Queueing Syst (2009) 61: 65-84
DOI 10.1007/s11134-008-9100-y

An infinite-server queue influenced
by a semi-Markovian environment

Brian H. Fralix - Ivo J.B.F. Adan

Received: 26 June 2008 / Revised: 13 November 2008 / Published online: 16 December 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract We consider an infinite-server queue, where the arrival and service rates are
both governed by a semi-Markov process that is independent of all other aspects of
the queue. In particular, we derive a system of equations that are satisfied by various
“parts” of the generating function of the steady-state queue-length, while assuming
that all arrivals bring an amount of work to the system that is either Erlang or hy-
perexponentially distributed. These equations are then used to show how to derive all
moments of the steady-state queue-length. We then conclude by showing how these
results can be slightly extended, and used, along with a transient version of Little’s
law, to generate rigorous approximations of the steady-state queue-length in the case
that the amount of work brought by a given arrival is of an arbitrary distribution.

Keywords Infinite-server queues - Semi-Markov process - Random environment

Mathematics Subject Classification (2000) 60K25 - 60K37

1 Introduction

Queues with a randomly-varying arrival and service rate have recently received quite
a bit of attention in the queueing literature. The typical setting is as follows: there is
an external stochastic process, known as the environment, that takes values in some
state space [, and these values tend to control various aspects of the queueing system,
such as the arrival rate of customers, and the speed at which their work is processed.

Examples of such models in the single-server setting include the recent work of
Nain and Nunez-Queija [12], along with the work of Takine [16]. In [12], the au-
thors consider an M /M /1 queue that is influenced by a semi-Markovian environment

B.H. Fralix (<) - .J.B.F. Adan

EURANDOM and Department of Mathematics and Computer Science, Eindhoven University of
Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

e-mail: fralix @eurandom.tue.nl

@ Springer

mailto:fralix@eurandom.tue.nl

66 Queueing Syst (2009) 61: 65-84

which takes values in the state space {0, 1}. The amount of time spent in state O has
a distribution that possesses a rational Laplace—Stieltjes transform (LST), while the
amount of time spent in state 1 is generally distributed, or in particular heavy-tailed,
in the sense that it has an infinite moment-generating function. There, the main goal
is to compute the z-transform of the steady-state queue-length distribution, by using
techniques from complex analysis. However, things are looked at from a different per-
spective in the work of [16]: in this case the environment process is a continuous-time
Markov chain, but multiple customer classes are considered, and both the arrival and
service rates change according to the environment. Furthermore, in this model each
customer brings an amount of work to the system that is generally distributed, with
the distribution depending on the class of the customer. This paper focuses more on
properties of the busy period, and the waiting time distribution of a customer that
arrives to the system during steady state.

Work has been very recently published in the infinite-server setting as well. In [3],
the authors consider an M /M /oo queue, where only the service rates are governed
by an external environment process, which in this case is a continuous-time Markov
chain (CTMC) that again takes values in two states. Their main results include show-
ing that the steady-state queue-length can be written as the sum of two independent
random variables, where one of these variables is Poisson, and it can also be in-
terpreted as the number of customers present in a standard M /M /oo queue. In the
infinite-server setting, we interpret the term “queue-length” as the number of cus-
tomers presently in the system. Later, D’ Auria wrote a series of papers [4—6] on this
topic as well. The main point of [5] is to show that by using basic properties of Pois-
son processes on R2, similar stochastic decomposition results can be obtained for the
steady-state queue-length, without necessarily assuming that the environment process
is a CTMC. In particular, his result allows for virtually any asymptotically station-
ary environment process, so long as that in steady state the environment process is
ergodic. He then obtains the results of [3] by performing a scheme that involves look-
ing at areas of random sets, where these sets are constructed based on the behavior of
the environment process. He then uses this same type of technique in the very recent
paper [6] to analyze an M /M /oo queue with a semi-Markovian environment.

Very recently, Falin [7] has also shown that for an M /M /oo queue, where both
the arrival rates and the service rates are influenced by a semi-Markovian environ-
ment, it is possible to apply what is known as a supplementary variable technique
to compute the mean steady-state queue-length. This technique involves looking at a
process that consists of three states: the number of customers in the system, the state
of the environment, and the time until the next environment transition (this last state
descriptor makes the process Markovian). This allows him to get an expression for
the generating function of the number of customers present in the system, and this
can be used to compute the steady-state mean queue-length. Older references focus-
ing on the infinite-server case include O’Cinneide and Purdue [13], and Keilson and
Servi [11].

The goal of this paper is to show how these results can be extended to the case
when all arrivals bring Erlang, or hyperexponential amounts of work to the system.
Once these results are established, it is easy to see that the same technique can be
used for the case when arrivals bring to the system an amount of work that consists

@ Springer

Queueing Syst (2009) 61: 65-84 67

of a mixture of Erlang distributions. However, it is well known (see, for instance,
Asmussen [1]) that these random variables are dense in the space of nonnegative
random variables under the Prohorov metric (a weak convergence metric), so we
conclude by using this fact, along with a transient version of Little’s law, to show
that some type of analysis is still possible when the service times have a general
distribution.

The main technique we will use in this paper involves looking at the queue-length
process at the transition epochs of the environment process. Once we obtain the
steady-state behavior of the process at these epochs, we will use the inversion for-
mula (see [2]) to relate this to the steady-state behavior of the process at an arbitrary
time. It would also be possible to apply a semi-regenerative argument (see, for exam-
ple Chap. 7, Sect. 5 of [1]) but in this case we would also have to assume the presence
of some sort of non-lattice condition, because these arguments lead to a limiting re-
sult. The reader should keep in mind that the Palm approach only says something
about the stationary process: however, if the process has a limiting distribution, it
will coincide with the marginal distribution of our stationary process.

2 Model description

Our paper will focus on an infinite-server queueing system, where the arrivals and
service rates are governed by a stationary semi-Markov process C :={C(t); t € R},
on a finite state space [E: here R is used to denote the set of all real numbers. The
transition times of C will be denoted by {7, },,c =z, where Z represents the set of all
integers. It shall be assumed that these random variables, along with all other random
elements found in this paper, exist on a probability space (£2, F, P), where §2 is an
arbitrary space, J is an appropriate o -field of subsets of £2, and P is a probability
measure that is defined on F.

To completely describe how C evolves through time, it will suffice to give a path-
wise description of both how long it spends in each state, and how it makes transi-
tions from one state to the next. Hence, let A; j(x) = P(T41 — T, < x, C(Tp41) =
J1C(T,) =i). This represents the probability that, given at time 7, the process C has
just made a transition to state i, it will make another transition before time 7, + x,
and that transition will consist of a jump from state i to state j. Moreover, clearly
ri,j := A, j(00) represents the probability that the environment jumps directly to state
Jj from state i. We will let o; j(s) = fooo e**dA; j(x) denote the LST of A; ;, and
ai(s) = Zj <k %, j(s). Finally, let {7;};cg denote the stationary distribution of C at
its transition times, and let v; = E[T,,+1 — T,|C(T,) =i], and v = Zie]E v; ;. Our
assumption of a finite [E ensures that the process C is regular, in that the expected
number of its transitions in any compact set is finite. Such conditions will not explic-
itly be needed throughout our analysis, but they are needed in order to ensure that
our semi-Markov process does not actually terminate at some point. With that being
said, it should be emphasized that a finite state space is not a necessary condition for
regularity: indeed, the reason we need the state space of the environment to be finite
is because we will eventually be interested in solving a system of equations, where
the number of equations and unknowns will equal the number of states.

@ Springer

68 Queueing Syst (2009) 61: 65-84

We also consider an infinite-server queueing system, which is influenced by the
environment in the following way: while the environment is in state i, the system
serves the remaining amount of work that is possessed by each customer currently
in the system at a rate u;, and new arrivals show up in accordance with a Poisson
process with rate A;, where the nth arrival to the system brings a random amount of
work B,,, with distribution function B(t). Here we follow the convention that, if { X, }
denotes the arrival times of customers to the system, then Xy <0 < X;. Throughout
the paper, we will assume that ; > O for all i € E, but this assumption is not essential
for the analysis found within the next three sections; it is only used to make the paper
slightly more readable. Finally, we also assume that the service requirements of all
customers are independent of one another.

Thus, one could think of the arrival process in this case as being a “semi-Markov-
modulated Poisson process,” but of course this arrival process is not independent of
how the customers are served in the system. To specify exactly what sort of depen-
dence structure is being assumed here among all of the stochastic elements present in
this model, it suffices to say that conditional on a given sample-path of the environ-
ment process, the customers arrive according to a non-homogeneous Poisson process,
and if someone arrives at time ¢ and brings an amount of work W, it will be in the
system for an amount of time 7 (¢), where

t+T(t)
W= / MC(s) ds.
t

In both [5] and [6], heavy use is made of the following fact from point process
theory.

Theorem 2.1 Suppose N is a non-homogeneous Poisson process on R with points
{Xn}nez, where for each Borel set A,

N(A) =) 8x,(A),

nez

where §x(A) =1 ifx € A, and §,(A) = 0 otherwise. If we associate to each point X,,
a random variable Yy, that is independent of all other locations of N and their marks,
then the new point process M with points in R* that satisfies, for any Borel sets A, B,

M(A x B) = ZS(Xn’Yn)(A x B)
nez

is a non-homogeneous Poisson process in R?.

When we say that M is a non-homogeneous Poisson process in R?, we mean
that the number of points in any Borel set A € R? is Poisson-distributed, and
for any disjoint collection of Borel sets Aq,..., A, C R2, the random variables
M(Ay), ..., M(A,) are independent.

Keeping our model in mind, we see that if we associate with each customer arrival
time X, its service requirement B,, and we condition on the sample-path of the

@ Springer

Queueing Syst (2009) 61: 65-84 69

environment, the resulting point process on R? is Poisson. This implies that while
conditioning on the environment, the number of customers in the system at time zero
is Poisson as well. Proofs of these well-known facts can be found, for instance, in
Serfozo [15].

This interesting property of Poisson processes was used in [5] to obtain a stochas-
tic decomposition of the queue-length into two independent quantities, where one of
those quantities represents the stationary distribution of a standard M /G /oo queue.
Indeed, a stochastic decomposition that is similar in type to that discussed in [5] can
also be easily generalized to our setting.

Theorem 2.2 Consider an M /G /oo system with a semi-Markov-modulated arrival
and service rate, where) :=inf;cg A; > 0, and (= sup; g ;i > 0. Then the steady-
state number of customers in the system can be decomposed into the sum of two
independent random variables:

M/G/oo
Q = Q)HM + QCa
where Q%{LG/ represents the steady-state number of customers in the system in a

standard M | G /oo queue that processes work at a rate u that is brought by customers
arriving in a Poisson manner at rate A, and Q¢ is a randomized Poisson random
variable, with a parameter that depends on the environment process C.

The proof of this result is essentially the same as the proof of the decomposi-
tion result found in [5], with only a slight modification: a semi-Markov-modulated
Poisson process can be represented as an independent sum of a homogeneous Pois-
son process with rate A, along with another semi-Markov-modulated Poisson process
that at times has a rate of zero. Furthermore, as is done in [5], we will follow with a
practical description of the result, by saying that the steady-state population can be
decomposed into two classes: those that would have still been in the system, regard-
less of the increase of arrivals or the decrease in service speed, and the rest.

This result could very well be useful towards determining various properties of
the steady-state queue-length distribution, but our approach will not involve its use.
Rather, we will first derive a system of equations containing functions that can be
interpreted as “parts” of the generating function of the steady-state queue-length,
while further assuming that all customers bring an amount of work that is either
Erlang or hyperexponentially distributed. These results are then used to show how one
can generate a system of equations that consist of unknowns, which once solved for
can be used to compute the mean queue-length in steady state. We will then conclude
by providing a rigorous approximation of the moments of the queue-length in steady
state for the case when the services are allowed to have any type of distribution, by
using Little’s law, along with the fact that mixtures of Erlang distributions can be
used to approximate any type of distribution with nonnegative support, with respect
to the weak convergence metric.

Throughout the paper, we will use results from stationary point process theory to
relate the stationary distribution of our process at the transition epochs of the envi-
ronment to the stationary distribution of the process at an arbitrary time. In particular,

@ Springer

70 Queueing Syst (2009) 61: 65-84

this will involve the use of the Palm measure P that is induced by the point process
consisting of the transition times of the environment. We will not go into great math-
ematical details to precisely describe how Py is defined: indeed, the interested reader
has many references to choose from regarding this topic, with recent ones including
[2], Chap. 7, Sect. 6 of [1], and Chap. 6 of [14]. The reader merely needs to be aware
of the following facts: (i) for an event A, Py(A) can be interpreted as the probability
of A, given that the environment process changes state at time zero, and (ii) under the
measure Py, the joint distribution of (Q(7},), C(T,)) is the same for all n € Z.

3 Exponential services

We will first consider the case when each customer brings an amount of service that
is exponentially distributed with rate v, i.e., for each t > 0,

B(H)y=1—e"".

The approach we will use to compute all of the factorial moments of the queue-length
will basically involve coming up with a system of equations that the functions m;(z)
satisfy, where m ;(z) = Eo[z2O1(C(0) =).

Our first result provides an expression for the generating function of the steady-
state queue-length. This will be used to compute the factorial moments E[(Q(0)),]
forn>1,whereforx e R, (x), =x(x—1)---(x —n+1).

Theorem 3.1 The functions mj, j € E, satisfy the following system of equations: for
each j € E,

I N AL L) _
mj(z)ZZ/O e m(l—e M1 — 7)) dA; (). (1)

ieE

Proof It was mentioned in the previous section that m;(z) is equal to
Eo[z2T1(C(T)) = i)], so to compute this we will first condition on Q(0) and
C(0).

Suppose Q(0) =m and C(0) =i, where m > 0 and i € E. After conditioning on
the event that 77 = ¢, we see that each of these m customers will be in the system at
time 7 with probability e~#i"’. Furthermore, there could also be customers present in
the system at time ¢ that originally were not there at time zero. For a given customer
that arrives to the system after time O but before time 7, we see that the probability he
or she is still in the system at time ¢ is given by

t _ MVt
/ e—MiV(l—S)ldS:le—_
0 t Hivt

Since the number of customers that arrive in (0, 7] is Poisson with rate A;f, we see
that

@ Springer

Queueing Syst (2009) 61: 65-84 71

Eo[z21(C(Ty) = /)1 Q(0) = m, C(0) =]
0o A\ ,— At
RS o (-
0 I n.

00 x—e M-z m
=/ e ;v (1 _ e_“iUt(l - Z)) dAi’j(l‘).
0

1 — e MVt "

1

After unconditioning, we conclude that

00 nU=e Mi’Ha-z
mj(Z)ZZ/ e Iz mi(l_e_ﬂ"w(l—z))dAi,j(t)
: 0
ick
which completes the proof. g

The following corollary then immediately follows from this result.

Corollary 3.1 The moments z, j = Eo[(Q(0)),1(C(0) = j)] satisfy the following
system of equations: forn > 1 and j € E,

"o\ r " nk n—k
zn,j=ZZ<k)(m> [gw(l)ai,j(<k+l>u,~v)}z;<,i.)

ieE k=0

Remark Notice that (2) can be used to compute all embedded factorial moments, in a
recursive fashion: indeed, notice that the first factorial moments can be computed by
solving a system of linear equations, where the number of equations and unknowns is
equal to the cardinality of [E. Furthermore, once these are known, they can be plugged
into a second system, and we end up with another system that is of the same size as
the previous one. This procedure can clearly be repeated to produce higher moments
as well.

The reader should also notice that this system of equations will always have a
solution, namely the moments z,, ;. Proving that such a system has a unique solution,
however, is an issue. In the special case |[E| = 2, this appears to be simple (the solution
is explicitly given in [7]).

Proof The proof of this result merely involves differentiating (1). From Leibniz rule,
we see that foreachn > 1,

(n) 0 _nl=e M) E fn kot [M t " (k)
- ;v —K[iV —HiV
" (Z)ZZ/O © 7 Z<k>e ' ((1=)> i

ieE k=0 Hiv
x (1= e Y (1= 2)) dA; ; (1). 3)

By letting z = 1 in (3), we observe that

. oo A A n—k
Eo[(Q)s1(C =)] ZZ/O g@e " <_)

iV
i€k Hi

@ Springer

72 Queueing Syst (2009) 61: 65-84

—k
Z ()WIWEO[(in(C—w]dAz/<f>

SO B et

Eo[(Q)x1(C =1)]. O

The following formula can be used to relate the moments at a transition epoch to
the moments at an arbitrary epoch.

Theorem 3.2 For each j € E,

| poo kU=
E[ZQ(O)I(C(0)=1)]=_f e Y omj
v Jo
x (1 =MV (1—2))Aj(t)m;dt,)
where Aj(t) = P(Tyq1 — Ty > t|C(T,) = j).

Proof From the inversion formula (see [2]), we also find that

T
E[z201(c(0) = j)] = %EO[/ 2201 = f)d’]
0

1 [_
:;/ Eo[z80 Ty > 1, C(t) = j]A;(t)7; dt.
0

However, under the measure Py, Tp = 0 almost surely, and furthermore,

——1 A Te
Eo[z00 Ty > 1,C(t) = jlmj =mje 19 (me 7 Z)mj(l_e*“jw(l_z))_

Therefore,

P e T

E[ZQ(O)I(C(O) — j)] — é /Ooo e’*mj
x (1—=e""(1—2))A;(t)m;dt.
This proves the claim. g
Corollary 3.2 The nth factorial moment of the steady-state queue-length distribution

[(e@),]= X% Z()(&)n_kg(—l)’<”;k)

v
ieE =0 i

@ Springer

Queueing Syst (2009) 61: 65-84 73

x [m(l — i ((k+Dpiv))1k +1 > 0)

+uvlk+1= 0)i|Z]<J.

Proof After applying Leibniz rule to (4), we also see that
E[(),z297"1(C0) = j)]

vt
oo rjl=Mi"a-n n ‘ n—k
— l ei wjv E n e—kajvt)\'] (1 _ e—u/‘l)[)
v Jo k Mnjv

k=0
x m§k>(1 — e MV (1 = 2))Aj (1) dt
and so, putting z = 1, gives

E[(2©),1(C©) = j)]

n
— l /OO Z <n>e—kﬂj‘” (A_f> Z(_l)l <n - k>e—lujvt
vio o \k Kjv 1=0 !

x Eo[(Q)1(C = j)]Aj(t)m; dt

_7T_j n n)\‘_J nfkn—k_ , n—k
2206 2 ()
k=0 =0
o [(1 —o;((k+Dwp;v))
(k+Dpjv

x Eo[(Q)1(C =))].

1(k+l>0)+uj1(k+l=0)]

This concludes the proof. O

4 Hyperexponential services

We continue by considering the case where the amount of service each customer
brings to the system is hyperexponentially distributed, i.e., for each t > 0,

no
B(t)y=>) pi(l—e""),

k=1

where ng is a positive integer, p;, 1 <i < ng are probabilities summing to 1 and
v; > 0, for 1 <i <ngp. In our model, we can say that a given customer that arrives
to the system is a type-i customer with probability p;, and type-i customers bring
an exponentially distributed (with rate v;) amount of work to the system. For ease of
exposition, we will focus on the case when ng = 2, but it will become clear that the

@ Springer

74 Queueing Syst (2009) 61: 65-84

same type of reasoning can be used for arbitrary ng. The reader will lately see that the
key to calculating all of the moments of the queue-length will depend on solving a
system of linear equations, and so in order to gain his confidence in our statement we
will provide, in the form of a remark, the linear systems required for an arbitrary ng.

We will track the customers present in the system by using the processes
{Qi(t);t e R}, for 1 <i < ng, where Q;(¢) represents the number of customers
present in the system at time ¢ that are of type i.

Again, our first step will involve deriving a system of equations, which are satisfied
by the functions m (z, z2) = Eo[zlgl(o)zzQz(o)l(C(O) =l

Theorem 4.1 The functions m;, j € K, satisfy the following system of equations: for
each j € E,

1—e HiV1l)(1— _ l—e—Hiv2ty(]—
m](ZlaZZ) Z/ pl“”l< e)(Zl) PZM v2(e)(12)
icE

X m,-(l — e V(L —z9), 1 — e V2 (1 — Zz)) dA; (). (5)

Proof We recall that (Q1(0), Q2(0), C(0)) 4 (Q1 (1), Q2(Ty), C(T1)), so to com-
pute each m; it will again be helpful to condition on Q1(0), Q2(0), and C(0). Once
we have conditioned on these variables, it will be useful to also condition on the num-
ber of new arrivals in the interval (0, 71], which we also condition on by assuming
that it is of length ¢. Therefore, assuming C(0) = i, there are four different popula-
tions to consider: (1) type-1 customers currently in the system at 0, that leave before
time 77 with probability 1 — n;, (2) type-2 customers currently in the system at 0,
that leave before 7 with probability 1 — §;, (3) new type-1 customers that arrive in
(0, T1], which leave before 77 with probability 1 — §;, and finally (4) new type-2

customers that arrive in (0, 77], which leave before T1 with probability 1 — y;. Thus,
ni = e Hivit 8; = e Hivat,

t _ MVt
0 t Hivi
and
t _ ,—Mivat
0 t Hiv2

Now we are ready to begin our computations. Here
Eo[z" ™ 222TV1(C(T1) = j)101(0) = i1, 02(0) = i2, C(0) =]
(P1Ai t)”‘e N
3> (A= + iz
ny.
n1=0n=0

x (1= 8 +8z2)"(1 — Bi + Biz)' (1 — yi + viz2)2 d A j (1)

)
=/ 6—171)Litm(1—Z|)e—172)»115[(1—z2)(1 — B+ Bz (1 —y +yz2)?2 dA; (1)
0

@ Springer

Queueing Syst (2009) 61: 65-84 75

o0
[T
0

x (1 _ e—MiVZI(l — Zz))iz dA,"j(l).

(1—e—uiu11)(1—z1)e—pz ﬂ?{,z(l—e_ﬂi”ﬂ)(l_zﬁ(l . eiﬂiv”(l . Zl))il

A
iVl

After unconditioning, we then see that

o A —Riv! Ai — ;i vt
E - l—emHi"1)(1=z1) — i (]—e=Hiv2l)(1—
mj(z1,22) = / e pl“i"l(¢ X Zl)e P2y, (L—e)(1—22)
icE 0

xmi(1—e MM (1 —z1), 1 —e M (1 = 23)) dA;, (1)

and so (5) holds. O
This immediately gives the following corollary.

Corollary 4.1 The first moments z; j = Eo[Q; (0)1(C(0) = j)] satisfy the following
system of equations: for each j € E,

)\‘.
2, = Z[mpl,ui—;l(ri’j —ajj(uivy) +11,iai,j(uivl)]

icE

and

A‘4
2, = Z[ﬂipz Mi:)Z (rij — o j(miv2)) + 22,0 j (i V2)i|~
iekE

Proof After taking partial derivatives in (5) and setting (z1, z2) = (1, 1), we end up
with the following system of equations:

A
Eo[Q1(01(C(0)=j)] = Z[ﬂiplﬁ(ri,j — o j(1ivy))

ieE L
+ Eo[01(0)1(C(0) = i)]ai,j(,U«iVl):|
and

A
Eo[02(001(C(0) = j)] = Z[mmm(n, j =i j(1iva))

icE !
+ Eo[02(0)1(C(0) = i)]ai,j(uivz)],

which is the same as the equations given in the second part of the corollary. Notice
that these equations are no more difficult to solve than the ones found in [7], which
are the same as system (2); as a matter of fact, they can be split into two sets, with
each set being of the same form as the system of equations in [7]. O

@ Springer

76 Queueing Syst (2009) 61: 65-84

Remark From this argument, it is easy to see what the system of equations will look
like if we consider an arbitrary number nq of types of customers. In particular, for
each customer type-m, 1 <m < ng, we have the corresponding system of equations
and unknowns:

A
Im,j = Z|:7Ti pm——(ri.j — ai j(mivm)) + Zm,iai,j(uivm)]-
; HiVm

ick
Again, we can relate these moments to the moments at an arbitrary time.

Theorem 4.2 For each j € E,

B0 000100 =)]

A

A —u i —u
1 '/-Ooe—plﬂj—-’”(l—e u/ulr)(l—m)e—pzu/uz(l—g 1721 (1-22)

=5,
xmj(l—e MM (1 —z1),1—e M (1 —22))A;j(r)dt.

Proof To compute the LST of the steady-state queue-length at an arbitrary instant,
we can again use the inversion formula to conclude that

E[PV21(c =)]

1 o0
= —Eo[/ 210 201(cy = j)ur > t)dt]
0

v

1 o0 —
- ;/ Eo[z2'":2 0|1y > 1.C(1) = j]Aj ()7 dt.
0

But 7o = 0 almost surely under Py, and furthermore,

Eo[z210:220\1 > 1, Ct) =],

s Aj v
_ g (e Az = py e (1=e T2 (1-22)
=Tje e

% mj(l _ e—uivlt(l —z),1— e—MiVZl(l _ Zz))-
Therefore,

B0 01(C0) =)

A

Y
_1 o P
v Jo

xmj(l—e MM (1 —z1),1—e M (1 —22))A;(r)dt. O

i

s (1= 1 (1-29)
J

(1—e M"Y (1=z1) —p>
e

We can then get an expression for any moment we would like of the queue-length
at an arbitrary time, by taking the appropriate derivatives.

@ Springer

Queueing Syst (2009) 61: 65-84 77

Corollary 4.2 The mean steady-state queue-length is given by

E[Q0)] = Z l[nj Ajpi v + [21,,/ _Ajip Uj] 1 —Olj(ﬂjl)]):|

e Hjvi mjvi Hjvi

LiAjp2 Aipy 1 —aj(ujv)
+Z;[n,~f uj+[zZ,,-— L=y, LI (6)

eE Hjv2 njva wjva

Proof After taking derivatives, we see that

jVv1

1 Aj
E[Qi(01(CO) = j)] = E[nj MJT v + [EO[Q1<0>1(C(0> =]

Ajp1 } 1_aj(MjV1):|
vj

Hjvi Hjvi
and
) 1 Ajp2 .
E[Q2(01(C(0) = j)] = —|7; vj + | Eo[@2(001(C(0) = j)]
v Mjv2
Ajp2]l_aj(HjVZ):|
— Uj .
wjva Wjva
These expressions can then be used to derive (6). O

Remark As was mentioned in the proof, higher moments of the queue-length can
also be computed as well, by taking as many derivatives as needed. For instance, the
system of equations that can be used to compute E[Q1(0) Q2(0)] is as follows:

Eo[Q1(0)02(0)1(C(0) = j)]

P1Ai p2 A
= Z == oy (rj — (i) — i (i) + i (i (01 +12))
i V1 M V2 M

P2 A

2 v—za(ai, iwivy) — ai i (i (v +12))) Eo[01(0)1(C(0) =)]

Ai .
+ %}; %E(ai‘j(ﬂi v2) — o j (i (v1 +12))) Eo[Q2(0)1(C(0) =1i)]

+) ai (i (vi 4 v2)) Eo[1(0) 02(0)1(C(0) =i)].

i€k

@ Springer

78 Queueing Syst (2009) 61: 65-84

5 Erlang services

We now consider the case where the services are Erlang-distributed, with ng > 1
phases. In this case,

no—1 k,—vt
(vt)*e
B(t)=1- kzo—k’ :

Again, we will assume that ng = 2, but it will be clear as to how to proceed for
large no.

Let Q;(¢) denote the number of queueing customers present in the system that are
in phase 7, for i = 1, 2. Here a phase refers to a characteristic of the customer’s ser-
vice. In particular, each customer’s service amount is Erlang-distributed, and this can
be broken up into two exponential random variables. A given customer is said to be in
phase 1 during the times when the server is processing work from this first exponen-
tial amount, and he or she is in phase 2 during the processing of the second amount.
Throughout the rest of the paper, customers that are in phase i will be referred to as
type-i customers.

Again, we can derive the same type of equations for the functions m ;(z1,z2) =

Eolz2' 022 O1(c(0) =).

Theorem 5.1 The functions m; satisfy the following system of equations: for each

jeE,
o0
mj(z1,22) = Z/ e—)»ﬂm,l(l—Zl)e—)wlm.z(l—Zz)mi
ieE 0
X (1= Bij1— Bia+ Birz1 + Bizza, 1 — Vi + vipz2) dAi j (1),
1 —1 ; l‘k — vt i tnfl —pjvt
where i = Aol — YpZg W), By = WIS and yi, =
(,LLl'Ul)n_Ze_V'i”[
(n—2)!

Proof Clearly, we see that
Eo[z2' 222 T01(C(1) = /)101(0) = i1, 02(0) =2, C(0) =]

=/0 Eo[z2'72229101(0) = i1, 02(0) = in, C(0) =i, C(t) = j]dA; ;1)

=/0 Y E[210:229101(0) = i1, 02(0) =2, C(0) =i, C(1) = j.,
n=0

()\'.t)”e—)\i(t)
Ny, (0,1] = n]’n— dA; (1),

where N, ; represents a homogeneous Poisson process with rate A ;.

@ Springer

Queueing Syst (2009) 61: 65-84 79

At this point we have to consider three different types of populations: type-1 cus-
tomers that were present in the system at time 0, type-2 customers present at 0, and
new arrivals in (0, ¢]. If, at the time of a transition the environment is in state i, each
type-1 customer will, at time 7, either be a type-1 customer, a type-2 customer, or it
will leave the system, with probabilities §; 1, Bi 2, and 1 — B; 1 — B; 2, respectively.
A type-2 customer will stay as a type-2 with probability y; >, and a new arrival will
be type-1, type-2, or will leave with probabilities 1; 1, 1;.2, or 1 — n;,1 — n;.2, respec-
tively. The behavior of each customer is independent of all other customers present
in the system, and because of this we are able to just use multinomial transforms to
compute the above expression. Therefore,

Eo[z2""V222701(C (1) = j)101(0) = i1, 02(0) = iz, C(0) = i]
oo n,—At
(Ai)te™
=/ Z ZTU =it — Wiz +Mi121 + ni2z2)"
0 n=0 :
x (1= Bi1—Bia+ Biazi + Biaza)"
x (1 — iz +vipz2)2dA; j (1)
o0
N / e Mt at=2 (=2 (1 — g; | — B 5 + Bi 121 + Bi222)"
0
x (1 =iz +vipz2)2dA; ;).

Again, after unconditioning we find that

mj(z1,22) = Z/ =itni 1 (1=z1) p=Aitni2(1-22)

iekE
xmi(1 = Bi1 — Biz2+ Bi1z1 + Binza, 1 — vip + vinz2) dA; ().

All we need to do now is compute the n’s, 8’s and y’s. When computing each
ni.n, we can apply the Campbell-Mecke formula (see [2]) to quickly deduce that, for
each n,

t
1
77i,n=/0 P(NMiU(I—S)zn—l)?ds

1

[i (M,vt)"e “]

k=0

= vt

Here N, is used to represent a homogeneous Poisson process with rate x, for all
x > 0. Furthermore,

(MIVt)n 16 Wivt

ﬂi,nzP(u.,v(t)—n_]) n—1)!

@ Springer

80 Queueing Syst (2009) 61: 65-84

and
(uivt)" et
Vimn =P (Nyp(®)=n—2) = T2l
This concludes the proof. O

Corollary 5.1 The first moments z; j = E[Q;(0)1(C(0) = j)] can be found by solv-
ing the following systems of equations: for j € E,

)\"

2,j = Z[”i—l (ri.j — i j(1iv)) +05i,j(MiV)Zl,ii|

; MV
ickE

and

)\'.
22,j = Z[ﬂiﬁlv(i’i,]‘ — 0 j(iv) + pivey ;(14iv))
ick

— Wi Va;,j(ltiv)m,i +o (/MV)Zz,i]

Proof After taking derivatives, setting z = 1 and plugging-in the correct expressions
for n,, Bn and y;,, we conclude that

Eo[Q1(0)1(C(0) = j)] = Z[niﬂ—f])(ri,,» — i j(1iv))

icE !
+ 0, (i) Eo[Q1 (0)1(C(0) = ,-)]}

and

Eo[Q2001(C(0) = j)] = Zl:ﬂiu—'lv(ri,j — o j(1iv) + piver ;(wiv))

ick !
- pival) Eo[01 01(0) =1)]|

+) e j(iv) Eo[020)1(C(0) =i)].
icE O

Remark 1f there are an arbitrary number of phases ng, it is not difficult to see that for
each/, j, where | </ <npand j €E,

— k
ik L (ke (uiv)
)= 2 | rij '

ier VM _Z k!

k=0

/ I—m ,,(I—m)
(=piv) "o (iv)
+Zzzm,i (4 —m)!

ieE m=1

@ Springer

Queueing Syst (2009) 61: 65-84 81

The moments at an arbitrary time can also be computed through the use of exactly
the same methods as were used before.

Theorem 5.2 For each j € E, we see that

o0
E[ZIQI(O)ZZQZ(O)I(C(O) —])] — l/ e*)»jlﬂj,l(1*21)6*)»]‘”7/',2(1*12)
v Jo

xmj(1—Bj1—Bj2+Bj121+Bj222, 1 —yj2
+yj222)A; (1) dt.

Proof In order to convert from the embedded steady-state distribution to the steady-
state distribution at an arbitrary time, we will again use the inversion formula:

E[' "2 01(c0 = j)]

1 oo
= —Eo[/ 21 0POUT > 000 = j)dt}
0

v

1 o
_ _/ o (1=20) y=hjin 2 (1-22)
0

v

x Eo((1=Bj1—Bj2+Bj1z1+ Bjnz2)2'©
x (1= yj2+ 752222 01(C(0) = j))A; (1) dt
1

o0
:_/ e hitnja1(l=z1) ,=Ajinja(l=22)
v Jo

xm;(1—Bj1—Bj2+Bj1z1+Bj222, 1 —yj2+vj22)A;t)dt. O

Again, computing any steady-state moments of interest will involve plugging-in
the appropriate values for the 1; x, B« and y; probabilities, and then differentiat-
ing. Thus,

Corollary 5.2 The mean number of customers in the system during steady state is

just
E[0)] =) [E[Q1(01(C(0) = j)] + E[0201(C(0) = j)]].
jeE
where
E[0101(C(0) =)] = l[Aj;.rj [Uj 1 —Olj'(ﬂj\))il N 1 —aj.(ujv)m’j]
vl pjv wjv wjv
and

@ Springer

82 Queueing Syst (2009) 61: 65-84

E[02(0)1(C(0) = j)]
_ i[kjﬂj |:v- 3 1 —oj(u;v) B I —oj(u;v)
wiv [V [V

1 l—ai(uv) ,
(=)o

11—a;j(uiv
](M/)Z

v Mjv

+Ol}(MjV)H

v

2,j-

Proof After taking derivatives and letting z = 1, we get

1 |:)»j7'[j [U _ l—Olj(,U,jv)i|

E[Qi01(CO) = j)] =~ :

J

UL MV Mujv
1_ . .
L pro o (co) =j)]]
WV
and
E[02(001(C(0) = j)]
_ l[k./n./ |:Uj Cl=aj(uv) T —aj(u,v) +oz}(ujv):|:|
UV KV Mjv Mjv
+ 1[<M — o (u 'V)>E0[Q1(0)1(C(0) = j)]}
v Wjv N
11 —a;(u;
L) g on1(c0) =).
v M
This concludes the proof. g

6 General services

At this point it is also clear that expressions for the steady-state moments of the
queue-length can be computed in the case when B(¢) is a mixture of Erlang distrib-
utions, and from a result in Asmussen [1] we also know that these distributions are
dense in the space of distributions with nonnegative support. Our goal now is to prove
a continuity theorem, which will allow us to approximate all steady-state moments
of the queue-length by approximating arbitrary services with Erlang mixtures. In this
section it will be necessary to assume that u; > 0, for i € [E; we assumed it as well in
previous sections, but there the assumption was not strictly needed.

Theorem 6.1 Let {Q,,(t);t € R} denote a stationary version of the queue-length

process described above, where each customer brings an amount of work B', n € Z.
If, for each n, B)!' converges weakly to B, as m — 00, then for each integer k,

lim_ E[Qx (0] = E[QO)].

@ Springer

Queueing Syst (2009) 61: 65-84 83

Proof To prove this result, we will first show that, as m — oo, E[Q,,(0)|C] —
E[Q(0)|C], where C = {C(t);t € R} represents the entire path of our semi-
Markovian environment. Proving this will immediately imply that E[Q,, (O)k|C 11—
E[Q(0)%|C] for all k > 2 as well, since conditional on C, the random variables
0,,(0) and Q(0) are all Poisson-distributed (from Theorem 2.1), and the kth factor-
ial moment of a Poisson random variable is just the mean raised to the kth power.
Unfortunately, conditioning on the sample-path of C no longer allows us to use
any stationary properties of our system, so we will have to introduce a small amount
of notation. Let {W(s); s € R} denote a stochastic process, where W (s) denotes the
amount of work brought to the system by the last customer to arrive at or before
time 5. Then, from a transient version of Little’s law (see Fralix et al. [8]), we see that

0

0
E[Qm(O)|C]:/ Ps(Wm(s) >/ MC(x)dx)?»C(s)dS-

—0oQ
Here P : R x F — [0, 1] is the Palm probability kernel induced by the non-
homogeneous Poisson arrival process (keep in mind that we are still conditioning
on C). We will not go into great detail to explain how these probabilities are derived:
rather, we will simply state that for a given event A € F, Ps(A) can be interpreted
as the probability of A, given that there is an arrival at time s. Details behind the
construction of these measures can be found in, for instance, Chap. 10 of [9].

Clearly, for each s, Py (W, (s) > fso Ic(x) dx) represents the probability that the
person arriving at time s is still in the system at time zero. It is a simple exercise to
verify that the distribution of W (s) under P is indeed the distribution of an arbitrary
service time, so under Py, W, (s) = W(s) as m — 0o, where = is used to denote
weak convergence.

We will eventually want to apply the dominated convergence theorem, so with
this in mind we will let A* = sup, g A; and pu* = inf;eg w;. Thus, since Pg (W, (s) >
fso me) dx)ics) < Ps(Wi(s) > —p*s)A*, the dominated convergence theorem
allows us to conclude that the conditional first moments converge. To show that
the unconditional moments converge, notice that for each k, E[Q, (O)k |C] <
E[Opn, A*,M*(O)k], which represents the kth moment of an M /G /oo queue with ar-
rival rate A* and service speed *, that observes the same work sequence as the mth
queue. Furthermore, from a slight extension of the dominated convergence theorem
(see Theorem 1.21 of Kallenberg [10]), we can conclude that all moments converge
as well. O

7 Conclusions

We have shown that an embedded process approach can be used to both provide
yet another method of computing the moments and the generating function of the
steady-state queue-length of a semi-Markov-modulated M /M /oo queue. Moreover,
the approach can also be used when mixtures of Erlang services are considered, and
this immediately gives an approximation of all moments of the steady-state queue-
length in such a system that has generally distributed service times.

@ Springer

84

Queueing Syst (2009) 61: 65-84

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

14.
15.
16.

. Asmussen, S.: Applied Probability and Queues. Springer, New York (2003)
. Baccelli, F., Brémaud, P.: Elements of Queueing Theory: Palm—Martingale Calculus and Stochastic

Recurrences. Springer, New York (2003)

. Baykal-Gursoy, M., Xiao, W.: Stochastic decomposition in M /M /oo queues with Markov-modulated

service rates. Queueing Syst. 48, 75-88 (2004)

. D’Auria, B.: M/M /oo queues with on/off service speeds. Technical report, EURANDOM, Eind-

hoven, The Netherlands (2005)

. D’Auria, B.: Stochastic decomposition of the M /G /oo queue in a random environment. Oper. Res.

Lett. 35, 805-812 (2007)

. D’Auria, B.: M /M /oo queues in semi-Markovian random environment. Queueing Syst. 58, 221-237

(2008)

. Falin, G.: The M /M /oo queue in a random environment. Queueing Syst. 58, 65-76 (2008)
. Fralix, B.H., Riano, G., Serfozo, R.F.: Time-dependent Palm probabilities and queueing applications.

Technical report, EURANDOM, Eindhoven, The Netherlands (2007)

. Kallenberg, O.: Random Measures. Akademie-Verlag, Berlin (1983)
. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (2002)
. Keilson, J., Servi, L.D.: The matrix M /M /oo system: retrial models and Markov-modulated sources.

Adyv. Appl. Probab. 25, 453-471 (1993)

. Nain, P, Nunez-Queija, R.: An M/M/1 queue in a semi-Markovian environment. In: ACM Sigmetrics

2001/Performance 2001, Cambridge, MA, June 17-20, 2001

. O’Cinneide, C.A., Purdue, P.: The M /M /oo queue in a random environment. J. Appl. Probab. 23,

175-184 (1986)

Serfozo, R.F.: Introduction to Stochastic Networks. Springer, New York (1999)

Serfozo, R.F.: Basics of Applied Stochastic Processes (2008, in progress)

Takine, T.: Single-server queues with Markov-modulated arrivals and service speed. Queueing Syst.
49, 7-22 (2005)

@ Springer

	An infinite-server queue influenced by a semi-Markovian environment
	Abstract
	Introduction
	Model description
	Exponential services
	Hyperexponential services
	Erlang services
	General services
	Conclusions
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

