
d∗

2 /d∗
1

)
ϕx

(
Z(τ̄ )

)
> 0

}
,

where Z(τ̄ ) has a bivariate normal distribution. Before computing the parameters of
this distribution, we derive a lower bound q

�
≤ q�. The procedure is similar starting

with τ
y
� = inf{t > 0 : ϕy(Z�(t)) ≤ 0} and ending with

q
�
→ Pr

{
ϕx

(
Z(τ̄ )

) − (
d∗

1 /d∗
2

)
ϕy

(
Z(τ̄ )

)
< 0

}
.

Fortunately, the upper and lower bounds converge to the same value so we know
lim�→∞ q� = q ≡ Pr {Z̃ < 0} where Z̃ ≡ ϕx(Z(τ̄ )) − (d∗

1 /d∗
2 )ϕy(Z(τ̄ )).

Under the assumptions of Lemma 5, the mean of Z(τ̄ ) ≡ (Z1(τ̄ ),Z2(τ̄ )) is (r, s);
hence, the normal random variable Z̃ has the mean r − (d∗

1 /d∗
2 )s and the variance

σ 2 = Var
[
Z1(τ̄ )

] + (
d∗

1 /d∗
2

)2Var
[
Z2(τ̄ )

] − 2
(
d∗

1 /d∗
2

)
Cov

[
Z1(τ̄ ),Z2(τ̄ )

]
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where

Var
[
Z1(τ̄ )

] = τ̄

[
(μ1 + μ2) + λa

∑

k≥0

(k + 1)2p(1 − p)k
]
,

Var
[
Z2(τ̄ )

] = τ̄

[
λb + λa

∑

k≥0

k2p(1 − p)k
]
,

Cov
[
Z1(τ̄ ),Z2(τ̄ )

] = −τ̄ λa

∑

k≥0

k(k + 1)p(1 − p)k,

with p = μ2/(μ1 + μ2). After simplifying,

σ 2 = τ̄

[
μ1 + μ2 + λa

(
μ1

μ2

)2

+ 4λa

(
μ1

μ2

)
+ λa + λb

(
d∗

1

d∗
2

)2

+ λa

(
d∗

1

d∗
2

)2(
μ1

μ2

)2

+ 2λa

(
d∗

1

d∗
2

)2(
μ1

μ2

)
+ 2λa

(
d∗

1

d∗
2

)(
μ1

μ2

)2

+ 6λa

(
d∗

1

d∗
2

)(
μ1

μ2

)]
, (26)

where from (25) τ̄ ≡ −ȳ/d∗
2 . Thus, q = Φ[−(r − sd∗

1 /d∗
2 )/σ ] where Φ is the cumu-

lative distribution function of a standard normal random variable. �

8 Concluding remarks

Theorem 2.2.1 of Li, Miyazawa and Zhao [15] is somewhat similar to our results
though the Markov chain analyzed (QBD process) is different. The approach in [15]
does not seem to give any information about the large deviation path. Theorem 2.2.1
does not distinguish among the jitter, bridge and cascade situations; consequently,
c and the r.h.s. of (2.14) in [15] may be zero, which limits the usefulness of the
result. The important question of the existence and construction of a positive left
invariant vector x giving a finite c > 0 in (2.13) in [15] for cascades is answered in
some generality in [10]. Nevertheless, Theorem 2.2.1 in [15] does handle a cascade
situation; furthermore, their proof does seem to involve a time reversal. The idea
of starting at some (increasingly) distant state and using some sort of time reversal
seems quite useful. In [14], Khanchi uses a time reversal of MAPs to investigate the
hitting distribution in the bridge case.

In Part II of Theorem 3.3 in [1], Borovkov and Mogulskii give exact asymptotic
results for the stationary distribution of an ergodic 0-partially space homogeneous
Markov chains in the positive quadrant R

2+. The transitions of these Markov chains
are those of a random walk for transitions between points off the boundary. Transi-
tions to or from the boundary can have quite arbitrary distributions. The free process
along either axis would be a Markov additive process. The paper [1] is more closely
related to, and discussed in, [10]. However, a referee asked us to discuss the rela-
tionship between our paper and [1]. The short answer would be that the production
model in our paper is not a 0-partially space homogeneous Markov chain, so there
is no overlap; however, a better answer would discuss the tools and types of results
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obtained in the two papers. We limit the discussion to exact asymptotics for the sta-
tionary distribution π , which is only a small part of the work in [1].

In [1], the exact asymptotic results for the stationary distribution π(z) are valid
for points z tending to infinity along a ray into the interior of R

2+ but not along rays
parallel to an axis. This is a major difference with our work. In this paper, and in
[7–9, 16], the emphasis has been on using Markov additive processes to obtain the
asymptotics of π along a discontinuity such as along an axis. In the current paper, we
do obtain results for sequences in the interior, but these results are more a byproduct
of having obtained the asymptotics along an axis.

A second difference is that the exact asymptotics given in Theorem 3.3 in [1]
is a sum of three terms. Roughly speaking and using notation more closely re-
lated to our paper, Theorem 3.3 in [1] gives exact asymptotics of the form: π(y�) ∼
c0 exp(−α0�) + c1�

−1/2 exp(−α1�) + c2�
−3/2 exp(−α2�) where y� is a point along

a particular ray at a distance � from the origin. The theory in [1] does not seem to
have any way of deciding which of the three terms dominates except through solving
variational problems. Our approach provides conditions that can be checked to decide
which decay rate dominates. If our conditions hold, the decay rate is given explicitly
without solving a variational problem.

Without the tools in our paper, it appears difficult to obtain the exact asymptot-
ics of π for the production model. There does not seem to be a natural quasi-birth
death structure for the Markov chain shown in Fig. 1 allowing an approach similar
to [15]. Even finding the rough asymptotics of π using the traditional theory of large
deviations [18] does not appear straightforward. We are not aware of any existing re-
sults that would establish a large deviations principle in the production problem with
the range of jumps being unbounded. Even if a large deviation principle could be
established and a good rate function found, the optimization problem appears more
formidable than in [9]. Because of the homogeneous transition structure in the interior
of the model studied in [9], attention could be restricted to paths that were piecewise
linear with at most one change of direction and speed and that change could only oc-
cur on an axis. Such paths could be described by a finite dimensional vector making
the optimization problem tractable. The transition structure of the production model
does not have the same homogeneity on the interior; the y-axis influences the transi-
tion structure at every state. Without a similar result restricting attention to some nice
set of paths, the optimization would have to consider all continuous paths, including
paths that might curve and change speed in the interior, which would be much more
difficult.
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Appendix A: A proof of Proposition 1

If we show that the bounds in (3) hold for all but a finite number of states, then c1 and
c2 can be adjusted so that the bounds hold for all states. Consequently, Proposition 1
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holds trivially if the central buffer were finite. Even so, the following argument could
be refined to derive substantive bounds for the finite buffer system.

As described in Sect. 2.1, let X0,X1, . . . be the uniformized Markov chain with
transition kernel K and stationary distribution π . Without loss of generality assume
λa +λb +μ1 +μ2 = 1. Let π∗ be the distribution given in Lemma 1. Under the con-
ditions of Lemma 1, we know π = π∗. Now define τ ≡ inf{n > 0|Xn = (0,0)} to be
the hitting time of the origin, and let N be the number of visits to state (x, y) during
0,1, . . . , τ − 1. From standard regenerative arguments, π(x, y) = π(0,0)E(0,0)[N ]
where E(i,j) denotes the conditional expectation given that X0 = (i, j). By condi-
tioning on the first step, we have for any state (x, y) other than (0,0) that

π(x, y) = π(0,0)λa(1 − η)E(1,0)[N ] + π(0,0)(λb + λaη)E(1,0)[N ].
Now assume that (x, y) is not (0,0), (1,0), or (0,1), and let H(i, j) be the probability
of hitting state (x, y) before hitting the origin conditioned on the process starting in
state (i, j). Thus,

π(x, y) = π(0,0)E(x,y)[N ][λa(1 − η)H(1,0) + (λb + λaη)H(0,1)
]
,

π∗(x, y) = π∗(0,0)E(x,y)[N ][λa

(
1 − η∗)H(1,0) + (

λb + λaη
∗)H(0,1)

]
.

Notice that H(1,0) is weighted more heavily, and H(0,1) less heavily, when η < η∗.
Let r ≡ λa(1 − η∗)/(λb + λaη

∗) = λa/(λa + λb) be the ratio of the weights when
η = η∗. Temporarily assume that η ≤ η∗. By either increasing both weights or de-
creasing both weights, we can obtain upper or lower bounds. In particular,

π(0,0)E(x,y)[N ][r(λb + λaη)H(1,0) + (λb + λaη)H(0,1)
]

≤ π(x, y)

≤ π(0,0)E(x,y)[N ]
[
λa(1 − η)H(1,0) + 1

r
λa(1 − η)H(0,1)

]
,

which can be rewritten as

π(0,0)

π∗(0,0)

(λb + λaη)

(λb + λaη∗)
π∗(x, y)

≤ π(x, y)

≤ π(0,0)

π∗(0,0)

λa(1 − η)

λa(1 − η∗)
π∗(x, y).

From the form of π∗, it is clear that finite constants c1 > 0 and c2 > 0 can be calcu-
lated so that (3) holds for η ≤ η∗. On the other hand, if η ≥ η∗, the same argument
goes through after reversing the inequalities except that there is a slight problem in the
last step when η = 1. When η = 1, the lower bound has a factor λa(1 − η) implying
that the lower bound is 0 at that point.

To obtain the lower bound when η = 1, consider states (x, y) with x + y ≥ 4.
Let q(i, j) be the probability of going from (0,0) to state (i, j) in three steps while
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avoiding (0,0). Note that q(0,1) and q(1,0) are both positive.

π(x, y) > π(0,0)E(x,y)[N ][q(1,0)H(1,0) + q(0,1)H(0,1)
]

≥ π(0,0)E(x,y)[N ][min
[
q(1,0), rq(0,1)

]
H(1,0)

+ min
[
q(1,0)/r, q(0,1)

]
H(0,1)

]

= π(0,0)E(x,y)[N ]min[q(1,0)/r, q(0,1)]
(λb + λaη∗)

× [
r
(
λb + λaη

∗)H(1,0) + (
λb + λaη

∗)H(0,1)
]

= π(0,0)

π∗(0,0)

min[q(1,0)/r, q(0,1)]
(λb + λaη∗)

π∗(x, y),

which makes it clear that a constant c1 > 0 can be selected even when η = 1.

Appendix B: Asymptotics of GΔ

In this appendix, we prove a result that justifies (10). Consider a transient Markov
chain X ≡ {X0,X1, . . . } on a countable state space S. Let Ex[·] denote the expec-
tation, and Pr x{·} denote the probability, given X0 = x. Let Δ be a subset of S and
TΔ ≡ inf{n > 0 : Xn ∈ Δ} be the time of the first entrance to Δ. The number of visits
to y ∈ S before TΔ will be denoted by NΔ(y) ≡ ∑TΔ−1

n=0 1{Xn=y}. Define the Green’s
function

GΔ(x, y) = Ex

[
NΔ(y)

]
.

We are interested in asymptotic expressions for GΔ(x, y�) where y� is some divergent
sequence of states. In this appendix, all asymptotic expressions will have � → ∞.
Under certain conditions,

GΔ(x, y�) ∼ H(x)G(x, y�), (27)

where H(x) ≡ Pr x{TΔ = ∞} is the probability of never hitting Δ and G(x,y) is the
expected total number of visits to y starting from X0 = x. Equation (10) is an example
of this. Note that GΔ(x, y) ≤ G(x,y) ≤ G(y,y) and that 1/G(y, y) is simply the
probability of returning to y. Whenever X is a random walk or a Markov additive
process with a non-zero drift, G is bounded.

By a divergent sequence y�, we mean that if A is any finite subset of the state
space, then there is an index �A such that y� /∈ A for � > �A. In addition, we need to
assume that y� avoids Δ at least asymptotically; hence, we assume that there is an
index �Δ and y� 
∈ Δ for � > �Δ.

Lemma 6 Let y� be a divergent sequence that avoids Δ asymptotically. If G(x,y) <

B for all y and X has a Prx -trivial tail σ -field, then |GΔ(x, y�)−H(x)G(x, y�)| → 0
as � → ∞. If, in addition, H(x) > 0 and lim infG(x,y�) > 0, then (27) holds.
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Proof Let F n denote the σ -field generated by Xn,Xn+1, . . . , and T = ⋂
n F n be

the tail σ -field. Note that Ex[TΔ = ∞|Fn] is a reverse martingale tending to the
constant H(x) = Pr x{TΔ = ∞} since the tail σ -field is Prx -trivial. More importantly,
we also have Ex[TΔ > n|Fn] → H(x) a.s. as n → ∞; see Exercise 4.6.2 in [5].
Hence, for any ε > 0, we can define a random index I ≡ I (ω) such that |Ex[TΔ >

n|Fn]−H(x)| < ε for n > I . Now, letting 1A be the indicator of an event A, we have
∣∣GΔ(x, y�) − H(x)G(x, y�)

∣∣

=
∣∣
∣∣∣

∞∑

n=0

Pr x{TΔ > n,Xn = y�} − Pr x{TΔ = ∞}
∞∑

n=0

Pr x{Xn = y�}
∣∣
∣∣∣

=
∣∣∣
∣∣

∞∑

n=0

Ex

[
1{Xn=y�}

(
Ex[TΔ > n|Fn] − Pr x{TΔ = ∞})]

∣∣∣
∣∣

≤
∞∑

n=0

Ex

[
1{Xn=y�}

∣∣Ex[TΔ > n|Fn] − Pr x{TΔ = ∞}∣∣]

≤ 2Ex

[
I∑

n=0

1{Xn=y�}

]

+ εEx

[ ∞∑

n=I+1

1{Xn=y�}

]

≤ 2Ex

[
I∑

n=0

1{Xn=y�}

]

+ εB

→ εB.

To see the last step, note that the states visited during the first I steps of the
Markov chain form a finite, random set. Since y� diverges,

∑I
n=0 1{Xn=y�} → 0 a.s.

as � → ∞. (If A denotes the finite, random set of states visited during the first I

steps, then there is a random index LA such that y� /∈ A for � > LA.) Furthermore,
since

∑I
n=0 1{Xn=y�} ≤ N(y�) and Ex[N(y�)] < B , the collection of random vari-

ables
∑I

n=0 1{Xn=y�} are uniformly integrable w.r.t. Ex ; hence, the first term goes to
zero. Since the second term can be made arbitrarily small by appropriately choosing
ε, the first part of the lemma follows. If H(x) > 0 and lim infG(x,y�) > 0, then (27)
follows immediately. �

We now describe several situations involving transient Markov chains in which
Lemma 6 could be used including justifying (10). Basically Lemma 6 allows us to
separate the computation of the asymptotics GΔ into two subproblems: computing
the asymptotics of G and showing that T is Prx -trivial. In most of the situations that
follow, we reduce the computation of G to considering a one-dimensional random
walk on the integers with positive drift so we start with that situation.

Suppose X is an aperiodic random walk on Z with drift d̃ > 0. X is aperiodic
if δ = 1 where δ is the g.c.d. of the support of X1 − X0. As in Example 5.7 in [5],
Ornstein’s coupling can then be used to show that the tail σ -field is trivial. If y� = �,
then G(x, �) → 1/d̃ ; for a proof, see Theorem 10.8 in [2].
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In most of the remaining situations, to show that T is Prx -trivial, we completely
determine T by the approach used in the proof of Theorem 5.5.10 in [5]. We first
claim that T = σ ({X0 ∈ Ai}, i = 1, . . . , n) where A1, . . . ,An is some partition of S.
To justify the claim, we consider two versions of X, one that starts at x and one that
starts at z. We show that the two versions can be coupled in a finite time a.s., if, and
only if, x and z lie in the same set Aj for some j ∈ {1, . . . , n}. Once the coupling has
been established, we can mimic the remaining steps involving space-time harmonic
functions in the proof of Theorem 5.5.10 in [5] to show that T is as claimed.

For the next situation, suppose that the random walk were periodic with period
δ > 1. Partition Z into S̃0, S̃1, . . . , S̃δ−1 where S̃i = {x ∈ Z : x ≡ i (mod δ)}. Con-
sider two versions of the random walk, one that starts at x and one that starts at y.
If x and y lie in different elements of the partition, then the two versions cannot be
coupled. If they lie in the same set S̃j , then they can be coupled using Ornstein’s
coupling. Now mimic the remaining steps in the proof of Theorem 5.5.10 in [5] to
conclude that T = σ({X0 ∈ S̃i}, i = 0, . . . , δi−1). Consequently, if the initial distri-
bution is concentrated on a single point X0 = x, we have that T is Prx -trivial. If
y� = �δ + x, then G(x, �δ + x) → δ/d̃ , which again follows from Theorem 10.8
in [2]. Thus, GΔ(x, �δ + x) → H(x) δ/d̃ .

Now, suppose X is a MAP (Markov additive process) with transition kernel K

where Xn = (X̃n, X̂n) with the additive part X̃n taking values in Z, and the Markovian
part X̂n being irreducible with transition matrix K̂ on Ŝ. Suppose X̂ = {X̂0, X̂1, . . . }
is a recurrent Markov chain. Consider the random walk obtained by using Doeblin’s
trick of observing X only when the Markovian part is some fixed value x̂ ∈ Ŝ. Let δ be
the g.c.d. of the support of that random walk. State x̂ is aperiodic if δ = 1; otherwise,
x̂ is periodic with period δ. (To paraphrase Cinlar [3], periodicity for a MAP X has
nothing to do with periodicity of the Markovian part X̂.) Since X̂ is irreducible, δ is
the same for all x̂. This is proven for Markov renewal processes in Proposition 10.2.3
in [3], but the argument can be extended to MAPs.

To determine T , we follow the approach used in proving Theorem 5.5.10 in [5].
First, assume that X is aperiodic and that X̂ is positive recurrent with stationary dis-
tribution ϕ. Even though the MAP is aperiodic, the Markovian part may be periodic.
In the usual way with Markov chains, there is a cyclic decomposition Ŝ0, . . . , Ŝδ̂−1

of the state space Ŝ of X̂ consisting of δ̂ ≥ 1 disjoint sets. Then, the tail σ -field of
X is T = σ({X̂0 ∈ Ŝi}, i = 0, . . . , δ̂ − 1). To see that this is the tail, consider two
versions of X, one that starts at x = (x̃, x̂) and the other that starts at z = (z̃, ẑ). If
their Markovian parts were to lie in different sets in the cyclic decomposition, the
two versions could never be coupled. Suppose x̂ and ẑ lie in the same set Ŝj for some
j ∈ {0, . . . , δ̂ − 1}. The two processes can be successfully coupled as follows. Ini-

tially, allow the two processes to move independently according to Kδ̂ , which means

that both Markovian parts will always be in Ŝj . The transition matrix K̂δ̂ restricted
to Ŝj is irreducible, aperiodic and positive recurrent. Let T̂ be the first time that the
Markovian parts are the same for the two processes (though the additive parts may
differ). As shown in the proof of Theorem 5.5.5 in [5], the time T̂ is finite a.s. Now
that the Markovian parts are equal to some v̂ ∈ Ŝj , use Doeblin’s trick and observe
the MAPs only when the Markovian part is v̂. Hence, we have two random walks
on Z × v̂ with the same transition structure but different initial conditions. Since the
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MAPs are aperiodic, these random walks are aperiodic as shown in Corollary 10.2.4
in [3], which is for Markov renewal processes but can be adapted to MAPs. Hence,
Ornstein’s coupling can now be used to couple the additive parts in a time T̃ that is
finite a.s. Thus, the two MAPs have been coupled in a finite time T̂ + T̃ . At this point,
we can mimic the remaining steps in the proof of Theorem 5.5.10 in [5] to prove that
T = σ({X̂0 ∈ Ŝi}, i = 0, . . . , δ̂ − 1). Hence, if the initial distribution is concentrated
on a single point X0 = x, then T is Prx -trivial.

If y� = (�, ŷ), the above coupling shows that asymptotically G(x, (�, ŷ)) could
depend on j where x̂ ∈ Ŝj . However, by the following argument, G(x, (�, ŷ)) →
ϕ(ŷ)/d̃ provided the stationary drift

d̃ =
∑

ẑ∈Ŝ

ϕ(x̂)E(0,x̂)[X̃1] (28)

is strictly positive. Since the Markovian part is positive recurrent, we can again use
Doeblin’s trick of observing the MAP when the Markovian part is ŷ, which reduces
the process to an aperiodic random walk with drift d̃/ϕ(ŷ), and Theorem 10.8 in [2]
gives G(x, (�, ŷ)) → ϕ(ŷ)/d̃ . Since T is Prx -trivial if X0 = x and G is bounded, we
have GΔ(x, (�, ŷ)) → H(x)ϕ(ŷ)/d̃ , which justifies (10).

If we had assumed only that K̂ were recurrent instead of positive recurrent,
we could have used Griffeath’s maximal coupling [11] to successfully couple the
Markovian parts in a finite time T̂ . Thus, we would still have T = σ({X̂0 ∈
Ŝi}, i = 1, . . . , δ̂), but, in the null recurrent case, we would need the asymptotics of
G(x, (�, ŷ)). Theorem 1 combined with Proposition 1 in [8] with κ = 0 gives these
asymptotics when the Markovian part is a nearest neighbor random walk on the non-
negative integers.

When X̂ is transient, we would need to look at the structure of K̂ to see whether
the Markovian parts could be successfully coupled in some finite time T̂ . Even if
that is possible, we need an alternative to Ornstein’s coupling for the additive parts
since the Markovian part is not recurrent. Under certain conditions, Lemma 6 in [8]
or, more generally, Proposition 3.2 in [12] provide an alternative way to couple the
additive parts when the Markovian part is transient.

Lastly, suppose the MAP is periodic with period δ > 1. We are still assuming that
X̂ is irreducible. Thus, the random walk, obtained by observing X only when the
Markovian part is some fixed value x̂, is periodic (and X̂ may be either a periodic
or an aperiodic Markov chain). Periodic MAPs arise naturally. For example, con-
sider Poisson arrivals to two parallel queues with exponential servers where arriving
customers join the shorter queue. In [7], the additive part is the total number of cus-
tomers in the combined system and the Markovian part is the number of customers
in the upper queue minus the number in the lower queue. If we fix x̂ = 0 so the two
queue lengths are equal, then the additive part must be an even integer. On the other
hand, if x̂ = 1, then the additive part must be an odd integer. In this example, X is
periodic with period 2. The Markov chain X̂ is also periodic with period 2, but that is
a red herring. Suppose K were modified so that half the time the process jumped to
the same state and half the time the process jumped as before, so the modified kernel
would be (I + K)/2. After modification, X̂ would be an aperiodic Markov chain.
However, X is still periodic with period 2.
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As in the periodic random walk, partition Z into S̃0, S̃1, . . . , S̃δ−1. Suppose X0 =
(0, x̂). If X is observed when the Markovian part is x̂, the additive part is a random
walk on S̃0. If X is observed when the Markovian part is ŷ, the additive part is a
random walk on S̃j for some j ∈ {0, . . . , δ − 1}. Define δx̂,ŷ to be that value of j . In

other words, if X̂0 = x̂ and X̂n = ŷ, then X̃n − X̃0 ≡ δx̂,ŷ (mod δ).

Suppose X̂ has a period δ̂ ≥ 1. Let Ŝ0, . . . , Ŝδ̂−1 be the cyclic decomposition of Ŝ.
The tail σ -field is

T = σ
({X0 ∈ S̃i × Ŝj }, i = 0, . . . , δi−1, and j = 0, . . . , δ̂ − 1

)
.

To see this, consider two versions of X, one starting at x and the other starting at
z where x̃ ≡ z̃ (mod δ) and the Markovian parts x̂ and ẑ lie in the same set Ŝj for
some j ∈ {0, . . . , δ̂ − 1}. Allow the processes to move independently according to

Kδ̂ until the Markovian parts are equal at time T̂ , which is finite a.s. just as for
aperiodic MAPs. Let Ẑ be the Markovian part of either process at time T̂ , and let Z̃

be the difference in the additive parts at time T̂ . We must have Z̃ ≡ 0 (mod δ) since
we could allow the two processes after time T̂ to use exactly the same transitions
so the difference in the additive parts remains Z̃ forever. Stop the process when the
Markovian parts are ẑ. Thus, δx̂,ẑ = δẑ,ẑ − 0 implying Z̃ ≡ 0 (mod δ); hence, both
additive parts are in S̃i where i ≡ x̃ ≡ z̃ (mod δ), and we can use Ornstein’s coupling
just as we did for periodic random walks to successfully couple the additive parts.

On the other hand, if x̂ and ẑ did not lie in the same set, then the Markovian parts
would never couple. Or, if the Markovian parts did lie in the same set but x̃ 
≡ z̃

(mod δ), then two processes would never couple. At this point, we can again mimic
the argument in the proof of Theorem 5.5.10 in [5] to finish showing that T is as
claimed. Consequently, if X0 = x, then T is Prx -trivial.

The asymptotics of G(x, (�, ŷ)) reduce to considering a one-dimensional periodic
random walk on S̃j where j ≡ x̃ − δx̂,ŷ (mod δ). In particular, if the Markovian part
is positive recurrent with stationary distribution ϕ and δ̃ > 0 where δ̃ is defined as in
(28), then

G
(
x, (�δ + x̃ − δx̂,ŷ , ŷ)

) = G
(
(0, x̂), (�δ − δx̂,ŷ , ŷ)

)

→ δ ϕ(ŷ)/d̃.

At this point, we have all of the pieces for the following proposition.

Proposition 7 Suppose X is a Markov additive process with period δ ≥ 1 where the
additive part takes values in Z, the Markovian part in a countable set Ŝ, and initially
X0 = x = (x̃, x̂) ∈ Z × Ŝ. Suppose that the Markovian part is irreducible, positive
recurrent and has stationary distribution ϕ. Let Δ be an arbitrary subset of the state
space of X. If H(x) > 0 and d̃ > 0, then

GΔ

(
x, (�δ + x̃ − δx̂,ŷ , ŷ)

) → H(x)
δ ϕ(ŷ)

d̃
,

where H(x) is the probability of never hitting Δ, GΔ is given in (27), and d̃ is given
in (28).
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Appendix C: Time reversals and representing π

In this section, we describe the representation of the stationary distribution π of a
Markov chain using the time reversal of the associated Markov additive process. We
use this representation in several places: (15), (20), and (24).

Let K be the transition kernel of an irreducible, positive recurrent Markov chain
on a countable state space S with stationary distribution π . Let K∞ be the transition
kernel of a Markov additive process on S∞ ⊃ S. Partition S into two sets: Δ and Θ .
In this section, we assume that

K∞(x, y) = K(x,y) for x ∈ S and y ∈ Θ .

Starting from Orey’s representation and using the arguments in Sect. 3, we can
often represent π as

π(x, y)h(x, y) = E
[
1Δ

(
X (0)

)
h
(

X (0)
)

N�(x, y)
]
, (29)

where N�(x, y) is the number of visits to (x, y) by the Markov additive process
{X (n) = (X1(n), X2(n));n = 0,1,2, . . . } with the state space �∪S, �∩S = Δ, and
initial distribution π until X hits � at time T .

Let ϕ be an invariant measure for the Markovian part of X , which we arbitrarily

choose to be the second component. Let
←−X be the time reversal of X ; see (13).

The next lemma shows that if (29) holds for some (x, y) ∈ S \ Δ, then we can also
represent π(x, y) as a function of the hitting distribution on Δ ⊂ �.

Lemma 7 If (29) holds for some (x, y) ∈ S \ Δ, then

π(x, y)
h(x, y)

ϕ(y)
= E(x,y)

[
1


(←−X (T )
)
π

(←−X (T )
) h(

←−X (T ))

ϕ(
←−X 2(T ))

]
, (30)

where π is extended to � ∪ S by defining π(� \ Δ) = 0.

Proof Let

Kn
�
(
(w, z), (x, y)

) ≡ Pr (w,z)

{
Xn = (x, y), Xj /∈ �,0 < j < n

}
, and

←−K n
�
(
(x, y), (w, z)

) ≡ Pr (x,y)

{←−X n = (w,x),
←−X j /∈ �,0 < j < n

}
.

Using (13), it is straightforward to show that

Kn
�
(
(w, z), (x, y)

) = ϕ(y)

ϕ(z)

←−K n
�
(
(x, y), (w, z)

)
.

Starting from (29),

π(x, y)h(x, y) = E
[
1�

(
X (0)

)
h
(

X (0)
)

N�(x, y)
]

=
∑

(w,z)∈�
1Δ

(
(w, z)

)
π(w, z)h(w, z)

∞∑

n=1

Kn
�
(
(w, z), (x, y)

)
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=
∑

(w,z)∈�
1Δ

(
(w, z)

)
π(w, z)h(w, z)

∞∑

n=1

ϕ(y)

ϕ(z)

←−K n
�
(
(x, y), (w, z)

)

=
∑

(w,z)∈�
1Δ

(
(w, z)

)
π(w, z)h(w, z)

ϕ(y)

ϕ(z)
Pr (x,y)

{←−X (T ) = (w, z)
}
.

Hence,

π(x, y)
h(x, y)

ϕ(y)
= E(x,y)

[
1


(←−X (T )
)
π

(←−X (T )
) h(

←−X (T ))

ϕ(
←−X 2(T ))

]
.

�
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