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Abstract This paper considers polling systems with an autonomous server that re-
mains at a queue for an exponential amount of time before moving to a next queue
incurring a generally distributed switch-over time. The server remains at a queue until
the exponential visit time expires, also when the queue becomes empty. If the queue
is not empty when the visit time expires, service is preempted upon server departure,
and repeated when the server returns to the queue. The paper first presents a necessary
and sufficient condition for stability, and subsequently analyzes the joint queue-length
distribution via an embedded Markov chain approach. As the autonomous exponen-
tial visit times may seem to result in a system that closely resembles a system of
independent queues, we explicitly investigate the approximation of our system via a
system of independent vacation queues. This approximation is accurate for short visit
times only.

Keywords Single-server multi-queue system · Time-limited service discipline ·
Preemptive service · Unreliable server model

Mathematics Subject Classification (2000) 60K25 · 60K37

1 Introduction

Polling models are multi-queue systems with a single server. Typically, the server
visits a queue, offers service to (a part of) the customers present at this queue, and then
moves to a next queue. The specific details of the system may lead to quite distinct
polling models. Polling models are typically characterized by: (i) the arrival process
of the customers to the system (Poisson or more general), (ii) the service requirements
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of the customers, (iii) the servicing policy of the server (exhaustive, gated, k-limited,
etc.), (iv) the visit order of the server, and (v) the switch-over times of the server
between visits to the queues. Excellent surveys on a broad class of polling models can
be found in, e.g., [1–3]. Applications of polling models are ubiquitous. For instance,
traffic light systems, multiple-access protocols for communication networks (e.g.,
IEEE 802.11) and product-assembly systems can be modeled as a polling model.

In most of the (applications of) polling models, the server is assumed control-
lable. The goal is then to limit the time a server spends idle at a queue while there
is still work in the system. To the contrary, in this article we assume that the server
behaves autonomously (and thus is uncontrollable). More precisely, we assume that
the server spends an exponentially distributed period of time at a queue irrespective
of the number of customers present at each queue. A consequence of the autonomous
server is that the services are subject to preemption. Applications of such specific
polling models arise for instance in the context of wireless ad hoc networks in which
cars, pedestrians or other moving objects that carry wireless equipment are used as
communication hops.

The class of polling models that is most closely related to our model is the class
of so-called time-limited polling models [4–7]. Leung [4] analyzes a time-limited
model in which the server remains an exponential time at a queue but service is non-
preemptive. Preemption is considered for a deterministic time-limited model by De
Souza e Silva et al. [6] for Poisson arrivals and by Frigui and Alfa [5] for Markovian
Arrival Processes. Eliazar and Yechiali [8, 9] studied a model with an exponential
time limit and preemptive service. Observing that upon successful service comple-
tion at a queue the busy period in fact regenerates, the authors could obtain a direct,
closed-form relation between the joint queue length at the end and the start of a server
visit. In each of these models, the server is impatient and leaves a queue as soon as it
becomes empty. A specific application of such a time-limited model to a timed token
protocol can be found in [7].

A common assumption in polling model analysis is that the server moves to a next
queue once the queue becomes empty. However, there also exists analytical work on
models with a server that remains at a queue even when it becomes empty. These
models are often referred to as patient server or stopping server models. The works
of Eisenberg [10] and Borst [11] analyze several strategies for the server once the
complete system becomes empty as to optimize some system performance measure.
More recently, Boxma et al. [12, 13] considered a single-queue vacation model and a
two-queue polling model in which the server upon arriving at an empty queue waits
patiently for a certain duration before leaving again. We note that in the latter two-
queue polling model (contrary to the models in [10] and [11]) there is no notion of
work conservation anymore, since the server may wait patiently at one queue while
the other queue is nonempty.

The only work we know of that includes both a given (random) visit time and a
patient server that does not leave before the end of the visit time is [14]. This work
considers the workload process for the autonomous server model with deterministic
visit times. Due to the deterministic nature of the model, the queue lengths at the
different queues can be decoupled and each queue is modeled as an M/G/1 queue
with server vacations. Using an approximate analysis, the mean workload and mean
message delay are studied.
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For the case of a single queue, the polling model that we will consider boils down
to the unreliable server model (USM) [15]. The extension of the analysis to a two-
queue polling model appears feasible when the approach of, e.g., [16] or [17] would
be followed. This approach requires to solve a boundary value problem. Unfortu-
nately, this solution method appears an extremely difficult task for the two-queue
model already, while for three or more queues analytical solutions in this direction
are not anticipated.

In the first part of this article, we study a single-server polling model with M ≥ 1
stations with infinite buffer in a stable environment. The main characteristics of the
model are that the server visits a queue for a random amount of time (irrespec-
tive of the number of customers present at a queue) and that the service strategy is
preemptive-repeat with resampling. Our interest is in the joint queue-length distribu-
tion at various instants in time. We should emphasize that the queue-length processes
at the different queues in the system are not independent. For instance, the number
of arrivals to the queues depends on the realizations of the random visit times at the
other queues. Therefore, even for zero switch-over times, the queue-length processes
are definitely not independent. However, we note that if the interest would only be in
mean performance measures, then the queues could be considered in isolation. This
is due to the fact that the vacation times at each of the queues are independent of the
state of the system. Our analytical approach builds on the work of Eisenberg [18].
We set up a system of equations which relates the queue-length distributions at spe-
cific instants. The solution of this system is obtained via the explicit determination
of the distribution at visit completion instants using an iterative approach. This ap-
proach is similar to the one introduced by Leung for probabilistically-limited polling
models [19]. In the second part of this article, we study to what extent the queues in
the polling system are independent. To this end, we propose an approximation based
on the single-queue analysis of the USM. Next, we perform several numerical ex-
periments to compare the results obtained from the polling model with the results
based on the USM. In this way, we identify the system parameters for which the in-
dependence assumption on the individual queue lengths for the multi-queue system
is justified.

This article is organized as follows. In Sect. 2, we describe the polling model.
The analyses for the single-queue model and multi-queue model are given in Sects. 3
and 4, respectively. In Sect. 5, we study an approximation for the multi-queue model.
The article is concluded in Sect. 6.

2 Model

Consider a set of M queues which are served by a single server. We denote queue i

by Qi, i = 1, . . . ,M and references to Qi−1 or Qi+1 are always modulo M , e.g., for
i = 1, Qi−1 refers in fact to QM . We will throughout use the subscript i to refer to a
queue and for convenience leave out its range (i = 1, . . . ,M) whenever this does not
lead to ambiguity. Customers arrive to Qi according to a Poisson process with arrival
rate λi . We denote the interarrival-time of customers at Qi by Ii with distribution
Ii(t) and Laplace–Stieltjes Transform (LST) Ĩi (s) = λi/(λi +s). A customer arriving
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to Qi requires an amount of service Xi with a distribution function Xi(t), LST X̃i(s),
and mean 1/μi . The service times are assumed to be independent.

A single server serves the queues at unit rate. For ease of presentation, we assume a
fixed cyclic visit schedule Q1,Q2, . . . ,QM,Q1, etc., but assuming other fixed cyclic
schedules (e.g., in which queues are visited multiple times per cycle) would not sig-
nificantly change the analysis. The server visits Qi for an exponential amount of time
denoted by Yi with distribution Yi(t) and LST Ỹi (s) = ξi/(ξi + s). These visit times
are assumed to be independent. The server always remains at a queue until the random
visit time ends, even when the queue becomes empty. In other words, the dynamics
of the server are not governed by the current state of the system. We assume that
switch-over times Ci which occur when the server moves from Qi−1 to Qi follow a
distribution Ci(t), with LST C̃i(s), and mean ci . The switch-over times are assumed
to be independent. Due to the patient nature of the server, (possibly multiple) idle
periods can occur during a visit to a queue. The duration of each of these periods is
distributed as the interarrival time at that queue.

We assume that customers are served according to the First-In-First-Out disci-
pline. The service (but also the idle periods) at a queue are preempted at the end of
a visit of the server. If there are some customers present at the beginning of the next
visit, then a service time will be redrawn from the original distribution; thus, we adopt
the so-called preemptive-repeat with resampling strategy.

The random processes Ci, Ii, Xi and Yi are assumed to be independent.

3 Analysis of the single-queue model

The single-queue model comprises a single queue, say Q1, fed by a Poisson process
and with exponential visit times of the server. The intervisit times consist of the sum
of the visit times to the other queues plus the total switch-over times. Our interest is
in the marginal queue-length distribution at each queue of the polling system. From
this distribution, performance measures such as the mean sojourn time of a customer
may readily be derived. This single-queue model is in fact an unreliable server model
or, alternatively, it may be considered as a vacation model with preemptive service.
The first to analyze this specific model was Gaver [15] by introducing high prior-
ity customers (i.e., interruptions) and low priority customers (i.e., common arrivals).
Here, we describe the unreliable server model, present the expression for the queue-
length distribution and give a direct proof of this expression (which is somewhat more
insightful than the proof in [15]).

Consider a sequence of alternating processing and non-processing periods. During
a processing period, there are some customers at the queue and one of these is being
served. During a non-processing period, no customers are present. The server may
break down (and thus needs repair) at random points in time both during processing
and non-processing periods. The repair periods have a duration D which follows a
distribution D(t) with LST D̃(s) and mean E[D], and correspond to the intervisit
times at Q1 in our polling system. Thus, within the setting of the polling system, we
have that D = C1 + ∑

i �=1(Ci + Yi). We note that in this section, since only a single
queue is considered, we will drop the subscript 1 whenever this does not lead to am-
biguity. The periods between consecutive repairs, the so-called availability periods,



Queueing Syst (2009) 62: 279–308 283

are assumed exponentially distributed with mean 1/ξ and these periods correspond
to the visit times in the polling model. Customers arrive at the system according to
a Poisson process with rate λ. We assume further that a preemptive-repeat servicing
strategy with resampling is followed, i.e., if a service is interrupted, then at the start
of the next availability period the service requirement is redrawn from the original
service-time distribution.

We let X̃G(s) and E[XG] denote the LST and the mean of the generalized service
time of a customer, respectively. The latter period of time is defined as the period
which starts when a customer receives service for the first time and ends when the
customer leaves the system. We denote by Û (z) the probability generating function
(p.g.f.) of the number of customers that arrive during the service time of a customer
which arrives to an empty system. Such a latter service (customer) will be referred
to as an exceptional first service (customer). This service is exceptional in the sense
that it may include the residual repair time of the server. Finally, let E[K] refer to the
mean number of customers served during a processing period and define ρG as the
generalized load of the system. Notice that it follows from our model assumptions
that repair periods, availability periods and service times are independent.

Let us denote this queue-length distribution of the number of customers left behind
by a departing customer by dn, n = 0,1,2, . . . . Then, the probability generating
function PLd

(z) of the queue-length distribution is known (see, e.g., [15]) and given
by the following theorem.

Theorem 1

PLd
(z) = 1

E[K] · X̃G(λ(1 − z)) − z · Û (z)

X̃G(λ(1 − z)) − z
, (1)

where

X̃G(s) = X̃(ξ + s) · (ξ + s)

(ξ + s) − ξ · (1 − X̃(ξ + s)) · D̃(s)
,

Û (z) = X̃G(λ(1 − z)) · λz + ξ · (D̃(λ(1 − z)) − D̃(λ))

z · (λ + ξ(1 − D̃(λ))
,

E[K] = 1

1 − ρG

· λ(1 + ξ · E[D])
λ + ξ · (1 − D̃(λ))

.

Notice that this departure distribution equals the time-equilibrium queue-length
distribution. This can be argued by first using an up-and-down crossings argument
and next appealing to the well-known Poisson Arrivals See Time Averages (PASTA)
property [20]. Next, we will present several lemmas and defer the proof of the theo-
rem until the end of this section.

Let us denote by V ∗ the processing time given that the service is interrupted. Fur-
ther, we denote by X∗ the service time given that the service is successful. Let V ∗

j be
i.i.d. copies of V ∗, Dj be i.i.d. copies of D, and N a random variable denoting the
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number of interruptions during a service. Notice that D, X∗, V ∗
j and N are indepen-

dent random variables. Then, the generalized service time XG satisfies

XG = X∗ +
N∑

j=1

(V ∗
j + Dj).

Lemma 1

X̃G(s) = E
[
e−sXG

] = X̃(ξ + s) · (ξ + s)

(ξ + s) − ξ(1 − X̃(ξ + s))D̃(s)
.

Proof The random variable N is geometrically distributed with success probability
X̃(ξ). The result for X̃G(s) follows by conditioning on N and some elementary cal-
culus. �

The service time U of an exceptional first customer is given by

U = XG + RD · 1{RD}, (2)

where RD denotes the residual repair time as seen by the first customer which arrives
during a repair period, and 1{RD} is the indicator function of the event that a customer
that arrives during a repair time arrives to an empty system. It should be noted that
XG and RD are independent. Let us introduce N(T ) to refer to the number of arrivals
to the queue during a random period T , so that we can present the following lemma.

Lemma 2

Û (z) = E
[
zN(U)

] = E
[
zN(XG)

] · E
[
zN(RD1{RD })],

where

E
[
zN(XG)

] = X̃G

(
λ(1 − z)

)
,

E
[
zN(RD1{RD })] = 1 − (

1 − E
[
zN(RD)

]) · ξ · (1 − D̃(λ))

(λ + ξ) − ξ · D̃(λ)
.

Proof By (2) and using that Poisson arrivals in disjoint intervals are independent, we
have:

Û (z) = E
[
zN(U)

] = E
[
zN(XG)+N(RD1{RD })] = E

[
zN(XG)

] · E
[
zN(RD1{RD })]. (3)

Also, due to the Poisson assumption, we have:

E
[
zN(XG)

] = X̃G

(
λ(1 − z)

)
.
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Let us denote by P(XFS) the probability that an arbitrary arriving customer has an
exceptional first service (XFS). Then, we can write:

E
[
zN(RD1{RD })] = E

[
zN(RD)

] · P(XFS) + 1 · (1 − P(XFS)
)

= 1 − (
1 − E

[
zN(RD)

]) · P(XFS).

The p.g.f. E[zN(RD)] can be found by conditioning on the event of at least one arrival
during the repair time:

E
[
zN(RD)

] = E[zN(D) | N(D) ≥ 1]
z

= D̃(λ(1 − z)) − D̃(λ)

z(1 − D̃(λ))
.

The probability P(XFS) is obtained by considering its counterpart P(XFS) = 1 −
P(XFS). The sequence of instants at which the queue becomes empty forms a re-
newal process. Note that the queue becomes empty only during an availability period
and that the residual availability period is again exponentially distributed. Thus, by
considering the first customer arriving after a renewal epoch, we can write a recursive
relation for P(XFS):

P
(

XFS
) = P

({arrival in availability period})

+ (
1 − P

({arrival in availability period}))

× P
({no arrival in the following repair period}) · P

(
XFS

)
.

It follows that:

P
(

XFS
) = λ

λ + ξ
+ ξ

λ + ξ
· D̃(λ) · P

(
XFS

) = λ

λ + ξ · (1 − D̃(λ))
.

�

Proof of Theorem 1 Equation (1) can readily be obtained by studying the imbedded
Markov chain at service completion instants (see, e.g., [21]). The explicit expressions
that show up were derived in Lemmas 1 and 2. Finally, the term E[K] follows by
inserting z = 1 into (1) and applying L’Hospital’s rule, yielding:

E[K] = 1

1 − ρG

· λ(1 + ξE[D])
λ + ξ(1 − D̃(λ))

,

where

ρG = λ · E[XG] = −λ · X̃′
G(0). �

4 Analysis of the multi-queue model

We have shown that for the polling system under consideration, the marginal queue-
length distributions can be obtained by analyzing each queue in isolation. However,
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the joint queue-length distribution cannot be obtained in this way due to the stochas-
tics in the visit times of the server. Our analysis of the multi-queue model builds
on the work of Eisenberg [18] which considers a polling model with a non-patient
server and non-preemptive service. For this model, the queue-length distribution is
determined at visit beginning, visit completion, service beginning, and service com-
pletion instants by studying the imbedded Markov chains defined at these instants.
The fundamental relation in the analysis is the relation that counts the number of
events with state n that occurred until time t [18, (4)]. In our work, we extend this
relation for the polling model under consideration and we use this as a building block
for obtaining the queue-length distribution at various instants.

We will first discuss the stability conditions of the system in Sect. 4.1. Next, in
Sect. 4.2, we treat the extended counting relation in more detail. This counting rela-
tion is not sufficient to determine the queue-length distribution at all instants. To this
end, we derive additional relations between the random variables in Sect. 4.3. How-
ever, even with these additional relations we still do not have enough information to
solve our model completely. We will resolve this problem by deriving an explicit ex-
pression for the queue-length distribution at visit completion instants (see Sect. 4.4).
This latter approach is based on work of Leung [19] for a probabilistically-limited
polling model. Finally, we present the steady-state probabilities for the multi-queue
model in Sect. 4.5.

4.1 Stability

The polling system is stable if and only if there exists a stationary regime in which
each customer in the system can be served in a finite period of time. Due to the
autonomous server, the vacation times for each individual queue are independent of
the system state. Hence, the queues in the system can be considered in isolation with
regard to stability. It follows that the system is stable if and only if all the queues in
the system are stable, since service capacity cannot be exchanged among the queues.
Thus, we can rely on the well-known non-saturation condition for the stability of a
single (vacation) queue.

A necessary and sufficient condition for the stability of the polling system with
the server operating under the autonomous-server discipline is given in the following
theorem.

Theorem 2 (Autonomous-server discipline)

System is stable ⇐⇒ ρi < ζi, ∀i∈{1,...,M},

where

ρi = λi · 1 − X̃i(ξi)

ξi · X̃i(ξi)
,

ζi = 1/ξi
∑M

j=1(1/ξj + cj )
,

where cj is the mean switch-over time from Qj−1 to Qj .
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Proof It is well known that for a single queue the non-saturation condition is both a
necessary and sufficient condition for stability, i.e.,

Qi is stable ⇐⇒ ρi < ζi, i = 1, . . . ,M,

where ρi is the mean effective amount of work arriving per time unit to Qi and ζi is
the availability fraction of the server at Qi .

Consider first the mean effective amount of work arriving per time unit to Qi . This
amount is determined by the total number of customers arriving per time unit λi and
the mean effective amount of work each individual brings for the server, denoted by
E[Xeff

i ], as follows:

ρi = λi · E
[
Xeff

i

]
.

The quantity E[Xeff
i ] is in fact the mean total time the server spends on serving a

customer at Qi including any interrupted services. Noting that the number of inter-
ruptions per customer is geometrically distributed, it can be found via simple calculus
that:

E
[
Xeff

i

] = 1 − X̃i(ξi)

ξi · X̃i(ξi)
.

The availability fraction of the server ζi is fully specified by the mean visit times,
the visit frequencies and the switch-over times between the queues. Notice that a
complete cycle consists of ai visits to Qi, i = 1, . . . ,M , and the switch-over times
between the queues. It then readily follows for the availability fraction of the server
at Qi :

ζi = 1/ξi
∑M

j=1(1/ξj + cj )
.

It is good to notice that the fraction ζi is independent of the load at the queues. The
observation that the system is stable if and only if all the queues in the system are
stable completes the proof. �

4.2 A relation for the queue-length distribution at various instants

We set up a relation for the number of occurrences of specific events. Apart from the
events defined in [18], we define a number of additional events. We introduce events
related to the start and the completion of an idle period. These events do not appear
in Eisenberg’s model as in his model the server leaves a queue as soon as it becomes
empty. Moreover, we introduce events related to the interruption of a service or idle
period due to the end of a server visit. Let us denote by ni the number of customers
at Qi . Next, we can define the following variables which all refer to the number of
the given events with state n = (n1, . . . , nM) that occur in (0, t) at Qi :

ωi(t;n), service beginnings.

πi(t;n), successful service completions (i.e., server does not switch during service).

πi∗(t;n), interrupted services (i.e., server switches during service).
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αi(t;n), visit beginnings.

βi(t;n), visit completions.

ai(t;n), idle period beginnings.

bi(t;n), idle period completions (i.e., server does not switch during idle period).

bi∗(t;n), interrupted idle periods (i.e., server switches during idle period).

We note that n refers to the number of customers present in the system (either wait-
ing or in service) immediately after the specific event occurred. These variables are
related in the following way for all n ∈ N

M and t ≥ 0:

[
πi(t;n)+πi∗(t;n)

]+αi(t;n)+[
bi(t;n)+bi∗(t;n)

] = ωi(t;n)+βi(t;n)+ai(t;n).

(4)

This counting relation should be as read as follows. At each instant that one of the
events present at the l.h.s. of (4) with state n occurs, also exactly one event with the
same state n at the r.h.s. occurs. For instance, a visit beginning event at Qi at time
t with state n′, πi∗(t;n’), always coincides exactly either with a service beginning
event at Qi with the same state n′, ωi(t;n′) (if there are some customers present
upon the server’s arrival) or with an idle period beginning at Qi with the same state
n′, ai(t;n′) (if no customers are present upon the server’s arrival).

We note that the end of a server visit always corresponds to an interruption event
and vice versa. Therefore, we can isolate these events and break up (4) into:

πi∗(t;n) + bi∗(t;n) = βi(t;n), (5)

πi(t;n) + αi(t;n) + bi(t;n) = ωi(t;n) + ai(t;n). (6)

Let us define imbedded Markov chains each corresponding to instants at which
one of the counting processes increases. Each state in a Markov chain is uniquely
defined by the position i of the server (i = 1, . . . ,M) and n = (n1, . . . , nM), the
number of customers present in the system at a certain instant. We define the steady-
state probabilities for each event type by dividing the number of events with state n
that occurred until t by the total number of the events until t , and then taking the limit
for t to infinity, yielding:

αi
n = lim

t→∞
[
αi(t;n)/αi(t)

]
, βi

n = lim
t→∞

[
βi(t;n)/βi(t)

]
,

bi
n = lim

t→∞
[
bi(t;n)/bi(t)

]
, bi∗,n = lim

t→∞
[
bi∗(t;n)/bi∗(t)

]
,

ai
n = lim

t→∞
[
ai(t;n)/ai(t)

]
, ωi

n = lim
t→∞

[
ωi(t;n)/ω(t)

]
,

πi
n = lim

t→∞
[
πi(t;n)/π(t)

]
, πi∗,n = lim

t→∞
[
πi∗(t;n)/π∗(t)

]
,
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where

αi(t) =
∑

n

αi(t;n), βi(t) =
∑

n

βi(t;n), bi(t) =
∑

n

bi(t;n),

bi∗(t) =
∑

n

bi∗(t;n), ai(t) =
∑

n

ai(t;n), ω(t) =
∑

i

∑

n

ωi(t;n),

π(t) =
∑

i

∑

n

πi(t;n), π∗(t) =
∑

i

∑

n

πi∗(t;n).

It can be seen that for a stable system all these limits exist with probability one by us-
ing renewal theory arguments. For instance, consider πi

n as given above. We have that
for given i and n, {πi(t;n), t ≥ 0} forms a renewal process, thus limt→∞[πi(t;n)/t]
exists with probability one (see, e.g., [22]). Moreover, it follows that under stability,
limt→∞[π(t)/t] exists, and thus we can conclude that the ratio of these latter limits
exists. The other probabilities can be argued analogously and are thus also correctly
defined.

Notice that (hereby following [18]) we have that all probabilities are conditioned
on Qi except for ωi

n, πi
n and πi

n,∗. Along with the steady-state probabilities, let us
also define the corresponding p.g.f.’s as follows:

αi(z) =
∑

n

αi
n · zn, βi(z) =

∑

n

βi
n · zn, bi(z) =

∑

n

bi
n · zn,

bi∗(z) =
∑

n

bi∗,n · zn, ai(z) =
∑

n

ai
n · zn, ω(z) =

∑

n

ωi
n · zn,

π(z) =
∑

n

πi
n · zn, π∗(z) =

∑

n

πi∗,n · zn,

where zn := z
n1
1 · · · znM

M .

Next, we divide (5) and (6) by π(t) and take the limit of t → ∞, yielding:

πi∗,n lim
t→∞

[
π∗(t)/π(t)

] + bi∗,n lim
t→∞

[
bi∗(t)/π(t)

] = βi
n lim

t→∞
[
βi(t)/π(t)

]
, (7)

πi
n lim

t→∞
[
π(t)/π(t)

] + αi
n lim

t→∞
[
αi(t)/π(t)

] + bi
n lim

t→∞
[
bi(t)/π(t)

]

= ωi
n lim

t→∞
[
ω(t)/π(t)

] + ai
n lim

t→∞
[
ai(t)/π(t)

]
. (8)

Using similar renewal arguments as above, it is readily verified that under our model
assumptions all these limits indeed exist with probability one if the stability condi-
tions are satisfied.

Let us introduce some notation. We denote by ppr,X the probability of an arbitrary
service at some queue in the system being preempted and by pi

pr,I the probability
of an idle period at Qi being preempted (i.e., the server switches before the next
customer arrives to the queue). The mean cycle time of the server will be denoted
by E[C]. Finally, we define κi := limt→∞[ai(t)/π(t)]. This enables us to present the
following theorem.
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Theorem 3 The p.g.f.’s of the queue-length distribution at Qi, i = 1, . . . ,M, at spe-
cific imbedded instants in a polling model with an autonomous server are related as
follows:

ppr,X

1 − ppr,X

· πi∗(z) + κi · pi
pr,I · bi∗(z) = γ · βi(z),

πi(z) + γ · αi(z) + κi · (1 − pi
pr,I

) · bi(z) = ωi(z)
1 − ppr,X

+ κi · ai(z),

where

ppr,X = 1 −
∑

j λj
∑

j λj /X̃j (ξj )
,

pi
pr,I = 1 − Ĩi (ξi), i = 1, . . . ,M,

κi = 1

pi
pr,I

·
(

γ − λi
∑

j λj

· 1 − X̃i(ξi)

X̃i(ξi)

)

, i = 1, . . . ,M,

γ = 1
∑

j λjE[C] .

It should be noted that 1/Xi(ξi) refers to the mean number of required server visits
to serve a single customer. Next, we will present several lemmas and defer the proof
of the theorem until the end of this section.

Lemma 3

lim
t→∞

[
αi(t)/π(t)

] = lim
t→∞

[
βi(t)/π(t)

] = 1
∑

j λjE[C] , i = 1, . . . ,M.

Proof First, notice that the number of visit completions, βi(t), differs by at most one
from the number of visit beginnings, αi(t), for any t ≥ 0. Therefore, we have that:

lim
t→∞

[
αi(t)/βi(t)

] = 1.

Second, the number of visit beginnings at Qi per cycle is exactly one. Hence, it
follows that:

lim
t→∞

[
αi(t)/t

] = 1

E[C] ,

where for E[C], the mean cycle time, we have:

E[C] =
∑

j

(
1

ξj

+ cj

)

. (9)
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Third, the average total number of service completions per cycle is equal to the aver-
age total number of arrivals per cycle (assuming a stable system). This implies that:

lim
t→∞

[
π(t)/t

] =
∑

j

λj .

Combining these three limits yields the desired result. �

Lemma 4

lim
t→∞

[
ω(t)/π(t)

] = 1

1 − ppr,X

,

lim
t→∞

[
π∗(t)/π(t)

] = ppr,X

1 − ppr,X

.

Proof The limt→∞[ω(t)/π(t)] is defined as the limit of the ratio of the total number
of service beginnings and the total number of (successful) service completions. The
numerator and denominator are related via the probability of an arbitrary service
being preempted, ppr,X . More precisely,

lim
t→∞

[
π(t)/ω(t)

] = 1 − ppr,X.

Similarly to the relation between αi(t) and βi(t), we note that ω(t) and π(t) +
π∗(t) differ at most one for t ≥ 0. Therefore, we can write:

lim
t→∞

[
π∗(t)/π(t)

] = lim
t→∞

[(
ω(t) − π(t)

)
/π(t)

] = ppr,X

1 − ppr,X

.

�

Lemma 5

lim
t→∞

[
bi(t)/π(t)

] = κi · (1 − pi
pr,I

)
, i = 1, . . . ,M,

lim
t→∞

[
bi∗(t)/π(t)

] = κi · pi
pr,I , i = 1, . . . ,M.

Proof Recall that we set limt→∞[ai(t)/π(t)] =: κi , where κi is a constant yet to be
determined. These limits do not have a simple interpretation, but we can relate them
to limits for other events. The number of events ai(t) and bi(t) are related as follows:

lim
t→∞

[
bi(t)/ai(t)

] = 1 − pi
pr,I ,

where pi
pr,I , the probability that an idle period at Qi is preempted, depends on i, and

is given by:

pi
pr,I = 1 − Ĩi (ξi).
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Analogously, ai(t) and bi∗(t) are related via:

lim
t→∞

[
bi∗(t)/ai(t)

] = pi
pr,I ,

which completes the proof. �

Proof of Theorem 3 The presented equations follow by first evaluating the limit ex-
pressions in (7) and (8). The limit expressions are derived in the lemmas above. How-
ever, these expressions still contain the unknowns ppr,X and κi, i = 1, . . . ,M .

For the service preemption probability ppr,X , we obtain:

ppr,X =
∑

j

P(service is preempted | s.b. at Qj) · P(s.b. at Qj | s.b. at some queue)

=
∑

j

(
1 − X̃j (ξj )

) · P(s.b. at Qj | s.b. at some queue)

=
∑

j (1 − X̃j (ξj ))λj /X̃j (ξj )
∑

k λk/X̃k(ξk)
= 1 −

∑
j λj

∑
k λk/X̃k(ξk)

,

where we use that:

P(s.b. at Qi | s.b. at some queue)

= λi/(1 − P(serv. at Qi is preempted | s.b. at Qi))
∑

j λj /(1 − P(serv. at Qj is preempted | s.b. at Qj))

= λi/X̃i(ξi)
∑

j λj /X̃j (ξj )
, (10)

where the condition s.b. at some queue in fact means that we consider the imbedded
Markov chain of all service beginning instants. Notice that multiple service beginning
events may correspond to a single customer.

The unknown κi, i = 1, . . . ,M , can be found from (8) (or alternatively from (7))
by inserting all the limit expressions and summing both sides over n. After several
rearrangements and using that

∑

n

πi∗,n = P(s.i. at Qi | s.i. at some queue) = λi/X̃i(ξi) − λi
∑

j (λj /X̃j (ξj ) − λj )
, (11)

where we use s.i. as short for service interruption, we eventually obtain:

κi = 1

pi
pr,I

(

γ − λi
∑

j λj

· 1 − X̃i(ξi)

X̃i(ξi)

)

.

The final step is to write these equations in terms of p.g.f.’s by multiplication with
zn and summation over n. �
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4.3 Additional relations for the queue-length distributions at specific instants

We need additional relations to obtain the queue-length distributions at the different
instants defined. Eisenberg [18] presents relations between πi(z) and ωi(z) for the
non-patient server model with non-preemptive services. We show that with a minor
modification this relation can be used to relate both πi(z) and ωi(z) and πi∗(z) and
ωi(z) in our model. Moreover, relations between ai(z) and bi(z) and between ai(z)
and bi∗(z) can be established in a similar fashion. Finally, for completeness we repeat
the relation from [18] between αi(z) and βi−1(z).

Recall that ωi(z), πi∗(z) and πi(z) refer to the number of customers at all queues at
instants of service beginning, service interruption and successful service completion,
respectively. The relations between these quantities are given in the following lemma.

Lemma 6

πi(z) = X̃i(ξi) · (∑j λj /X̃j (ξj ))
∑

j λj

· X̆i(z) · ωi(z)
zi

,

πi∗(z) = (
1 − X̃i(ξi)

) ·
(∑

j

λj /X̃j (ξj ) − λj

)

· X∗
i (z) · ωi(z),

(12)

where

X̆i(z) = X̃i(ξi + ∑
j λj (1 − zj ))

X̃i(ξi)
,

X∗
i (z) = ξi

ξi + ∑
j λj (1 − zj )

· 1 − X̃i(ξi + ∑
j λj (1 − zj ))

1 − X̃i(ξi)
.

Proof Let us first consider (12), i.e., the relation between ωi(z) and πi(z). We note
that every successful service completion instant has a corresponding service begin-
ning instant, while the correspondence the other way round is not true due to pre-
emption (which is caused by the exogenously determined visit times of the server).
Notice further that the fact whether a service will get interrupted does not depend on
the queue-length distribution at the start of a service.

Unfortunately, we cannot relate ωi(z) and πi(z) in the straightforward manner
as was done by Eisenberg [18]. This is due to the preemption assumption which no
longer ensures that the long-term fraction of all service beginnings that occur at Qi

and the long-term fraction of all service completions that occur at Qi are equal for
all parameter settings. Or, in mathematical terms, the relation ωi(z) |z=1= πi(z) |z=1,
∀i , is no longer necessarily true.

Recall first the definitions of ωi(z) and πi(z):

ωi(z) =
∑

n1

· · ·
∑

nM

z
n1
1 · · · znM

M P
({N = n} ∩ {s.b. at Qi} | s.b. at some queue

)
,
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πi(z) =
∑

n1

· · ·
∑

nM

z
n1
1 · · · znM

M P
({N = n} ∩ {s.c. at Qi} | s.c. at some queue

)
,

where s.c. is used as short for service completion. Then, to circumvent the use of
these unconditional p.g.f.’s, we define ωi

c(z) and πi
c(z) as follows:

ωi
c(z) :=

∑

n1

· · ·
∑

nM

z
n1
1 · · · znM

M · P(N = n | s.b. at Qi),

πi
c(z) :=

∑

n1

· · ·
∑

nM

z
n1
1 · · · znM

M · P(N = n | s.c. at Qi),

where

P(s.c. at Qi | s.c. at some queue) = λi
∑

j λj

. (13)

This latter equation follows immediately by the observation that the number of arriv-
ing customers per time unit is equal to the number of served customers per time unit
for a system in equilibrium. According to the definitions above, we have that:

ωi(z) = ωi
c(z) · P(s.b. at Qi | s.b. at some queue),

πi(z) = πi
c(z) · P(s.c. at Qi | s.c. at some queue).

Notice that P(s.b. at Qi | s.b. at some queue) was already given in (10).
Using that the distribution of the number of customers at the start of a service is

independent of the success of the service, we can relate the conditional p.g.f.’s in the
following manner:

πi
c(z) = X̆i(z)

zi

· ωi
c(z), (14)

where the term 1/zi is due to the fact that the number of customers at Qi at a service
completion instant is exactly one less than at the service beginning instant and X̆i(z)
is the p.g.f. of the number of customers that arrive at all queues during a service at
Qi that is indeed completed. The latter is given by:

X̆i(z) := E
[
zN(Xi) | Xi < Yi

] = E[zN(Xi)1{Xi<Yi }]
P(Xi < Yi)

= X̃i(ξi + ∑
j λj (1 − zj ))

X̃i(ξi)
,

(15)

where we used the notation N(T ) to refer to the number of arrivals to all queues
during a random period T . The final equality sign follows from first conditioning on
Xi and Yi and next using that E[zN(x)] is Poisson distributed with parameter

∑
j λj ·

(1 − zj ) · x for a given x. Combining the definitions of the conditional p.g.f.’s and
(14), we obtain:

πi(z) = P(s.c. at Qi | s.c. at some queue)

P(s.b. at Qi | s.b. at some queue)
· X̆i(z) · ωi(z)

zi

. (16)
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The relation between πi∗(z) and ωi(z) is derived analogously and it resembles (16):

πi∗(z) = P(s.i. at Qi | s.i. at some queue)

P(s.b. at Qi | s.b. at some queue)
· X∗

i (z) · ωi(z), (17)

where

X∗
i (z) := E

[
zN(Yi) | Xi > Yi

] = ξi

ξi + ∑
j λj (1 − zj )

· 1 − X̃i(ξi + ∑
j λj (1 − zj ))

1 − X̃i(ξi)
.

The derivation of X∗
i (z) is done analogously to the derivation of X̆i(z). Notice that

the term 1/zi is absent in (17), since no customer departs from the queue. The final
step of the proof is to substitute the conditional probabilities of (10), (11) and (13)
into (16) and (17). �

Remark 1 We note that for non-preemptive service the first ratio on the r.h.s. of (16)
equals one as a service beginning corresponds uniquely to a service completion. Fur-
ther, in this case, we have that the term X̆i(z) equals E[zN(Xi)], so that we obtain (17)
of [18].

Recall that ai(z), bi∗(z) and bi(z) refer to the number of customers at instants
of idle period beginning, idle period interruption and idle period completion at Qi ,
respectively. The relations between these quantities are given in the following lemma.

Lemma 7

bi(z) = Ĭi (z) · zi · ai(z),

bi∗(z) = Ĭi (z) · ai(z),

where

Ĭi (z) = Ĩi (ξi + ∑
j �=i λj (1 − zj ))

Ĩi (ξi)
.

Proof Let us first consider the relation between ai(z) and bi(z). We note that every
idle period completion instant has a corresponding idle period beginning instant,
while the correspondence the other way round is not true. This is due to the expo-
nential visit time of the server. Whether the idle period gets interrupted depends on
the arrival process and on the distribution of the visit time of the server only. In partic-
ular, it does not depend on the queue-length distribution at the start of an idle period.
Thus, we can relate the generating functions ai(z) and bi(z) by the following obser-
vations. The p.g.f. of the number of customers that arrive at all queues different from
Qi during an idle period that it is completed with an arrival is given by:

Ĭi (z) := E
[
zN(Ii ) | Ii < Yi

] = Ĩi (ξi + ∑
j �=i λj (1 − zj ))

Ĩi (ξi)
.
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This expression can be derived in a similar fashion as (15). Further, we note that
exactly one customer arrives at Qi at the end of the idle period. Together, this yields
the following relation between ai(z) and bi(z):

bi(z) = Ĭi (z) · zi · ai(z).

In the same manner, the relation between bi∗(z) and ai(z) can be established:

bi∗(z) = Ĭi (z) · ai(z).

We note that E[zN(Yi) | Ii > Yi] = E[zN(Ii ) | Ii < Yi] =: Ĭi (z), since both Yi and Ii

are assumed exponentially distributed. �

Recall that αi(z) and βi(z) refer to the number of customers at visit beginning
instants and visit completion instants at Qi , respectively. The relations between these
quantities are given in the following lemma.

Lemma 8

αi(z) = Ĉi(z) · βi−1(z), (18)

where,

Ĉi(z) = C̃i

(∑

j

λj (1 − zj )

)

.

Proof There exists a well-known relation (see, e.g., [18]) between the number of
customers that the server leaves behind in the system at departure from Qi−1 and
the number of customers in the system that the server finds upon arrival to Qi . This
difference is characterized by the number of arriving customers during a switch-over
time from Qi−1 to Qi . We denote by Ĉi(z) the p.g.f. of this number, which is given
by:

Ĉi(z) = C̃i

(∑

j

λj (1 − zj )

)

,

since arrivals to the queues are according to a Poisson process. Hence, we immedi-
ately obtain (18). �

Altogether, we have derived 7 · M relations between the 8 · M p.g.f.’s of our inter-
est. By combining the equations from Lemmas 6, 7 and 8 with the ones of Theorem 3,
we are able to fully specify all the p.g.f.’s in terms of βi(z). It can then be shown that
it is sufficient to determine the M p.g.f.’s for βi(z), i = 1, . . . ,M, explicitly; the
latter will be done below.
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4.4 Queue-length probabilities at visit completion instants via auxiliary variables

We shall determine the p.g.f. of the queue-length distribution at visit completion in-
stants, βi(z), explicitly. This part of the analysis is based on work by Leung [19]
for the study of a probabilistically-limited polling model, which was later extended
in [4] to a time-limited polling model, and involves setting up an iterative scheme.
A key role in this iterative scheme is played by the (auxiliary) p.g.f.’s φk(z) and
φs

k(z), which will be explained below. In the final step of the iteration scheme, βi(z)
is obtained as a simple function of φs

k(z).
We consider a tagged queue i and we will leave out the subscript and superscript i

whenever it does not lead to ambiguity. Let again N(T ) denote the number of arrivals
to all queues during a random period T while 1{A} denotes the indicator function for
event A. The explicit expression for βi(z) is stated in the following lemma.

Lemma 9

βi(z) =
∞∑

k=1

φs
k(z),

where

φs
k(z) = φk−1(z)|zi=0 · (E[

zN(Y)1{Y<I }
] + ziE

[
zN(I)1{Y>I }

] · E
[
zN(Y)1{Y<X}

])

+ (
φk−1(z) − φk−1(z)|zi=0

) · E
[
zN(Y)1{Y<X}

]
,

φk(z) = φk−1(z)|zi=0 ·
(

ziE
[
zN(I)1{Y>I }

] · E
[
zN(X)1{Y>X}

] · 1

zi

)

+ (
φk−1(z) − φk−1(z)|zi=0

) · E
[
zN(X)1{Y>X}

] · 1

zi

.

Proof Let us introduce first the concept of a service period. A service period is de-
fined as a period which starts either at a visit beginning or at a service completion
instant, and which ends with either the next service completion instant or an inter-
ruption (due to the departure of the server), whichever occurs first. It is important to
notice that the final service period of a server’s visit always ends with an interrup-
tion (and thus comprises no successful service completion), while each of the other
service periods comprises exactly one successfully completed service. Also notice
that the first service period always starts at a visit beginning instant. Let us denote by
φk(z), k ≥ 1, the p.g.f. of the number of customers at all queues at the end of the kth
service period and service period k is not the final service period (i.e., service period
k ends with a successful service completion, and service period k + 1 will occur).
Similarly, we denote by φs

k(z), k ≥ 1, the number of customers at all queues at the
end of the kth service period and k is in fact the final service period (i.e., service pe-
riod k will be interrupted, and service period k + 1 will not occur). Finally, we define
φ0(z) := α(z), i.e., φ0(z) is the p.g.f. of the number of customers present at the start
of a visit. Then, φs

k(z) and φk(z), k = 1,2, . . . , are given by:

φs
k(z) = φk−1(z)|zi=0 · (E[

zN(Y)1{Y<I }
] + ziE

[
zN(I)1{Y>I }

] · E
[
zN(Y)1{Y<X}

])



298 Queueing Syst (2009) 62: 279–308

+ (
φk−1(z) − φk−1(z)|zi=0

) · E
[
zN(Y)1{Y<X}

]
, (19)

and

φk(z) = φk−1(z)|zi=0 ·
(

ziE
[
zN(I)1{Y>I }

] · E
[
zN(X)1{Y>X}

] 1

zi

)

+ (
φk−1(z) − φk−1(z)|zi=0

) · E
[
zN(X)1{Y>X}

] 1

zi

, (20)

where

E
[
zN(I)1{Y>I }

] = Ĩi

(

ξi +
∑

j �=i

λj (1 − zj )

)

, (21)

E
[
zN(X)1{Y>X}

] = X̃i

(

ξi +
∑

j

λj (1 − zj )

)

, (22)

E
[
zN(Y)1{Y<I }

] = ξi

ξi + ∑
j �=i λj (1 − zj )

·
(

1 − Ĩi

(

ξi +
∑

j �=i

λj (1 − zj )

))

, (23)

E
[
zN(Y)1{Y<X}

] = ξi

ξi + ∑
j λj (1 − zj )

·
(

1 − X̃i

(

ξi +
∑

j

λj (1 − zj )

))

. (24)

Let us elaborate on (19). Recall that for φs
k(z) a service period k is indeed the final

(i.e., interrupted) service period. Clearly, the number of customers at all queues at
the end of service period k is equal to the number present at the end of the service
period k − 1, plus the ones that arrived during the present service period. The length
of service period k, and thus the number of arriving customers, depends on whether
one or more customers were present at the end of the previous service period, which
explains why the right-hand side of the equation consists of two parts. The first part
refers to the case that at the end of the previous service period no customers were
present at Qi . In this case, we must also distinguish between whether an interruption
occurred during the idle period or during the possibly associated service. The second
part refers to the case that some customers were present at Qi at the end of the
previous service period. Equation (20) can be derived analogously. The expressions
in (21), (22), (23) and (24) follow from simple probabilistic calculations. It is also
worthwhile to note that φ0(1) = 1, while φk(1) < 1, for all k = 1,2, . . . , since the
(k + 1)-st service period need not occur at all during a visit to Qi . Finally, observing
that there is a one-to-one relationship between a visit completion and the end of a
final service period, we can write

βi(z) =
∞∑

k=1

φs
k(z),

which completes the proof. �
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Algorithm 1 Pseudo-code of the iterative scheme for determining β̌i (k),∀i ,∀k

β̌i0 (k) = 1, ∀i0 , ∀k; (start with an empty system)

FOR i1 = 1, . . . ,M

set i2 := i1;

REPEAT

β̌
i2
r (k) = β̌i2 (k), ∀k;

set j := 0;

set φ̌0(k) = β̌i2−1(k) · Či2 (k);

REPEAT

set j := j + 1;

compute φ̌j (k), ∀k, using (20);

compute φ̌s
j
(k), ∀k, using (19);

compute β̌i2 (k) = ∑j
l=1 φ̌s

l
(k), ∀k;

UNTIL 1 − Re(β̌i2 (0)) < δ

set i2 := MOD(i2,M) + 1;

UNTIL |Re(β̌i1 (k)) − Re(β̌
i1
r (k))| < ε, ∀k

END

We set up an iterative scheme to compute βi(z) numerically. The scheme is con-
structed in terms of Discrete Fourier Transforms (DFTs) as these appear more con-
venient for computational purposes. To this end, we replace zi , ∀i , in the expressions
above by ω

ki

i , where ωi = exp(−2πI/Hi), so that all expressions become functions
of k = (k1, . . . , kM). Here I is the imaginary unit and Hi refers to the number of
points used for Qi to determine the joint probabilities. The DFT of a variable is de-
noted by adding the accent,ˇ , to the variable, e.g., we let β̌i (k) refer to the DFT
of βi(z). The pseudo-code of the iterative scheme is presented in Algorithm 1. The
standard values for the convergence parameters that have been used are ε = 10−6

and δ = 10−9. Finally, via the Inverse Fourier Transform, the steady-state probabili-
ties βi

n are obtained. These probabilities are only exact for Hi → ∞, i = 1, . . . ,M,

but the strength of the approach is that in general the probabilities are already close
to the exact values for small values of Hi . However, it should be noted that when
the system load increases, these values Hi must typically be increased to guarantee
the accurate computation of the probabilities. Thus, this iterative approach appears
mainly applicable to systems with a light to moderate load.

Remark 2 The p.g.f. πi(z), which refers to the queue-length at service completion
instants, can now be obtained using the derived relations (see Sects. 4.2, 4.3) and the
explicit computation of βi(z). However, πi(z) can also directly be expressed in terms
of the introduced auxiliary p.g.f. φk(z) as follows:

πi(z) = P(s.c. at Qi | s.c.)

E[# s.c. per visit to Qi ] ·
∞∑

k=1

φk(z).
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Remark 3 In our model, interruptions can occur both during services and during idle
periods, while in Leung’s time-limited model (see [4]) only services can be inter-
rupted. The latter is due to the fact that in Leung’s model the server moves to the next
queue if there are no customers present anymore. Due to the additional event of idle
period interruptions in our model, the probability that ψi(j) ≥ 1 (one or more cus-
tomers present at Qi after j services) of (9) of [19] which is conditioned on the event
that no interruption occurs during the j th service is no longer equal to the uncondi-
tional probability. Nevertheless, we strongly believe that for our model the approach
of [19] could still be followed to find βi(z). However, the expressions will become
quite involved, so that we proposed an unconditional approach here.

4.5 Steady-state queue-length probabilities and sojourn times

The exponential visit times allow us to obtain the steady-state queue-length probabil-
ities. To see this, consider the full queue-length process and condition on the server
being at some tagged queue Q. Next, remove from this full process the time periods
that the server is not at Q and concatenate the remaining parts. This induced process
then consists of a series of exponentially distributed periods with jumps between each
two periods. These jumps in fact constitute a Poisson batch arrival process and reflect
the arrivals to the system when the server is not at Q. Due to the PASTA property,
these batches see time average behavior upon arrival. Moreover, the system observed
by the arriving batches is exactly the system as observed by the server when it departs
from Q. Thus, we have that a departing server observes the system in steady-state
conditioned on the position of the server.

Let us denote the p.g.f. of the number of customers present at a random instant
during a switch-over time from Qi−1 to Qi by ĈR

i (z). It is well known that this p.g.f.
should satisfy:

ĈR
i (z) = βi(z) · 1 − C̃i(

∑
j λj (1 − zj ))

ci · (∑j λj (1 − zj ))
.

Hence, by conditioning on the position of the server (either it is visiting a queue or
switching between two queues), we may write for P(z) := E[zN], the joint p.g.f. of
the steady-state queue lengths,

P(z) = 1

E[C] ·
M∑

i=1

(

βi(z) · 1

ξi

+ ĈR
i (z) · ci

)

, (25)

where E[C] is given in (9).
It should be noted that in the discussion above the size of the arriving batches

depends on the realizations of the random visit times at the other queues. Therefore,
even for zero switch-over times, the queue-length processes at the different queues
are definitely not independent. Besides, it is good to notice that the acquirement of
these probabilities is not a very common result in the polling literature. For most
polling models that have been analyzed, no steady-state queue-length probabilities
are known.
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Let us next turn to the marginal distribution. We denote by Pi(z) the marginal
queue-length distribution for Qi , which readily follows from P(z), i.e.,

Pi(z) = P(z1, . . . , zM)|zj =1, j �=i, zi=z.

The marginal probabilities can also be obtained via πi(z) (see Remark 2). Using an
up-and-down crossings argument and the PASTA property [20], we may write:

Pi(z) = πi(z1, . . . , zM)|zj =1, j �=i, zi=z

πi(1, . . . ,1)
.

We note that this relation does not rely on the exponentiality of the visit times and
it may also be applied for the analysis of other service disciplines. Alternatively,
the marginal distribution Pi(z) could be obtained using the techniques discussed in
Sect. 3. This is due to the fact that the random vacation times at each of the queues
are independent of the state of the system.

From the marginal queue-length distribution, the LST of the sojourn time (or de-
lay) of a customer, which we denote by D̃i(s), can be obtained using the distributional
form of Little’s law (see [23]). In particular, we have that:

D̃i(s) = Pi(z)|z=1−s/λi
.

Thus, all moments of the sojourn time at each queue can be determined.

Remark 4 (Single-queue model) For the special case M = 1, the expression for P(z),
(25), is known in the literature (see also (1)). However, the equivalence is not appar-
ent. Notice that our method presented in this section provides a numerical scheme
that yields identical numerical values, though it does not give an explicit formula.
This may seem a drawback, but our method is designed for M ≥ 2.

5 Approximations

We have investigated the correlations among the queue lengths in the polling model
for a wide range of parameter settings. The outcomes of this investigation have led to
a proposed approximation and corresponding performance measure. This will all be
discussed in Sect. 5.1. Next, in Sect. 5.2, we perform a numerical study on the quality
of the approximation.

5.1 Dependence of the queue lengths

5.1.1 Correlations

As an example, we present results for a symmetric system with three queues, expo-
nential service times and zero switch-over times. For ease of presentation, we define
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Fig. 1 The coefficient of
correlation (CoC) as a function
of Λ for μ = 1.00 and ξ = 1.00
(exponential service times)

Fig. 2 The coefficient of
correlation as a function of the
mean visit time (1/ξ ) for
Λ = 0.15 and μ = 1.00
(exponential service times)

Λ = ∑
j λj , μ = μi, and ξ = ξi, for i = 1, . . . ,M . Specifically, we consider the co-

efficient of correlation, ρ1,2|Qj
, j = 1,2,3, for the conditional queue length at Q1

and Q2 as a function of Λ and ξ , where ρ1,2|Qj
is defined as follows:

ρ1,2|Qj
:= Cov(N1 , N2 | server at Qj )

√
Var(N1 | server at Qj)Var(N2 | server at Qj)

= E[N1 · N2 | server at Qj ] − E[N1 | server at Qj ] · E[N2 | server at Qj ]
√

Var(N1 | server at Qj)Var(N2 | server at Qj)
.

Notice that we only consider the conditional queue lengths here. This is because the
system state generally depends heavily on the position of the server, so that it is more
meaningful to compare conditional probabilities. Also, if we would take a snapshot
of the system state at a random instant in time, then we do not expect it to be in line
with the unconditional time-equilibrium probabilities.

In Fig. 1, we plot ρ1,2|Qj
as a function of the arrival rate Λ for the situation μ =

1.00 and ξ = 1.00. It is shown that the correlation between the queues is quite small
(for all server’s positions), although it increases (in absolute sense) slightly in Λ.
Figure 2 shows the impact of the mean visit time to a queue (= 1/ξ ) on ρ1,2|Qj

for
the situation Λ = 0.15 and μ = 1.00. The plot shows that the coefficient of correlation
is small for short visit times, but that it may drift rapidly away when the visit times



Queueing Syst (2009) 62: 279–308 303

grow large. This is in accordance with the fact that for 1/ξ ↓ 0 the queue lengths
indeed become independent (under zero switch-over times), yielding a coefficient of
correlation equal to zero. We have also generated results for many other parameter
settings for the symmetric three-queue system. These results demonstrate that for a
wide range of settings the coefficient of correlation is quite small which indicates
little dependence between the queue lengths at the different queues.

5.1.2 Approximation

A natural next step is then to study approximations for the joint queue-length distri-
bution of the polling model based on the assumption of independence of the queues.
Such approximations could be of great value since our experiments have shown that
the computation time for the joint queue-length probabilities in the polling model
may grow quite large.

Our approximation for the joint queue-length distribution is thus based on the
marginal distributions. These marginal distributions can be computed almost directly
via the unreliable server model (USM) (see Sect. 3). We note that these single-queue
results can be obtained very fast which is often a necessity for real applications.
Specifically, the approximation reads as follows:

P(N1 = n1, . . . ,NM = nM | server at Qj ) ≈
M∏

i=1

P(Ni = ni | server at Qj ). (26)

To assess the quality of this approximation, we compute the terms on the r.h.s. of (26)
via the USM. As we have not analyzed these terms yet, this will be done next.

Let us consider the unreliable server model with arrival rate λ, service rate
μ, exponentially distributed availability periods with parameter ξ . We denote the
ErlangM−1(ξ) distributed repair periods by D, and its LST by D̃(·). Individual (ex-
ponential) repair stages are denoted by Dj, j = 1, . . . ,M − 1, with LST D̃j (·). We
let the p.g.f. N̂1j (z) = E[zN(Q1)|server at Qj ], j = 1, . . . ,M , refer to the number
of customers in the queue given that the server is either at the queue (for j = 1) or
at “stage” j − 1 of the repair period (for j �= 1). Notice that (due to exponentially
distributed availability periods) N̂11(z) in fact refers to the p.g.f. of the number of
customers present at an arbitrary instant of the availability period. Denote further by
N̂1D(z) the p.g.f. of the number of customers present at an arbitrary instant of the
repair period. These quantities are related to PLd

(z) (see (1)) as follows:

PLd
(z) = paN̂11(z) + prN̂1D(z),

where pa (= 1/M) and pr (= 1 − pa) are the long-term fractions that the server is
available and being repaired, respectively. Observe that N̂11(z) and N̂1D(z) are also
related via:

N̂1D(z) = N̂11(z) · D̂A(z),

where D̂A(z) is the p.g.f. of the number of arrivals from the start of the repair pe-
riod until an arbitrary instant of that period, and satisfies, using simple regenerative
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processes theory (see, e.g., [24]),

D̂A(z) = 1 − D̂(z)

D̂′(1)(1 − z)
,

where D̂(z) (= D̃(λ(1 − z))) is the p.g.f. of the number of arrivals during the com-
plete repair period.

Hence, it follows that:

N̂11(z) = PLd
(z)

pa + prD̂A(z)
.

We note that N̂1j (z), j �= 1, can be decomposed in three independent parts. The first
part refers to the number of customers present at the end of an availability period.
The second part accounts for the arrivals during the already completed repair stages.
Finally, the last part represents the number of arrivals from the beginning of repair
stage j − 1 until a random instant during this stage. In terms of p.g.f.’s, this leads to:

N̂1j (z) = N̂11(z) ·
j−2∏

k=1

D̂k(z) · D̂j
A(z), j = 2, . . . ,M,

where D̂k(z) refers to the arrivals during the (completed) kth stage of the repair period
and is given by

D̂k(z) = D̃k
(
λ(1 − z)

)
, k = 1, . . . ,M − 2,

and D̂
j
A(z) (cf. D̂A(z)) is given by

D̂
j
A(z) = 1 − D̂j (z)

D̂
′j (1)(1 − z)

, j = 2, . . . ,M.

Finally, the probabilities P(Ni = ni |server at Qj) are obtained from N̂1j (z) using
DFT techniques. Notice that for a comparison with an asymmetric polling system, all
steps above have to be performed for each queue separately.

The proposed approximation is anticipated to work well in situations where the
individual queues behave independently. In our polling model, it seems that under
our imposed visit-time distribution the dependencies between the different queues are
small (see also Sect. 5.1.1). For instance, the number of arrivals during the absence
of the server and the time that a queue is served are known (in distribution) and
independent of what occurs at the other queues in the system.

We have now all the tools at hand to investigate the dependencies between the
queues in the polling system. Let us emphasize that our objective here is not to per-
form an exhaustive numerical study for all system parameters and service time distri-
butions. The underlying idea of the approximation is that if the queues in the system
would turn out to be “almost” independent, then the results of a much simpler single-
queue model can be used as a good approximation for a complex multi-queue polling
model. Therefore, our purpose is mainly to gain preliminary insight in the parameter
ranges for which the approximation works well.
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Fig. 3 The total variation
distance (TVD) as a function of
Λ (exponential service times)

Fig. 4 The total variation
distance (TVD) as a function of
the mean visit time (1/ξ )
(exponential service times)

5.2 Numerical results

We present here numerical results from experiments for a symmetric three-queue
polling model for both exponentially and deterministically distributed service times.
The mean service time 1/μ is set equal to one. The performance measure that we
adopt to assess the quality of the approximation is as follows. We use the measure
of total variation distance [25] for the queue-length distribution conditional on the
position of the server, denoted by θ

p

cond,j :

θ
p

cond,j :=
∑

n

∣
∣
∣
∣
∣
P(N1 = n1, . . . ,NM = nM | server at Qj)

−
M∏

i=1

P(Ni = ni | server at Qj)

∣
∣
∣
∣
∣
.

For ease of presentation, we define θ
p

cond := θ
p

cond,j , for j = 1, . . . ,M . This measure
quantifies the difference between the exact and the approximate distribution. Clearly,
if the approximation is exact (e.g., when the queue lengths are independent), θ

p

cond
equals zero, and it is strictly positive otherwise.

The results for the total variation distance in the exponential case are presented in
Figs. 3 and 4. First, consider Fig. 3 in which θ

p

cond is plotted as a function of Λ for
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Fig. 5 The total variation
distance (TVD) as a function of
Λ (deterministic service times)

Fig. 6 The total variation
distance (TVD) as a function of
the mean visit time
(deterministic service times)

various values of ξ . The slopes observed in this figure clearly show that θ
p

cond is not
insensitive to Λ, but increases linearly in the arrival rate. Moreover, it can be seen
that θ

p

cond decreases in ξ . This is further illuminated in Fig. 4 which shows the impact
of the mean visit time (i.e., 1/ξ ) on θ

p

cond for various values of Λ. It is shown that
θ

p

cond is quite small for short visit times and increases linearly in 1/ξ for longer visit
times.

The results for deterministic service times are presented in Figs. 5 and 6. Figure 5
shows θ

p

cond as a function of Λ for various values of ξ . Again as for the exponential
case, θ

p

cond increases linearly in Λ. The impact of ξ on θ
p

cond appears small. This is
confirmed by the plot of Fig. 5 which shows the total variation distance as a function
of the mean visit time for various values of Λ. However, an important difference with
respect to the exponential case is that θ

p

cond stays away from zero when the mean visit
time decreases. The latter is due to the fact that the load for the deterministic case
increases in ξ , so that the queue lengths will not approach independence under the
stable regime (i.e., ρG,i < 1, ∀i ).

Let us wrap up the main observations that we have done in our experiments for the
three-queue symmetric system: (i) θ

p

cond is positively correlated to the arrival rate Λ;
(ii) θ

p

cond decreases rapidly toward zero when the mean visit times are shortened for
exponential service times, while for deterministic service θ

p

cond seems to decreases to
an asymptotic value strictly larger than zero.

We have seen that there exists a wide range of parameter settings for which the
approximation works quite well. However, the approximation appears not applicable
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to heavily loaded systems. For such situations, it might be worthwhile to consider
heavy-traffic approximations. This will be part of future work.

6 Conclusions

Polling models with an autonomous server may arise as a performance model in
the context of mobile wireless technologies. We have analyzed this polling model in
great detail by determining the queue-length distribution at specific instants. Due to
the state-space expansion under heavy load, our analytical approach appears mainly
applicable to systems with a light to moderate load. We have also performed sev-
eral experiments to study the dependence between queue lengths. This has led to the
identification of system parameter settings for which a simple single-queue vacation
model can successfully be applied to approximate performance measures for the com-
plex polling model. These experiments show that the quality of the approximation is
not very sensitive to the total arrival rate, but mainly depends on the mean visit time.
The shorter the visit times, the better will be the approximation for the polling model
measures.

In future work, we will study other network structures such as a (multi-hop) chain
model or a multi-path model. We strongly believe that similar techniques as described
above may prove useful to analyze such models. Another meaningful extension is to
include more complex mobility patterns and even models with multiple servers might
be considered.
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