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Abstract This paper analyzes transient characteristics of Gaussian queues. More
specifically, we determine the logarithmic asymptotics of P(Q0 > pB,QT B > qB),
where Qt denotes the workload at time t . For any pair (p, q), three regimes can
be distinguished: (A) For small values of T , one of the events {Q0 > pB} and
{QT B > qB} will essentially imply the other. (B) Then there is an intermediate range
of values of T for which it is to be expected that both {Q0 > pB} and {QT B > qB}
are tight (in that none of them essentially implies the other), but that the time epochs
0 and T lie in the same busy period with overwhelming probability. (C) Finally,
for large T , still both events are tight, but now they occur in different busy periods
with overwhelming probability. For the short-range dependent case, explicit calcula-
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tions are presented, whereas for the long-range dependent case, structural results are
proven.

Keywords Gaussian queues · Large deviations · Transient behavior

Mathematics Subject Classification (2000) 60G15 · 60F10 · 60K25

1 Introduction

Over the past decade a substantial research effort has been devoted to the analysis
of queues with Gaussian input [14, 17, 21]. It is noted, however, that the vast major-
ity of papers on these Gaussian queues address issues related to the corresponding
steady-state distribution. These results are predominantly of an asymptotic nature,
in that they identify the tail asymptotics [9, 11, 18, 20]. Importantly, however, so
far hardly any attention has been paid to transient properties. A notable exception is
the recent paper [10], where asymptotics of transient probabilities under a so-called
many-sources scaling were found (for specific Gaussian inputs).

In more detail, in [10] the following model was considered. A queue is fed by n

i.i.d. Gaussian processes with stationary increments and emptied at a constant rate nc

(with c large enough to ensure stability). With Qn
t denoting the buffer content at time

t , the logarithmic asymptotics

lim
n→∞

1

n
log P

(
Qn

0 > np,Qn
T > nq

)

were determined for T large (assuming the queue is in stationarity at time 0). A cru-
cial element in the reasoning is that for T large enough, the time epochs 0 and T

lie in separate busy periods, thus simplifying the analysis substantially. A conclusion
drawn in [10] is that the correlation structure of the input process essentially carries
over to the workload process.

In the present paper we consider a different scaling, viz. the so-called large-buffer
scaling. Then the queue is fed by just a single Gaussian process with stationary incre-
ments (with the associated variance curve denoted by v(·)) and emptied at a constant
rate C. With Qt denoting the buffer content at time t , the first goal of this paper is to
determine the decay rate

lim
B→∞

v(B)

B2
log P(Q0 > pB,QT B > qB). (1)

Interestingly, in view of earlier work, see, e.g., [15] and [23, Sect. 11.7], multiple
regimes are envisaged. For small values of T , typically one of the events {Q0 >

pB} and {QT B > qB} will essentially imply the other; in the sequel we call this
regime (A). For instance, if p is substantially larger than q (and T small), then it is
likely that (1) equals the decay rate of just P(Q0 > pB)—we say that in this case
the event {Q0 > pB} is “tight.” Likewise, if q is substantially larger than p, then
we expect that only {QT B > qB} is tight. Then there is an intermediate range of
values of T , regime (B), for which it is to be expected that both {Q0 > pB} and
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{QT B > qB} are tight, but that the time epochs 0 and T lie in the same busy period
with overwhelming probability. Finally, for large T , still both events are tight, but
now they occur in different busy periods with overwhelming probability; we refer to
this regime as regime (C). A second goal of the paper is to make the above statements
rigorous.

This paper is organized as follows. In Sect. 2 we present the model and give a
problem description. Then Sect. 3 introduces additional notation, and we establish a
useful reduction property. Our first main result, namely an explicit representation of
the decay rate (1), is given in Sect. 4. The cases of short-range dependent and long-
range dependent input are dealt with in Sect. 5; in both cases the regimes (A), (B),
and (C) are studied.

2 Model and problem description

Let {X(t) : t ∈ R} be a Gaussian process with stationary increments and a.s. continu-
ous sample paths, starting off at 0 (that is, X(0) = 0, a.s.). Without loss of generality
we assume that the process be centered, i.e., EX(t) = 0 for any t . Furthermore, the
variance function is given through v(t) := Var(X(t)).

Throughout the paper we impose the following assumption.

Assumption 2.1 v(·) is continuous and regularly varying (at ∞) of index α ∈ (0,2).

In this paper we analyze a queue fed by input process X(·), emptied at a constant
rate C > 0. More formally, we define the steady-state buffer content process {Qt :
t ≥ 0} by the following representation:

Qt = sup
s≥0

(
A(t − s, t) − Cs

)
, (2)

where A(s, t) := X(t) − X(s) for s ≤ t , to be interpreted as the amount of traffic
having entered the system between s and t .

As mentioned in the introduction, this paper focuses on analyzing transient prop-
erties of the buffer content process, or more specifically, we wish to determine, under
Assumption 2.1, the asymptotics of

N(B) ≡ Np,q,T (B) := P(Q0 > pB,QT B > qB)

= P
(∃s ≥ 0 : A(−s,0) > pB + Cs,∃t ≥ 0 : A(T B − t, T B) > qB + Ct

)

for B large and p,q,T > 0 given (the latter identity follows from a direct interpreta-
tion of the definition of the supremum in (2)).

For the univariate case, these logarithmic asymptotics are known (and in fact even
the exact asymptotics have been found); these are (roughly) Weibullian:

lim
B→∞

v(B)

B2
log P(Q0 > B) = −1

2

(
2

2 − α

)2−α(
2C

α

)α

. (3)
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We refer to, e.g., [4]; studies on the accuracy of the resulting approximations are, e.g.,
[1, 16].

In Sect. 4 it will turn out that the nature of the decay rate (1) crucially depends on
the values of p, q , and T . Typically, we will have that for p and q given and T small,
the joint asymptotics (1) reduce to the one-dimensional asymptotics; in light of (3)
this means that for p > q and T small, we have

lim
B→∞

v(B)

B2
log P(Q0 > pB,QT B > qB) = −1

2

(
2p

2 − α

)2−α(
2C

α

)α

,

while for q > p, we have the same result but with p replaced by q . We will, for
any pair (p, q), show in Sect. 5 that the joint asymptotics reduce to one-dimensional
asymptotics if and only if T is smaller than some threshold (being the unique solution
of an explicit equation). For T larger than this threshold, we may have two types of
behavior: the queue can have been empty (with overwhelming probability) or not.
Typically, when T is large, it is more likely that the buffer content first reaches pB

at time 0, then drops to 0, and only just before T B increases again, to reach level qB

at time T B; for smaller T (with overwhelming probability) the queue has not been
empty between 0 and T B . In Sect. 5 we will explicitly give a threshold above which
time 0 and time T B lie in separate busy periods (with overwhelming probability).

3 Notation and preliminaries

In this section we first derive a useful reduction property. We then introduce the no-
tation that we use throughout the paper.

3.1 Reduction property

The following result appears to be useful later on. After the proof, we also give a
more intuitive reasoning why it is valid. Let

ET := {
(s, t) : s ≥ 0, t ∈ [0, T ) ∪ {T + s}}.

Lemma 3.1 For any p,q,T > 0,

P
(∃s ≥ 0, t ≥ 0 : A(−s,0) − Cs > p,A(T − t, T ) − Ct > q

)

= P
(∃(s, t) ∈ ET : A(−s,0) − Cs > p,A(T − t, T ) − Ct > q

)
.

Proof Let š be the optimizer in sups≥0 A(−s,0) − Cs. Also,

AT := {∃(s, t) ∈ ET : A(−s,0) − Cs > p,A(T − t, T ) − Ct > q
}
,

A := {∃(s, t) ∈ R
2+ : A(−s,0) − Cs > p,A(T − t, T ) − Ct > q

}
.

We prove the stated result by showing AT = A. As AT ⊆ A, it is left to show
AT ⊇ A.
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Fig. 1 Proof of Lemma 3.1. In the left picture the busy period in which T is contained starts after time 0;
in the right picture the busy periods in which 0 and T are contained start at the same moment. Here
Qu := supv≤u A(v,u) − C(u − v)

Take a realization from A and suppose that for t ∈ [T ,T + š) ∪ (T + š,∞), we
have A(T − t, T ) − Ct > q (as for all other t , the claimed is clear). Then also, by the
definition of š,

A(−š, T ) − C(T + š) = (
A(−š,0) − Cš

) + (
A(0, T ) − CT

)

≥ (
A(T − t,0) − C(t − T )

) + (
A(0, T ) − CT

)

= A(T − t, T ) − Ct > q.

Hence the realization was also in AT , which proves the stated result. �

Remark 3.2 An alternative, more intuitive but essentially equivalent, line of reason-
ing is the following. Let ť be the optimizer in supt≥0 A(T − t, T )−Ct . The optimizers
š and ť can be interpreted as the starting epochs of the busy periods in which 0 and
T , respectively, are contained (see Fig. 1).

• It is clear that ť cannot lie in (T ,T + š): it cannot be that a busy period starts in
(−š,0), as the buffer has been nonempty in this interval all the time (since the busy
period in which 0 is contained started at š).

• Similarly, ť cannot lie in (T + š,∞): it cannot be that a busy period starts before š

and lasts till at least T , as the buffer was empty just before š (since a busy period
started at š).

The following corollary is an immediate consequence of Lemma 3.1. It means that
we can restrict ourselves to (s, t) ∈ DB rather than R

2 when analyzing N(B).

Corollary 3.3 With DB := ET B ,

N(B) = P
(∃(s, t) ∈ DB : A(−s,0) − Cs > pB,A(T B − t, T B) − Ct > qB

)
.

3.2 Notation

In the sequel we extensively use the following Gaussian processes:

YB(s) := A(−s,0)

pB + Cs
; ZB(t) ≡ ZB,T (t) := A(T B − t, T B)

qB + Ct
;
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observe that neither YB(·) nor ZB(·) has stationary increments. Define the “standard
deviation curve” by σ(s) := √

v(s). Also

σY (s) := √
VarYB(s) = σ(s)

pB + Cs
; σZ(t) := √

VarZB(t) = σ(t)

qB + Ct
.

Notice that σY (s), σZ(t) depend on p,q , and B but not on T . Furthermore, we define

γ (s, t) ≡ γB,p,q(s, t) = min

{
σY (s)

σZ(t)
,
σZ(t)

σY (s)

}
.

We also define the correlation between YB(s) and ZB(t), which does not depend
on p and q:

r(s, t) ≡ rB,T (s, t) = Corr
(
YB(s),ZB(t)

) = Cov(A(−s,0),A(T B − t, T B))

σ (s)σ (t)
.

Realizing that v(−s) = v(s), it is readily checked that for t ∈ (0, T B) ∪ {T B + s},

r(s, t) = 1

2

v(T B + s) + v(T B − t) − v(T B) − v(T B − t + s)

σ (s)σ (t)
.

A crucial role will be played by the function

ξX;B(s, t) ≡ ξX;B,p,q,T (s, t) := 1

2 min{σ 2
Y (s), σ 2

Z(t)}
(

1+ (γ (s, t) − r(s, t))2

1 − r2(s, t)
I (s, t)

)

with I (s, t) := 1{r(s,t)<γ (s,t)}. As will appear later on, it turned out to be practical
to add the subscript “X” that indicates the underlying Gaussian process (that in turn
defines the processes YB and ZB ).

4 General results

The following general result can be deduced. It is a generalization of the one-
dimensional logarithmic asymptotics of [4] and extension of [22], where the two-
dimensional logarithmic asymptotics for the class of centered Gaussian processes
was considered. The only assumption required is that the variance curve is regularly
varying at ∞. Let Bα(·) denote (standard) fBm with Hurst parameter H = α/2, i.e.,
a Gaussian process with stationary increments and variance curve v(t) = t2H .

Theorem 4.1 Assume that {X(t) : t ∈ R} satisfies Assumption 2.1 with α ∈ (0,2).
Then for all p,q,T > 0,

lim
B→∞

v(B)

B2
logN(B) = − inf

s≥0
inf

t∈[0,T )∪{T +s} ξBα;1(s, t).

Notice that the above theorem entails that, under Assumption 2.1, the bivariate
asymptotics of N(B) reduce to the bivariate asymptotics of a queue with fBm input.
In the remainder of this section we present the complete proof of Theorem 4.1. We
start by establishing a lemma that is also of independent interest.



Queueing Syst (2009) 62: 383–409 389

Lemma 4.2 For arbitrary 0 < ε < ε < ∞,

(i) Uniformly in s ∈ [ε, ε], as B → ∞,

σ 2
Y (sB)

B2

v(B)
→ sα

(Cs + p)2
;

(ii) Uniformly in t ∈ [ε, ε], as B → ∞,

σ 2
Z(tB)

B2

v(B)
→ tα

(Ct + q)2
;

(iii) Uniformly in (s, t) ∈ [ε, ε]2, as B → ∞,

γ (sB, tB) → min

{
sα/2/(p + Cs)

tα/2/(q + Ct)
,

tα/2/(q + Ct)

sα/2/(p + Cs)

}
;

(iv) Uniformly in (s, t) ∈ [ε, ε]2, as B → ∞,

r(sB, tB) → (T + s)α − T α + |T − t |α − |T − t + s|α
2sα/2tα/2

.

Proof The proof of Lemma 4.2 follows straightforwardly from Assumption 2.1, com-
bined with standard properties of regularly varying functions. �

Lemma 4.3 For each 0 < ε < ε < ∞,

ξX;B(sB, tB) · v(B)

B2
→ ξBα;1(s, t)

as B → ∞ uniformly in (s, t) ∈ [ε, ε]2.

Proof The claim follows from applying Lemma 4.2 to the definition of ξX;B(s, t). �

Lemma 4.4 For all 0 < ε < ε < ∞,

lim
B→∞

v(B)

B2
log P

(
A(−sB,0) − CsB > pB;A(T B − tB,T B) − CtB > qB

)

= −ξBα;1(s, t)

uniformly in (s, t) ∈ [ε, ε]2.

Proof Follows from the combination of classical asymptotics of the bivariate Nor-
mal random variable, in conjunction with Lemma 4.3; see (3) in [22] and also Exam-
ple 4.1.9 in [14]. �

Corollary 3.3 indicated that we can restrict ourselves, when analyzing N(B), to
s ≥ 0 and t ∈ [0, T B) ∪ {T B + s}. The following lemma is useful in that we can
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restrict ourselves, for B large, even further, viz. to finite s and t that are bounded
away from zero. This property will appear to be useful later on when applying the
standard inequalities for suprema of Gaussian processes. We first introduce some
useful additional notation. For given 0 < ε < ε (where ε < T ), we let

CB := {
(s, t) : s ∈ [εB, εB], t ∈ [εB,T B) ∪ {T B + s}}.

Lemma 4.5 There exist ε > ε > 0 such that

N(B) = P
(∃(s, t) ∈ CB : A(−s,0) − Cs > pB,A(T B − t, T B) − Ct > qB

)

× (
1 + o(1)

)

as B → ∞.

Proof In view of Corollary 3.3, it suffices to establish an upper bound. An obvious
inequality is

P
(∃(s, t) ∈ DB : A(−s,0) − Cs > pB,A(T B − t, T B) − Ct > qB

) ≤ π1 + π2,

where π1 ≡ π1(B) and π2 ≡ π2(B) are given through

π1 := P
(∃(s, t) ∈ CB : A(−s,0) − Cs > pB,A(T B − t, T B) − Ct > qB

);
π2 := P

(∃(s, t) ∈ DB \ CB : A(−s,0) − Cs > pB,A(T B − t, T B) − Ct > qB
)
.

Observe that it suffices to show that π2 = o(π1) as B → ∞. We do so by bounding
π1 from below and π2 from above as follows.

Let ε > ε > 0 be such that s̄ := αp/((2 − α)C) ∈ [ε, ε]. Then, by virtue of
Lemma 4.4, we have

logπ1 ≥ log P
(
A(−s̄B,0) − Cs̄ > pB;A(−s̄B, T B) − C(s̄ + T )B > qB

)

= − B2

v(B)
ξBα;1

(
s̄, s̄ + T

)(
1 + o(1)

)
(4)

as B → ∞. Moreover, for each B > 0, it holds that π2 ≤ π3 + π4 with

π3 ≡ π3(B) := P

(
sup

s∈[0,εB]
(A(−s,0) − Cs) > pB

)
;

π4 ≡ π4(B) := P

(
sup

s∈[εB,∞)

(A(−s,0) − Cs) > pB

)
.

By applying Borell’s inequality—see, e.g., Adler [2, Theorem 2.1], or, alternatively,
see the remark on p. 147, combined with Theorem 1 of [13, Sect. 12]—we can bound
both probabilities from above. Let us first focus on π3. For B → ∞,
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logπ3 = log P

(
sup

s∈[0,εB]
A(−s,0)

Cs + pB
> 1

)

≤ −1

2
inf

s∈[0,εB]
(Cs + pB)2

v(s)

(
1 + o(1)

) ≤ − p2

4εα

B2

v(B)

(
1 + o(1)

);

this is due to the fact that v(·) is regularly varying and continuous, so that v(s) for
s ∈ [0, εB] can be bounded from above by 2εαv(B).

Analogously, for any ζ ≤ (2 − α)/2 and B sufficiently large,

logπ4 ≤ −1

2
inf

s∈[εB,∞)

(Cs + pB)2

v(s)

(
1 + o(1)

)

= −1

2
inf

s∈[ε,∞)
(Cs + p)2 v(B)

v(sB)

B2

v(B)

(
1 + o(1)

)

≤ −1

2
inf

s∈[ε,∞)
(1 − ζ )

(Cs + p)2

sα+ζ

B2

v(B)

(
1 + o(1)

)
.

We have now collected all the prerequisites to prove the claim π2 = o(π1) as
B → ∞. First realize that p2/(4εα) → ∞ as ε → 0 and (because s2−α−ζ → ∞ as
s → ∞)

inf
s∈[ε,∞)

(Cs + p)2

sα+ζ
→ ∞

as ε → ∞. This means that, in order to have π2 = o(π1), we can choose ε > ε > 0
such that

ξBα;1(s̄, s̄ + T ) <
p2

4εα
and ξBα;1(s̄, s̄ + T ) <

1

2
inf

s∈[ε,∞)
(1 − ζ )

(Cs + p)2

sα+ζ
.

This completes the proof. �

Before proving Theorem 4.1, we first prove a useful lemma.

Lemma 4.6 With

θ(s, t) ≡ θY,Z(s, t) := 1 − r(s, t) · max{r(s, t), γ (s, t)}
β(s, t) ≡ βY,Z(s, t) := max{r(s, t), γ (s, t)} − r(s, t),

it holds for any s, t that

1

2

(
θ(s, t) + β(s, t)γ (s, t)

min{σY (s), σZ(t)}
)2/

E

((
θ(s, t)YB(s)

σY (s)
+ β(s, t)ZB(t)

σZ(t)

)2)

= 1

2

θ(s, t) + β(s, t)γ (s, t)

(1 − r2(s, t))(min{σY (s), σZ(t)})2
.
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Proof As we keep s and t fixed throughout the proof, we can suppress the depen-
dence on these arguments. Write m := max{r, γ }. First observe

� := E

(
θYB(s)

σY (s)
+ βZB(t)

σZ(t)

)2

= θ2
E(YB(s))2

σY (s)2
+ β2

E(ZB(t))2

σZ(t)2
+ 2

θβE(YB(s)ZB(t))

σY (s)σZ(t)
.

Then it follows that

� = θ2 + β2 + 2θβr = (1 − rm)2 + (m − r)2 + 2r(1 − rm)(m − r)

= 1 + r2m2 − 2rm + m2 + r2 − 2rm + 2rm − 2r2 − 2r2m2 + 2r3m

= 1 − r2 + m2 − r2m2 + 2r3m − 2rm = (
1 − r2)(1 − 2rm + m2)

= (
1 − r2)((1 − rm) + (m − r)m

) = (
1 − r2)(θ + βm).

If r ≥ γ , then β = 0, and consequently we have θ + βm = θ + βγ . If r < γ , then
m = γ , and hence again θ + βm = θ + βγ . This proves the claim. �

Proof of Theorem 4.1 In this proof (and in the sequel), we choose ε and ε as indicated
in Lemma 4.5. We subsequently prove the lower bound and upper bound.

Lower bound We use the argumentation of [21]. An evident lower bound is

N(B) ≥ P
(∃(s, t) ∈ CB : A(−s,0) − Cs > pB,A(T B − t, T B) − Ct > qB

)

≥ sup
(s,t)∈CB

P
(
A(−s,0) − Cs > pB,A(T B − t, T B) − Ct > qB

)
.

Hence, due to Lemma 4.4, we have

lim
B→∞ logN(B) · v(B)

B2
≥ − inf

s∈[ε,ε];t∈[ε,T )∪{T +s}
ξBα;1(s, t).

Now it suffices to observe that, for appropriately chosen ε, ε,

inf
s∈[ε,ε];t∈[ε,T )∪{T +s} ξBα;1(s, t) = inf

s∈[0,∞);t∈[0,T )∪{T +s} ξBα;1(s, t),

which follows from the fact that σY (s) → 0 as s → 0 or s → ∞ and σZ(t) → 0 as
t → 0.

Upper bound The upper bound is considerably more involved than the lower bound.
Due to Lemma 4.5, we have

N(B) = P
(∃(s, t) ∈ CB : A(−s,0) − Cs > pB,A(T B − t, T B) − Ct > qB

)

× (
1 + o(1)

)

= P
(∃(s, t) ∈ CB : YB(s) > 1,ZB(t) > 1

)(
1 + o(1)

);
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recall that CB ⊆ DB. In this proof we need the following additional notation:

D (1)
B := {

(s, t) ∈ DB : σY (s) ≤ σZ(t)
}; D (2)

B := {
(s, t) ∈ DB : σY (s) > σZ(t)

}
.

The union bound trivially gives P(∃(s, t) ∈ DB : YB(s) > 1,ZB(t) > 1) ≤ π̄1 + π̄2,

where

π̄1 := P
(∃(s, t) ∈ D (1)

B : YB(s) > 1,ZB(t) > 1
);

π̄2 := P
(∃(s, t) ∈ D (2)

B : YB(s) > 1,ZB(t) > 1
)
.

We subsequently asymptotically analyze π̄1 and π̄2. The following upper bound on
π̄1 is straightforward, as σY (s) ≤ σZ(t) on D (1)

B :

π̄1 = P

(
∃(s, t) ∈ D (1)

B :
YB(s)

σY (s)
>

1

min{σY (s), σZ(t)} ,
ZB(t)

σZ(t)
>

γ (s, t)

min{σY (s), σZ(t)}
)

= P

(
∃(s, t) ∈ D (1)

B :
θ(s, t)YB(s)

σY (s)
>

θ(s, t)

min{σY (s), σZ(t)} ,

β(s, t)ZB(t)

σZ(t)
>

β(s, t)γ (s, t)

min{σY (s), σZ(t)}
)

≤ P

(
∃(s, t) ∈ D (1)

B :
θ(s, t)YB(s)

σY (s)
+ β(s, t)ZB(t)

σZ(t)

>
θ(s, t)

min{σY (s), σZ(t)} + β(s, t)γ (s, t)

min{σY (s), σZ(t)}
)

= P

(
∃(s, t) ∈ D (1)

B :
min{σY (s), σZ(t)}

θ(s, t) + β(s, t)γ (s, t)

(
θ(s, t)YB(s)

σY (s)
+ β(s, t)ZB(t)

σZ(t)

)
> 1

)
.

We now prove that

E

(
sup

(s,t)∈D(1)
B

min{σY (s), σZ(t)}
θ(s, t) + β(s, t)γ (s, t)

(
θ(s, t)YB(s)

σY (s)
+ β(s, t)ZB(t)

σZ(t)

))
→ 0 (5)

as B → ∞. This is done as follows. Trivially,

E

(
sup

(s,t)∈D(1)
B

min{σY (s), σZ(t)}
θ(s, t) + β(s, t)γ (s, t)

(
θ(s, t)YB(s)

σY (s)
+ β(s, t)ZB(t)

σZ(t)

))
≤ ψ1 + ψ2,

where

ψ1 ≡ ψ1(B) := E

(
sup

(s,t)∈D(1)
B

min{σY (s), σZ(t)}
θ(s, t) + β(s, t)γ (s, t)

θ(s, t)YB(s)

σY (s)

)
;

ψ2 ≡ ψ2(B) := E

(
sup

(s,t)∈D(1)
B

min{σY (s), σZ(t)}
θ(s, t) + β(s, t)γ (s, t)

β(s, t)ZB(t)

σZ(t)

)
.
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Then realize that

ψ1 ≤ sup
(s,t)∈D(1)

B

(
min{σY (s), σZ(t)}

θ(s, t) + β(s, t)γ (s, t)

θ(s, t)

σY (s)

)
E

(
sup

(s,t)∈D(1)
B

YB(s)

)
,

where, due to Lemma 4.2,

sup
(s,t)∈D(1)

B

(
min{σY (s), σZ(t)}

θ(s, t) + β(s, t)γ (s, t)

θ(s, t)

σY (s)

)

is bounded from above as B → ∞, and following Lemma 2.2 in [4],

E

(
sup

(s,t)∈D(1)
B

YB(s)

)
→ 0

as B → ∞. Hence ψ1 → 0 as B → ∞. Analogously, ψ2 → 0 as B → ∞. Hence, we
have proved (5).

The fact that (5) applies means that Borell’s inequality [2, Theorem 2.1] yields
(B large)

log π̄1 ≤ − inf
(s,t)∈D(1)

B

1

2

(
θ(s, t) + β(s, t)γ (s, t)

min{σY (s), σZ(t)}
)2

/
E

((
θ(s, t)YB(s)

σY (s)
+ β(s, t)ZB(t)

σZ(t)

)2)

= − inf
(s,t)∈D(1)

B

1

2

θ(s, t) + β(s, t)γ (s, t)

(1 − r2(s, t))(min{σY (s), σZ(t)})2
;

the last step is due to Lemma 4.6. The latter expression equals, by virtue of
Lemma 4.3, as B → ∞,

− inf
(s,t)∈D(1)

B

1

2

θ(s, t) + β(s, t)γ (s, t)

(1 − r2(s, t))(min{σY (s), σZ(t)})2

= − inf
(s,t)∈D(1)

1

1

2

θ(sB, tB) + β(sB, tB)γ (sB, tB)

(1 − r2(sB, tB))(min{σY (sB),σZ(tB)})2

= − B2

v(B)
inf

(s,t)∈D(1)
1

ξBα;1(s, t)
(
1 + o(1)

)
.

Analogously, we have, as B → ∞,

log π̄2 ≤ − B2

v(B)
inf

(s,t)∈D(2)
1

ξBα;1(s, t)
(
1 + o(1)

)
.
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We conclude that, as B → ∞,

v(B)

B2
log P

(∃(s, t) ∈ DB : YB(s) > 1,ZB(t) > 1
)

≤ v(B)

B2
log(π̄1 + π̄2) ≤ v(B)

B2
log

(
2 max{π̄1, π̄2}

) = − inf
(s,t)∈D1

ξBα;1(s, t)
(
1 + o(1)

)
.

This completes the proof. �

Remark 4.7 Using a different approach, based on Schilder’s theorem, we can give a
different representation for the rate function infs≥0 inft∈[0,T )∪{T +s} ξBα;1(s, t) in The-
orem 4.1.

Assume that X(t) = Bα(t) is a fractional Brownian motion with Hurst parameter
α/2. It appears that the self-similar structure of fBm enables, for this special case, a
rather straightforward proof of Theorem 4.1. First observe that

N(B) = P
(∃s ≥ 0 : A(−sB,0) > pB + CsB,

∃t ≥ 0 : A(T B − tB,T B) > qB + CtB
)

= P

(
∃s ≥ 0 : A(−sB,0)

B
> p + Cs,∃t ≥ 0 : A(T B − tB,T B)

B
> q + Ct

)

(i)= P

(
∃s ≥ 0 : A(−s,0)

B1−α/2
> p + Cs,∃t ≥ 0 : A(T − t, T )

B1−α/2
> q + Ct

)

= P

(
∃s ≥ 0 : A(−s,0)

p + Cs
> B1−α/2,∃t ≥ 0 : A(T − t, T )

q + Ct
> B1−α/2

)
,

where in equality (i) the self-similarity has been used. We are now in a position to
apply the Schilder-type sample-path large deviations [3, 14]. To this end, define the
set of paths causing overflow over level p at time 0 and over level q at time T as
follows:

S0 :=
⋃

s≥0

S0
s ; ST :=

⋃

t≥0

ST
t ,

where S0
s := {f | −f (−s) > p + Cs} and ST

t := {f | f (T ) − f (T − t) > q + Ct}.
We also define the set of paths in the intersection of these events:

S0,T := {
f | ∃s ≥ 0 : −f (−s) > p + Cs; ∃t ≥ 0 : f (T ) − f (T − t) > q + Ct

}

=
⋃

s≥0

⋃

t≥0

S0,T
s,t = S0 ∩ ST .

Now let X(t) satisfy Assumption 2.1 with α ∈ (1,2). Schilder’s theorem com-
bined with Theorem 4.1 entails the following result (as B → ∞):
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−v(B)

B2
logN(B) → inf

f ∈S0,T
I(f ) = inf

s≥0,t≥0

(
inf

f ∈S0,T
s,t

I(f )

)

= inf
s≥0

inf
t∈[0,T )∪{T +s}

(
inf

f ∈S0,T
s,t

I(f )

)
.

Here I(f ) is the rate function of a path f ; for a detailed introduction and a formal
framework, see, e.g., [1, 3, 17]. The last equality is due to Lemma 3.1. Now consider
the evaluation of the inner infimum (for fixed s, t). The key observation is that

ξ(s, t) := inf
f ∈S0,T

s,t

I(f )

= − lim
n→∞

1

n
log P

(
A(−s,0)√

n
≥ p + Cs,

A(T − t, T )√
n

≥ q + Ct

)
.

In other words: ξ(s, t), for given s, t ≥ 0, represents the large-deviations rate function
of a bivariate Normally distributed random variable. Now [14, Exercise 4.1.9] can be
applied, and three cases are to be distinguished:

• If r(s, t) ≥ γ (s, t) and σ 2
Y (s) ≤ σ 2

Z(t), then only the first requirement is “tight” and
ξ(s, t) is independent of t :

ξ(s, t) = 1

2

1

σ 2
Y (s)

= 1

2

(p + Cs)2

v(s)
. (6)

• If r(s, t) ≥ γ (s, t) and σ 2
Y (s) > σ 2

Z(t), then only the first requirement is “tight” and
ξ(s, t) is independent of s:

ξ(s, t) = 1

2

1

σ 2
Z(t)

= 1

2

(q + Ct)2

v(t)
. (7)

• If r(s, t) < γ (s, t), then, with (s, t) := Cov(A(−s,0),A(T − t, T )), both re-
quirements are “tight”:

ξ(s, t) = 1

2
(p + Cs,q + Ct)

(
v(s) (s, t)

(s, t) v(t)

)−1 (
p + Cs

q + Ct

)

= 1

2

1

1 − r2(s, t)

(
(p + Cs)2

v(s)
− 2

(s, t)(p + Cs)(q + Ct)

v(t)v(s)
+ (q + Ct)2

v(t)

)
.

(8)

Notice that the criterion r(s, t) < γ (s, t) can be rewritten as

(s, t)

(p + Cs)(q + Ct)
< min

{
σ 2

Y (s), σ 2
Z(t)

}
.

We thus retrieve

lim
B→∞

v(B)

B2
logN(B) = − inf

s≥0
inf

t∈[0,T )∪{T +s} ξBα;1(s, t).
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Remark 4.8 It is noted that Theorem 4.1 can be extended to any dimension larger
than 2, i.e., we can analyze in a similar fashion the decay rates of probabilities of the
type

P(Q0 > p0B,QT1 > p1B, . . . ,QTnB > pnB)

for any n = 1,2, . . . , pi > 0 (for i = 1, . . . , n) and Tn > Tn−1 > · · · > T1. The key
observations are that an analogous reduction property applies and that a Borell-based
proof essentially goes through for n = 2,3, . . . .

5 Special cases

In this section we apply Theorem 4.1 to two special cases, viz.

– Gaussian input processes which possess a short-range dependent structure (SRD),
by which we mean that v(·) is regularly varying with parameter α = 1;

– Gaussian input processes which possess a long-range dependent structure (LRD),
by which we mean that v(·) is regularly varying with parameter α ∈ (1,2).

In particular, one could think of the following special cases which have been studied
intensively in the literature. (i) Integrated Gaussian processes. In this case X(t) =∫ t

0 Z(s)ds, where Z(·) is a centered stationary Gaussian process with continuous
covariance function R(t) := Cov(Z(s),Z(s + t)) > 0. Note that if

∫ ∞
0 R(v)dv < ∞,

then

Var
(
X(t)

) = v(t) = 2

(∫ ∞

0
R(v)dv

)
· t(1 + o(1)

)

as t → ∞, and hence X(·) has an SRD structure. If R(t) is regularly varying at
∞ with index α − 2 for α ∈ (1,2), then Var(X(t)) is regularly varying at ∞ with
index α, which implies an LRD structure. (ii) Fractional Brownian motions. Then
X(t) = Bα/2(t). Recall that for the case of α = 1, we are in the SRD scenario, while
α ∈ (1,2) corresponds to the LRD case.

The relevance of integrated Gaussian input processes in the theory of fluid models
is discussed in, e.g., [6, 7]; see also [5, 19]. The use of fractional Brownian motions
in modeling input processes has been advocated by, e.g., [21, 24].

5.1 The SRD case

In this section we focus on the class of input processes with a short-range dependence
structure, i.e., we assume that Var(X(t)) = v(t) is regularly varying at infinity with
index α = 1.

Proposition 5.1 Assume that {X(t) : t ∈ R} satisfies Assumption 2.1 with α = 1.
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(i) If p > q > 0, then

lim
B→∞

v(B)

B2
logN(B) = −

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2pC if T ≤ p−q
C

;
2pC + (CT +q−p)2

2T
if p−q

C
< T ≤ (

√
p+√

q)2

C
;

2pC + 2qC if T >
(
√

p+√
q)2

C
.

(9)

(ii) If p = q > 0, then

lim
B→∞

v(B)

B2
logN(B) = −

⎧
⎨

⎩
2pC + C2T

2 if T ≤ 4p
C

;
4pC if T >

4p
C

.
(10)

(iii) If q > p > 0, then

lim
B→∞

v(B)

B2
logN(B) = −

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2qC if T ≤ q−p
C

;
2pC + (CT +q−p)2

2T
if q−p

C
< T ≤ (

√
p+√

q)2

C
;

2pC + 2qC if T >
(
√

p+√
q)2

C
.

(11)

Proof By virtue of Theorem 4.1, we analyze

inf
s≥0

inf
t∈[0,T )∪{T +s} ξB1;1(s, t) = min

{
inf
s≥0

inf
t∈[0,T )

ξB1;1(s, t), inf
s≥0

ξB1;1(s, s + T )

}
.

Note that r(s, t) ≡ 0 for all s ≥ 0, t ∈ [0, T ], and hence

inf
s≥0

inf
t∈[0,T )

ξB1;1(s, t) = inf
s≥0

inf
t∈[0,T )

1

2

(
(p + Cs)2

s
+ (q + Ct)2

t

)

= 2pC + 1

2

(q + C min{T ,q/C})2

min{T ,q/C} . (12)

Case (i) p > q > 0. It is convenient to split this scenario into two subcases:
T ≤ (p − q)/C and T > (p − q)/C. Let us first consider T ≤ (p − q)/C. This case
follows from combining the fact that for all s, t ,

ξB1;1(s, t) ≥ 1

2 min{σ 2
Y (s), σ 2

Z(t)} ≥ 1

2σ 2
Y (s�)

= 2pC

with ξB1;1(s�, s� + T ) = 2pC for s� = p/C. Then consider T > (p − q)/C. Let

S1 := {
s ≥ 0 : σY (s) ≤ σZ(s + T )

}
, S2 := {

s ≥ 0 : σY (s) > σZ(s + T )
}
.

Note that {s ≥ 0} = S1 ∪ S2. Let us first analyze infs≥0 ξB1;1(s, s + T ). Note that for
each s ≥ 0,

r(s, s + T ) = r1,T (s, t) < γ1,p,q(s, s + T ) = γ (s, s + T ).
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Indeed, for s ∈ S1 (using that T > (p − q)/C), we have

γ (s, s + T ) − r(s, s + T ) =
√

s

s + T

CT + q − p

p + Cs
> 0,

while, for s ∈ S2, we have

γ (s, s + T ) − r(s, s + T ) =
√

s

s + T

(
(T + s)(p + Cs)

s(q + C(s + T ))
− 1

)

=
√

s

s + T

Tp + s(p − q)

s(q + C(s + T )
> 0.

Hence:

• if s ∈ S1, then

ξB1;1(s, s + T ) = 1

2

(p + Cs)2

s
+ 1

2

(CT + q − p)2

T
;

• if s ∈ S2, then

ξB1;1(s, s + T ) = 1

2

(q + C(T + s))2

T + s
+ 1

2

(pT + s(p − q))2

sT (s + T )

= 1

2

(p + Cs)2

s
+ 1

2

(CT + q − p)2

T
.

The above implies that

inf
s≥0

ξB1;1(s, s + T ) = inf
s≥0

1

2

(p + Cs)2

s
+ 1

2

(CT + q − p)2

T

= 2pC + 1

2

(CT + q − p)2

T
. (13)

Finally, in order to complete the proof of (i), it suffices to check that combination of
(12) with (13) leads to

inf
s≥0

ξB1;1(s, s + T ) ≤ inf
s≥0

inf
t∈[0,T )

ξB1;1(s, t) for
p − q

C
< T ≤ (

√
p + √

q)2

C
,

inf
s≥0

ξB1;1(s, s + T ) ≥ inf
s≥0

inf
t∈[0,T )

ξB1;1(s, t) for T >
(
√

p + √
q)2

C
.

Case (ii) p = q > 0. This case follows from the same arguments as used in case (i).
We omit the details.

Case (iii) q > p > 0. Analogously to case (i), we separately analyze the scenarios
T ≤ q − p/C and T > (q − p)/C. First consider T ≤ (q − p)/C. The result directly
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follows from

ξB1;1(s, t) ≥ 1

2 min{σ 2
Y (s), σ 2

Z(t)} ≥ 1

2σ 2
Z(t�)

= 2qC

for all s, t , in conjunction with ξB1;1(t� − T , t�) = 2qC for t� = q/C. Then focus on
T > (q − p)/C. Let

S21 := {
s ≥ 0 : σY (s) > σZ(s + T ), r(s, s + T ) < γ (s, s + T )

}
,

S22 := {
s ≥ 0 : σY (s) > σZ(s + T ), r(s, s + T ) ≥ γ (s, s + T )

}
.

We analyze infs≥0 ξB1;1(s, s + T ).

• If s ∈ S1, then

r(s, s + T ) =
√

s

s + T
<

√
s

s + T

C(s + T ) + q

p + Cs
= γ (s, s + T ),

and therefore

ξB1;1(s, s + T ) = 1

2

(p + Cs)2

s
+ 1

2

(CT + q − p)2

T
. (14)

• If s ∈ S21, then standard calculation leads to the same formula as in (14), i.e.,

ξB1;1(s, s + T ) = 1

2

(q + C(T + s))2

T + s
+ 1

2

(pT + s(p − q))2

sT (s + T )

= 1

2

(p + Cs)2

s
+ 1

2

(CT + q − p)2

T
. (15)

Hence, using that p/C ∈ S21, we have

inf
s∈S1∪S21

ξB1;1(s, s + T ) = 2pC + 1

2

(CT + q − p)2

T
. (16)

• If s ∈ S22, then

ξB1;1(s, s + T ) = 1

2 min{σ 2
Y (s), σ 2

Z(s + T )} = (q + C(s + T ))2

2(s + T )
. (17)

Moreover, the fact that s ∈ S22 implies

r(s, s + T ) ≥ γ (s, s + T ) ⇔ s ≥ pT

q − p
.

We conclude that

inf
s∈S22

ξB1;1(s, s + T ) = ξB1;1
(

pT

q − p
,

pT

q − p
+ T

)
= 1

2

q(CT + q − p)2

(q − p)T
. (18)



Queueing Syst (2009) 62: 383–409 401

The comparison of (16) with (18) now implies that

inf
s≥0

ξB1;1(s, s + T ) = 2pC + 1

2

(CT + q − p)2

T
. (19)

Analogously to the proof of (i), the combination of (12) with (19) completes the
proof. �

Remark 5.2 Related results for queues fed by Brownian motion have recently been
obtained in [12]. There also emphasis was put on the nature of the decay rates and
the shape of the most likely path towards the rare event [1, 14]. In accordance with
Proposition 5.1, it was found that for T up to some threshold, the decay rate of the
joint probability equals the decay rate of P(Q > max{p,q}B), with Q denoting the
steady-state workload: if p > q , then {Q0 > pB} essentially implies {QT B > qB}
for T small, and if p < q , then {QT B > qB} essentially implies {Q0 > pB} for
T small—this is regime (A), as was mentioned in the introduction. Then there is
an intermediate range of values of T , regime (B), in which the event of interest is
roughly equal to

{
Q0 > pB,A(0, T B) ≥ qB + CT − pB

};
in this range the buffer does not become empty between 0 and T B . For large T

(regime (C)), the most likely scenario is that the queue reaches level pB at time 0,
drains, and starts building up just before T B , to reach value qB at T B . In the Brown-
ian case the most likely path of this scenario consists of two independent busy peri-
ods.

5.2 The LRD case

In this subsection we focus on the scenario α ∈ (1,2). Whereas for the case of α = 1,
we could rely on explicit computations, for α ∈ (1,2), the analysis of the rate function

inf
s≥0

inf
t∈[0,T )∪{T +s} ξBα;1(s, t)

turns out to be substantially harder. Before presenting the main results of this section,
we introduce some additional notation. Define, for given α ∈ (1,2) and p,q,C > 0,

s� := arg max
s≥0

{
sα/2

p + Cs

}
= p

C

α

2 − α
,

t� := arg max
t≥0

{
tα/2

q + Ct

}
= q

C

α

2 − α
,

and

R(x) := 1

2

(
2x

2 − α

)2−α(
2C

α

)α

.
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Note that for X(t) ≡ Bα(t), we have that

max
s≥0

Var
(
Y1(s)

) = Var
(
Y1(s

�)
) = 1

2R(p)
,

max
t≥0

Var
(
Z1(t)

) = Var
(
Z1(t

�)
) = 1

2R(q)
.

The following general bounds hold. The upper bound in (20) essentially says that the
decay rate of the joint probability is smaller than the decay rate of the least likely
event; the lower bound in (20) says that the joint probability is larger than the product
of the individual probabilities (which makes sense in view of the positive correlation).

Proposition 5.3 Assume that {X(t) : t ∈ R} satisfies Assumption 2.1 with α ∈ (1,2).
Then

−max
{
R(p),R(q)

} ≥ lim
B→∞

v(B)

B2
logN(B) > −(

R(p) + R(q)
)
. (20)

Proof The upper bound follows immediately from

inf
s≥0

inf
t∈[0,T )∪{T +s} ξBα;1(s, t) ≥ inf

s≥0
inf
t≥0

ξBα;1(s, t)

= inf
s≥0,t≥0

1

2

1

min{σ 2
Y (s), σ 2

Z(t)}
(

1 + (γ (s, t) − r(s, t))2

1 − r2(s, t)
I (s, t)

)

≥ max

{
inf
s≥0

(p + Cs)2

2v(s)
, inf
t≥0

(q + Ct)2

2v(t)

}
= max

{
R(p),R(q)

}
.

The lower bound is due to the fact that, due to Lemma 4.5, for some ε > ε > 0,

inf
s≥0

inf
t∈[0,T )∪{T +s} ξBα;1(s, t)

= min
s∈[ε,ε] min

t∈[ε,T )∪{T +s} ξBα;1(s, t)

= min
s∈[ε,ε] min

t∈[ε,T )∪{T +s}
1

2

1

min{σ 2
Y (s), σ 2

Z(t)}
(

1 + (γ (s, t) − r(s, t))2

1 − r2(s, t)
I (s, t)

)
.

(21)

Moreover the assumption that α > 1 straightforwardly implies r(s, t) > 0 (positive
correlation of the input traffic!). Realize that (γ 2 + 1)r < 2γ holds for all r ∈ (0,1)

and γ ∈ [0,1]; after elementary calculus this yields

(γ (s, t) − r(s, t))2

1 − r2(s, t)
< γ 2(s, t)

for all s, t > 0, and therefore (21) is majorized by
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min
s∈[ε,ε] min

t∈[ε,T )∪{T +s}
1

2

1

min{σ 2
Y (s), σ 2

Z(t)}
(
1 + γ 2(s, t)

)

= min
s∈[ε,ε] min

t∈[ε,T )∪{T +s}
1

2

(
1

σ 2
Y (s)

+ 1

σ 2
Z(t)

)
= R(p) + R(q).

This completes the proof. �

In the following we determine the values of T for which the lower bound in (20)
is tight.

Proposition 5.4 Assume that {X(t) : t ∈ R} satisfies Assumption 2.1 with α ∈ (1,2).

(i) If p > q > 0, then there exists a unique T � solving the equation

γ (s�, s� + T �) = r(s�, s� + T �) (22)

such that

lim
B→∞

v(B)

B2
logN(B) = −R(p) for T ≤ T �;

lim
B→∞

v(B)

B2
logN(B) < −R(p) for T > T �.

(ii) If q > p > 0, then there exists a unique T� solving the equation

γ (t� − T�, t
�) = r(t� − T�, t

�) (23)

such that

lim
B→∞

v(B)

B2
logN(B) = −R(q) for T ≤ T�;

lim
B→∞

v(B)

B2
logN(B) < −R(q) for T > T�.

Proof First consider the case p > q > 0. Note that in order to have

lim
B→∞

v(B)

B2
logN(B) = −R(p),

we need the following two conditions to be satisfied:

γ (s�, s� + T ) ≤ r(s�, s� + T ), (24)

σY (s�) ≤ σZ(s� + T ). (25)
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Under (25) we have

r(s�, s� + T ) = (T + s�)α − T α + (s�)α

2(s�(s� + T ))α/2

= 1

2

(
s�

s� + T

)α/2((
T + s�

s�

)α

−
(

T

s�

)α

+ 1

)
;

γ (s�, s� + T ) =
(

s�

s� + T

)α/2
q + Cs� + CT

p + Cs�

=
(

s�

s� + T

)α/2(
1 + q − p

p + Cs�
+ Cs�

p + Cs�

T

s�

)
.

Noticing that

Cs�

p + Cs�
= α/2; −1 <

q − p

p + Cs�
= q − p

p

(
1 − α

2

)
< 0,

inequalities (24) and (25) are equivalent to respectively

1 + 2
q − p

p
(1 − α/2) + α

T

s�
≤

(
1 + T

s�

)α

−
(

T

s�

)α

, (26)

1 + q − p

p
(1 − α/2) + α

2

T

s�
≤

(
1 + T

s�

)α/2

. (27)

Interestingly, however, we have that inequality (26) implies inequality (27). This can
be shown as follows. First rewrite inequality (26) as

1 + q − p

p
(1 − α/2) + α

2

T

s�
≤ 1

2

(
1 +

(
1 + T

s�

)α

−
(

T

s�

)α)
. (28)

Let X̌(t) correspond to fBm with variance curve v(t) = tα , and let Ǎ(s, t) := X̌(t) −
X̌(s). Then

Cov(Ǎ(0, s�), Ǎ(0, s� + T ))

Var(Ǎ(0, s�))
= 1

2

(
1 +

(
1 + T

s�

)α

−
(

T

s�

)α)
;

√
Var(Ǎ(0, s� + T ))

Var(Ǎ(0, s�))
=

(
1 + T

s�

)α/2

.

Consequently, using the fact that the correlation coefficient is smaller than 1, we have

0 <
1

2

(
1 +

(
1 + T

s�

)α

−
(

T

s�

)α)/(
1 + T

s�

)α/2

= Cov(Ǎ(0, s�), Ǎ(0, s� + T ))
√

Var(Ǎ(0, s� + T ))Var(Ǎ(0, s�))

= Corr
(
Ǎ(0, s�), Ǎ(0, s� + T )

)
< 1.
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Hence the right-hand side of inequality (28) is smaller then the right-hand side of
inequality (27), and we indeed have that inequality (26) implies inequality (27).

Now it suffices to show that the functions

f (x) := (1 + x)α − xα and g(x) := 1 + 2

(
1 − α

2

)
q − p

p
+ αx

intersect in a unique point x� > 0. Indeed the function g(·) is increasing, and

g(0) = 1 + (2 − α)
q − p

p
< 1 = f (0).

Now notice that f (·) is increasing and concave, since f ′(x) = α((1 + x)α − 1 −
xα−1) > 0 and f ′′(x) = α(α − 1)((1 + x)α−2 − xα−2) < 0. Then the graphs of the
two functions must intersect in a unique point x� > 0. We have thus found that there
exists a unique T � ≥ 0 such that for all T ≤ T �, we have that inequality (24) is
satisfied.

Since the idea of the proof for the case q > p > 0 is analogous to the proof for the
case p > q > 0, we omit the details. �

In the next proposition we give a lower bound on T � and T�.

Proposition 5.5 (i) If p > q > 0, then T � ≥ (p − q)/C. (ii) If q > p > 0, then T� ≥
(q − p)/C.

Proof Since the proofs of (i) and (ii) are analogous, we focus on the argument that
shows (i). We need to check whether T = (p − q)/C satisfies (24).

First notice that (under the notation used in the proof of Proposition 5.4)

g

(
p − q

Cs�

)
= 1 + 2

q − p

p + Cs�
+ α

p − q

Cs�
= 1,

and we have that f (x) and g(x) are increasing and f (0) = 1. Hence we have

f

(
p − q

Cs�

)
≥ f (0) = g

(
p − q

Cs�

)
.

This proves the claim in part (i). �

Remark 5.6 Conditions T < T � and T < T� have interesting interpretations. Con-
sider, for instance, T < T �. Elementary computations with the conditional distribu-
tion of Normal random variables yield that T < T � is equivalent to

E
(
A(0, T ) | A(−s�,0) = p + Cs�

) ≥ q − p + CT .

The interpretation is that, given the queue exceeds pB at 0, exceeding qB at time
T B is not a rare event anymore. A similar interpretation can be given to condition
T < T�.
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Proposition 5.4 says that, just as in the SRD case, if and only if T is smaller
than some threshold, the decay rate of the joint probability equals the decay rate of
P(Q > max{p,q}B), with Q denoting the steady-state workload. In other words:
T � (in case p > q) or T� (in case p < q) separates regime (A) from regime (B). In
the SRD case, we found a second threshold, separating regime (B) from regime (C):
below this threshold the buffer does not become empty (most likely) before time T B ,
and, above it, it does (for large values of T ). In the LRD case we believe that this
structure still applies, but we have been able to prove just a partial result, which is
stated in Proposition 5.8. It says that for T large enough, we are in regime (C).

Lemma 5.7

inf
s≥0

ξBα
(s, T + s) ≥ 1

2
C2T 2−α.

Proof Uniformly in s ≥ 0,

ξBα
(s, T + s) ≥ 1

2

(q + C(T + s))2

(T + s)α
≥ 1

2
C2T 2−α.

This proves the stated result. �

Due to Proposition 5.3, for α ∈ (1,2), we have

inf
s≥0

inf
t∈[0,T )∪{T +s} ξBα

(s, t) ≤ ξ� := R(p) + R(q).

Upon combining the above, we obtain the following result. On an intuitive level,
it says that for T larger than some explicitly given threshold, with overwhelming
probability, the most likely path is such that the busy period in which 0 is contained
does not coincide with the busy period in which T is contained.

Proposition 5.8 For

T > T � :=
(

2ξ�

C2

)1/(2−α)

,

we have that

lim
B→∞

v(B)

B2
logN(B) = inf

s≥0
inf

t∈[0,T )
ξBα

(s, t).

Remark 5.9 We finish this section with a few observations on the (practically less
relevant) case α ∈ (0,1) (i.e., the input stream has negative correlation).

• It is anticipated that for T small, still the most demanding event will deter-
mine the asymptotics. In other words: up to some threshold, the decay rate will
be −max{R(p),R(q)}; the value of this threshold can be determined as in Re-
mark 5.6.
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• Now consider large T . Then time epochs 0 and T B will be in different busy peri-
ods. For the s, t of interest, we have r ≡ r(s, t) < 0, which implies

(γ (s, t) − r(s, t))2

1 − r2(s, t)
> γ 2(s, t)

(to see this, realize that γ ≡ γ (s, t) ∈ [0,1] and verify that the above relation re-
duces to (γ 2 +1)r < 2γ ; it is immediate that this holds for all r < 0 and γ ∈ [0,1]).
We therefore obtain

lim
B→∞

v(B)

B2
logN(B) < −(

R(p) + R(q)
);

in other words: in order to achieve a high buffer content at time T B , it is for large
T disadvantageous to have a large buffer content at time 0.

6 Discussion and concluding remarks

Exact asymptotics This paper analyzed the logarithmic asymptotics of P(Q0 >

pB,QT B > qB). We have identified the corresponding decay rate. An open issue
concerns the exact asymptotics, i.e., can we find an explicit function ϕ(·) such that

P(Q0 > pB,QT B > qB) · ϕ(B) → 1

as B → ∞? It is noted that for the single-dimensional case, this was already a highly
nontrivial task [11, 18, 20], and the answer involves the so-called Pickands constant.

Regimes Then we considered the decay rate of the probability of interest in more
detail and identified three regimes for T . The SRD case could be dealt with explicitly,
in that we presented closed-form expressions for the decay rate, as well as for the
critical values of T that separate regime (A) from regime (B), and regime (B) from
regime (C). In the LRD case we found an explicit expression for the decay rate in
regime (A), and we showed that the critical value of T , which we called T � for
p > q and T� for p < q , that separates regime (A) from regime (B) is the solution to
some algebraic equation. In addition we showed that for T larger than some explicitly
given number T �, we are in regime (C). This in principle still allows oscillations
between regimes (B) and (C) in the region between T � (T�, respectively) and T �. We
conjecture that such oscillations do not occur.

Scaling of time and space In our analysis we scaled space and time in the same
way, i.e., both the buffer level and the length of the time interval are multiples of B .
As is immediately visible from Remark 4.7, essentially due to the self-similarity, this
scaling leads for fBm to well-defined decay rates; in the non-fBm case some sort of
approximate self-similarity is enforced by imposing Assumption 2.1.
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In view of the results in [8], it is anticipated that if TB/B → 0 as B → ∞, then

lim
B→∞

v(B)

B2
log P(Q0 > pB,QTB

> qB)

= min

{
lim

B→∞
v(B)

B2
log P(Q0 > pB), lim

B→∞
v(B)

B2
log P(Q0 > qB)

}

= −max
{
R(p),R(q)

};
if TB/B → ∞ as B → ∞, then

lim
B→∞

v(B)

B2
log P(Q0 > pB,QTB

> qB)

= lim
B→∞

v(B)

B2
log P(Q0 > pB) + lim

B→∞
v(B)

B2
log P(Q0 > qB)

= −(
R(p) + R(q)

)
,

using the function R(·) introduced in Sect. 5.2.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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