
Queueing Syst (2008) 60: 203–226
DOI 10.1007/s11134-008-9094-5

Asymptotic analysis of Lévy-driven tandem queues

Pascal Lieshout · Michel Mandjes

Received: 28 May 2008 / Revised: 29 September 2008 / Published online: 8 November 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract We analyze tail asymptotics of a two-node tandem queue with spectrally-
positive Lévy input. A first focus lies in the tail probabilities of the type
P(Q1 > αx,Q2 > (1 − α)x), for α ∈ (0,1) and x large, and Qi denoting the steady-
state workload in the ith queue. In case of light-tailed input, our analysis heavily uses
the joint Laplace transform of the stationary buffer contents of the first and second
queue; the logarithmic asymptotics can be expressed as the solution to a convex pro-
gramming problem. In case of heavy-tailed input we rely on sample-path methods to
derive the exact asymptotics. Then we specialize in the tail asymptotics of the down-
stream queue, again in case of both light-tailed and heavy-tailed Lévy inputs. It is
also indicated how the results can be extended to tandem queues with more than two
nodes.
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1 Introduction

Recently, substantial progress has been made in the analysis of Lévy-driven queue-
ing networks. For the important case of spectrally-positive Lévy input (that is, the
driving Lévy process does not have negative jumps), the joint Laplace transform of
the stationary buffer contents has been found for a broad class of network structures,
including tandem queues [18, 19, 29]. With the transforms being available, one may
attempt to use these in order to explicitly find the joint distribution of the station-
ary buffer contents. So far this turned out to be possible in just a few cases, see for
instance [4, 31] in the two-node tandem case.

To circumvent the problem of explicit inversion of the joint Laplace transform,
one may settle for finding the joint asymptotics of both queues, that is, characterize
for α ∈ (0,1) and x large

πα(x) := P
(
Q1 > αx,Q2 > (1 − α)x

)
,

where Qi denotes the steady-state workload in the ith queue of the two-node tandem.
In the one-dimensional setting, it is well understood how Laplace transforms reveal
the tail asymptotics of the underlying random variable (for instance by application
of Tauberian theorems), but considerably less attention has been paid to developing
such relations in a multivariate context. An inherent problem is that there are hardly
techniques available to derive the joint asymptotics πα(x) from the bivariate Laplace
transform E exp(−sQ1 − tQ2); more specifically, a significant difficulty at the tech-
nical level is that it is not clear how the Laplace transform of πα(x), i.e.,

∫ ∞

0
e−rxπα(x)dx,

can be found from E exp(−sQ1 − tQ2).

This paper is devoted to finding the joint asymptotics, as introduced above, for
two-node tandem networks with spectrally-positive Lévy input. A second goal of the
paper is to derive tail asymptotics of the downstream queue, thus complementing
earlier results [19]. In more detail, the contributions are the following.

• For the case of light-tailed Lévy input we derive the logarithmic asymptotics of
πα(x):

lim
x→∞

1

x
logπα(x).

The proof is along the following lines. Relying on the classical Chernoff bound, we
find an upper bound to this decay rate in the form of the solution of a convex pro-
gramming problem. Relying on sample-path large deviations for Lévy processes
[2], it is shown that this upper bound is actually tight. To this end, we construct a
trajectory whose rate function coincides with the solution of the above-mentioned
convex programming problem; as this trajectory is ‘feasible’ (in that it is such that
indeed queue 1 exceeds αx and queue 2 exceeds (1 − α)x), this yields the desired
result. The solution has three different shapes, as could be expected in view of e.g.
[14, 28]. Our results on the light-tailed case can be found in Sect. 3.1.
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• In the case of heavy-tailed Lévy input the above line of reasoning does not ap-
ply. The rare event is typically the result of just a single big jump, rather than a
sequence of somewhat unlikely outcomes. This idea leads to a procedure that pro-
vides us the exact asymptotics of πα(x) in the heavy-tailed case: in Sect. 3.2, a
function fα(x) is presented such that πα(x)/fα(x) → 1 as x → ∞, in the sequel
denoted by πα(x) ∼ fα(x). The proof consists of a lower bound that identifies a
most likely scenario, and an upper bound that shows that all other scenarios lead
to asymptotically negligible contributions; the line of reasoning resembles that of
earlier papers, e.g. [7, 44].

• In Sect. 4.1, exact tail asymptotics for the workload of the downstream queue are
given for the case of light-tailed Lévy input, generalizing earlier results in [19,
Sect. 4]. Interestingly, multiple regimes are identified: one in which the first queue
hardly affects the tail asymptotics of the downstream queue (corresponding to rel-
atively large values of the service rate of the first queue), and one in which the
first queue does play an explicit role in delaying and reshaping the traffic before
entering the second queue (corresponding to relatively small values of the service
rate of the first queue).

• Section 4.2 generalizes [19, Sect. 5] by presenting the exact tail asymptotics of the
downstream queue for heavy-tailed Lévy input by one single theorem that covers
both the compound Poisson case and the α-stable case. The analysis relies on the
application of Tauberian theorems.

• We finish the paper by indicating in Sect. 5 how our results generalize to a multi-
link setting. We also identify a number of directions for future research.

We finish this introduction by mentioning a number of relevant related results from
the literature, which perhaps started off with the pioneering work of Dobrushin and
Pecherskii, see e.g. [36]. In [40] the tail probabilities of the total network popula-
tion are studied for a series of M/M/1 queues; cf. also [27]. [26] considers a series
of queues with exponential service times, and uses sample-path large deviations to
characterize the queueing asymptotics. An early reference on the concept of effective
bandwidths, and particularly those of departure processes, is [15]; related results are
presented in [9, 10, 19]. Results for sojourn times in the heavy-tailed case are given in
[6], and see also [23] for recent results on a specific class of light-tailed distributions.

2 Model and preliminaries

In this paper we consider a two-node tandem queue, where the first (second) node
has constant service capacity c1 (c2). With A(·) = {A(t), t ∈ R} we associate the
input process of the tandem, which is assumed to be a Lévy process, that is, a process
with stationary independent increments. In case t ≥ 0, A(t) denotes the amount of
traffic entering the system in the interval (0, t], whereas for t < 0 we follow the
convention that −A(−t,0) corresponds to the traffic generated in (t,0]. Also, let
A(s, t) = A(t) − A(s) denote the amount of traffic generated in the interval (s, t].
In the remainder of this paper we focus on an important subclass of Lévy processes,
viz. spectrally positive Lévy processes, that is, Lévy processes which do not have
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negative jumps. This class covers Brownian motion and compound Poisson input as
important special cases.

Despite the fact that the input process is not necessarily increasing (for instance in
the case of Brownian input), we can define a workload process; for the first queue of
the tandem system the workload at time t is given through

Q1(t) = sup
0≤s≤t

(
A(s, t) − c1(t − s)

)
, t ≥ 0,

given that Q1(0) = 0. Bearing in mind that the total queue behaves as a single queue,
fed by A(·), and emptied at rate c2, we also have

Q1(t) + Q2(t) = sup
0≤s≤t

(
A(s, t) − c2(t − s)

)
, t ≥ 0,

assuming that Q1(0) = Q2(0) = 0. Then we can recover the workload at queue 2 by
subtracting Q1(t) from Q1(t) + Q2(t). With Q1 (Q2, respectively) we denote the
stationary version of Q1(t) (Q2(t)). Define μ := EA(1) > 0, and assume that both
service rates (i.e., c1 and c2) are larger than μ to ensure stability. Here we assume
that c1 > c2 to avoid the trivial situation that the second queue is always empty.

Spectrally-positive Lévy processes are uniquely given through their Laplace ex-
ponent κ(·):

Ee−sA(t) = etκ(s), s ≥ 0.

If κ(s) also exists for negative s, then the Lévy process could be called light-tailed,
as the tail of the distribution of A(1) decays exponentially or faster. If κ(s) is only
defined for non-negative s, then the process could be called heavy-tailed, as the tail of
the distribution of A(1) tends to decay more slowly than any exponential. Important
examples of spectrally-positive Lévy processes are the following. (1) Brownian mo-
tion with drift. We write A ∈ Bm(μ,σ 2) when κ(s) = −sμ + 1

2 s2σ 2. (2) Compound
Poisson. Jobs arrive according to a Poisson process of rate λ; the jobs B1,B2, . . . are
i.i.d. samples from a distribution with Laplace transform β(s) := Ee−sB . We write
A ∈ CP(λ,β(·)); it can be verified that κ(s) = −λ + λβ(s).

We now recapitulate a number of results on the (joint) distribution of Q1 and Q2.
The Laplace transform of Q1 dates back to, at least, Zolotarev [42]: with ϑ(s) :=
κ(s) + c1s, the so-called generalized Pollaczek–Khinchine formula states that, for
s ≥ 0,

Ee−sQ1 = ϑ ′(0)s

ϑ(s)
= (c1 − μ)s

ϑ(s)
;

this is a generalization of the classical result for compound Poisson inputs. This result
for a single queue has been extended more recently to the network setting [18, 29]; it
was found that for (s, t) ∈ R

2+,

Ee−sQ1−tQ2 = (c2 − μ)t

t − ϑ−1((c1 − c2)t)
× ϑ−1((c1 − c2)t) − s

(c1 − c2)t − ϑ(s)
. (1)
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By plugging in s = 0, one retrieves the Laplace transform of the downstream queue
Q2 [19]: for all t ≥ 0,

Ee−tQ2 = c2 − μ

c1 − c2

ϑ−1(t (c1 − c2))

t − ϑ−1(t (c1 − c2))
. (2)

3 Joint asymptotics

In this section we consider joint asymptotics, that is, for a given α ∈ (0,1),

πα(x) := P
(
Q1 > αx,Q2 > (1 − α)x

)
,

for x large. Section 3.1 treats the case that A(·) corresponds to a light-tailed input,
whereas Sect. 3.2 deals with the heavy-tailed case.

3.1 Light-tailed input

In this subsection we derive the logarithmic asymptotics of πα(x) for a light-tailed
input. We do this by first finding an upper bound on the corresponding exponential
decay rate, and then applying sample-path large deviations to prove that this upper
bound is actually tight.

The analysis of the upper bound is based on the joint Laplace transform
Ee−sQ1−tQ2 , as given in (1), for (s, t) ∈ R

2+. In the light-tailed case, however, this
expression is valid for some (s, t) 	∈ R

2+ as well. As we will argue below, these (s, t)

provide us with the crucial information to identify an upper bound on the decay rate.
Let

F := {
(s, t) ∈ R

2 : Ee−sQ1−tQ2 < ∞}
,

and F̄ := F ∩ R
2−.

Lemma 3.1 F and F̄ are convex.

Proof Take (s1, t1) and (s2, t2) in F . Take a λ ∈ (0,1). Then

E exp
(−(

λs1 + (1 − λ)s2
)
Q1 − (

λt1 + (1 − λ)t2
)
Q2

)

≤ λEe−s1Q1−t1Q2 + (1 − λ)Ee−s2Q1−t2Q2 < ∞,

due to straightforward convexity arguments. The statement on F̄ follows immedi-
ately. �

Proposition 3.2 The following logarithmic asymptotic upper bound applies:

lim sup
x→∞

1

x
logπα(x) ≤ min

s,t∈F̄

(
αs + (1 − α)t

)
.
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Fig. 1 Left picture: s̄ < t̄ ; right picture: s̄ ≥ t̄

Proof Due to the Chernoff bound, we have for all (s, t) ∈ F̄ :

P
(
Q1 > αx,Q2 > (1 − α)x

) ≤ Ee−sQ1−tQ2eαsx+(1−α)tx .

The stated follows by taking logs of both sides, dividing by x, and tending x to ∞. �

We conclude that finding an upper bound on the decay rate reduces to a convex
programming problem, by virtue of Lemma 3.1 and Proposition 3.2. These have at-
tractive numerical properties.

Let us now analyze F̄ in greater detail.

• Observe that, trivially, (c2 − μ)t is negative for any negative t .
• We then wonder when t − ϑ−1((c1 − c2)t) is negative. Realize that ϑ(·) is not

bijective, and hence ϑ−1((c1 −c2)t) is not always well-defined. Let ϑ̄ be infs ϑ(s),
and s̄ the minimizing argument; from μ < c1 it follows immediately that both ϑ̄

and s̄ are negative. We have to require that t be larger than ϑ̄/(c1 − c2).
Let t̄ be the (non-zero) root of ϑ(t) = (c1 − c2)t (or, equivalently, κ(t) = −c2t ;

note that t̄ does not depend on c1). From the assumption c1 > c2 > μ it follows
that this root is necessarily negative. It is easily checked that there are now two
possibilities: (1) if s̄ < t̄ , then t − ϑ−1((c1 − c2)t) is negative for all t ∈ (t̄ ,0);
(2) if s̄ ≥ t̄ , then t − ϑ−1((c1 − c2)t) is negative for all t ∈ (ϑ̄/(c1 − c2),0). The
two cases are illustrated in Fig. 1.

• Now consider the factor

ϑ−1((c1 − c2)t) − s

(c1 − c2)t − ϑ(s)
; (3)

we again have to impose that t ≥ ϑ̄/(c1 − c2). It is readily verified that for s ≥ s̄

the numerator and denominator of (3) are either both negative, or both positive. For
s < s̄ the numerator is positive for t ∈ (ϑ̄/(c1 − c2),0), whereas the denominator
is positive for t ≥ ϑ(s)/(c1 − c2); using the definition of ϑ̄ , conclude that the ratio
is positive for t ≥ ϑ(s)/(c1 − c2).

These observations are summarized by the following lemma; a graphical representa-
tion is given in Fig. 2.
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Fig. 2 The shaded area is F̄ . Left picture: s̄ < t̄ ; right picture: s̄ ≥ t̄

Lemma 3.3 F̄ is described by the following convex region:
{
(s, t) ∈ R

2− : s < s̄, t > max

{
t̄ ,

ϑ(s)

c1 − c2

}}
∪ {

(s, t) ∈ R
2− : s ≥ s̄, t > t̄

}

in case s̄ < t̄ , and
{
(s, t) ∈ R

2− : s < s̄, t >
ϑ(s)

c1 − c2

}
∪

{
(s, t) ∈ R

2− : s ≥ s̄, t >
ϑ̄

c1 − c2

}

in case s̄ ≥ t̄ .

In case s̄ < t̄ , it now follows that there are three possible solutions to the convex
programming problem. In the first place, the minimum can be attained at (s−,0),
where s− solves ϑ(s) = 0. In the second place, the minimum can be attained at
(s, (c1 − c2)

−1ϑ(s)) for s ∈ (s−, s+); here s+ < 0 is the smaller solution to
ϑ(s)/(c1 − c2) = t̄ , which is smaller than s̄ (we remark that the larger solution to
this equation is t̄ > s̄). Finally, the minimum can be attained at (s+, t̄). It is immedi-
ate that the first solution comes out if

ϑ ′(s−)

c1 − c2
> − α

1 − α
, (4)

the third solution if

ϑ ′(s+)

c1 − c2
< − α

1 − α
, (5)

and otherwise the second solution.
In case s̄ ≥ t̄ the third solution cannot occur: we obtain the first solution if (4)

applies, and otherwise the second solution.
We have arrived at the following result. Define

α+ := − ϑ ′(s−)

c1 − c2 − ϑ ′(s−)
, α− := − ϑ ′(s+)

c1 − c2 − ϑ ′(s+)
.
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Also, let s(α) be the (unique, as ϑ ′(·) is monotone) solution to ϑ ′(s) = −(c1 −
c2)α/(1 − α); t (α) is defined as ϑ(s(α))/(c1 − c2).

Proposition 3.4 If α < α−, then

lim sup
x→∞

1

x
logπα(x) ≤ αs+ + (1 − α)t̄;

if α− < α < α+, then

lim sup
x→∞

1

x
logπα(x) ≤ αs(α) + (1 − α)t (α);

if α > α+, then

lim sup
x→∞

1

x
logπα(x) ≤ αs−.

We conclude from the above that straightforward Chernoff-bound arguments lead
to an upper bound for the decay rate. We now address the question whether the identi-
fied decay rate is actually tight. We do so by relying on sample-path large deviations.

It is well known that the steady-state queue length of the first queue, that is, Q1,
is distributed as supτ>0(A(−τ,0) − c1τ), cf. [37], whereas the total queue, Q1 + Q2

is distributed as a single queue with service rate c2, i.e., supσ>0(A(−σ,0) − c2σ),
cf. [3, 22, 33, 39]. Representing the downstream queue as the difference between the
total queue and the first queue, it is evident that πα(x) can be rewritten as

P

(
supτ>0

(
A(−τ,0) − c1τ

)
> αx,

supσ>0

(
A(−σ,0) − c2σ

) − supτ>0

(
A(−τ,0) − c1τ

)
> (1 − α)x

)

.

In the latter event (that is, the event concerning the downstream queue), the optimiz-
ing τ can be proven to be smaller than the optimizing σ , see [33, Lemma 2.4]. Also
performing a time scaling τ → τx and σ → σx, we obtain

πα(x) = P

(∃τ > 0 : x−1 · A(−τx,0) > c1τ + α,

∃σ > 0 : ∀τ ∈ (0, σ ) : x−1 · A(−σx,−τx) > c2σ − c1τ + (1 − α)

)
,

which we can bound from below by, for any T > 0,

P

(∃τ ∈ (0, T ) : x−1 · A(−τx,0) > c1τ + α,

∃σ ∈ (0, T ) : ∀τ ∈ (0, σ ) : x−1 · A(−σx,−τx) > c2σ − c1τ + (1 − α)

)
;

below, in Remark 3.6, we will select an appropriate value for T .
Now consider the set of paths corresponding to the event in the previous display:

A :=
{
f : ∃τ ∈ (0, T ) : −f (−τ) > c1τ + α,

∃σ ∈ (0, T ) : ∀τ ∈ (0, σ ) : f (−τ) − f (−σ) > c2σ − c1τ + (1 − α)

}
.
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It is readily seen that, under the supremum metric, A is open. Now Theorem 5.1 of
de Acosta [2] can be applied to obtain

lim inf
x→∞

1

x
logπα(x) ≥ −I(f ), (6)

for any f ∈ A, where

I(f ) :=
∫ 0

−T

sup
s

(
sf ′(τ ) − κ(−s)

)
dτ.

We also introduce

A
 :=
{
f : ∃τ ∈ (0, T ) : −f (−τ) ≥ c1τ + α,

∃σ ∈ (0, T ) : ∀τ ∈ (0, σ ) : f (−τ) − f (−σ) ≥ c2σ − c1τ + (1 − α)

}
.

Proposition 3.5 If α < α−, then

lim inf
x→∞

1

x
logπα(x) ≥ αs+ + (1 − α)t̄;

if α− < α < α+, then

lim inf
x→∞

1

x
logπα(x) ≥ αs(α) + (1 − α)t (α);

if α > α+, then

lim inf
x→∞

1

x
logπα(x) ≥ αs−.

Proof First consider the path f+ given through f+(τ ) = −κ ′(s−)τ for τ ∈ (−τ+,0),
with τ+ defined by −α/(κ ′(s−) + c1) = −α/ϑ ′(s−); f+(τ ) = μτ for τ ≥ 0 and
f+(τ ) = κ ′(s−)τ+ + μ(τ + τ+) for τ ≤ −τ+. Recall that −κ ′(s−) is a positive num-
ber, larger than c1. Let us check under which conditions this path lies in A
. It is
readily checked that

f+(−τ+) = f+
(

α

κ ′(s−) + c1

)
= − ακ ′(s−)

κ ′(s−) + c1
= −

(
− αc1

κ ′(s−) + c1
+ α

)

= −c1τ+ − α,

so the path f+ is such that queue 1 attains the value α at time 0. Observing that the
total queue attains value

−κ ′(s−) − c2

−κ ′(s−) − c1
· α, (7)

it is concluded that the path is in A
 if (7) exceeds α + (1−α) = 1, a condition which
reduces to α ≥ α+. However, (6) required that the path f+ lies in A rather than A
,
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but clearly f+ can be approximated arbitrarily closely by a path in A; this reasoning
is standard and omitted. Also, realizing that s− solves κ(s) = −c1s,

I(f ) =
∫ 0

−τ+
sup

s

(−sκ ′(s−) − κ(−s)
)

dτ

= − α

κ ′(s−) + c1
sup

s

(−sκ ′(s−) − κ(−s)
) = −αs−.

This proves the lower bound for α ≥ α+.
Now consider the path that generates traffic in the following way: f0 is given

through f0(τ ) = rτ for τ ∈ (−τ0,0), with

r := α

1 − α
(c1 − c2) + c1,

and τ0 := (1 − α)/(c1 − c2); f0(τ ) = μτ for τ ≥ 0 and f0(τ ) = −rτ0 + μ(τ + τ0)

for τ ≤ −τ0. It is observed that this path is such that the first queue has content
(r − c1)τ0 = α at time 0, while the total queue has content (r − c2)τ0 = 1 at time 0
(both statements, irrespective of the value of α ∈ (0,1)); in other words, the path f0
lies in A
. Hence we have, for all α ∈ (0,1),

lim inf
x→∞

1

x
logπα(x) ≥ −

∫ 0

−τ0

sup
s

(
sr − κ(−s)

)
dτ.

After elementary calculus, we obtain that the right-hand side of the previous display
equals αs(α) + (1 − α)t (α).

Finally, consider the piecewise linear path f− with slope −κ ′(t̄) in (−τ− −
τ ′−,−τ−), with slope −κ ′(s+) in (−τ−,0), and slope μ elsewhere; here

τ ′− := 1

−κ ′(t̄) − c2

(
1 − α − α

−ϑ ′(s+)
(c1 − c2)

)
; τ− := − α

ϑ ′(s+)
.

It is seen that τ ′− is non-negative (and hence the path is well-defined) for all
α < α−. The content of queue 1 at time 0 is, due to −κ ′(t̄) < c1, equal to
(−κ ′(s+)−c1)τ− = α. The content of the total queue at time 0 is, due to −κ ′(t̄) ≥ c2,

(−κ ′(t̄) − c2
)
τ ′− + (−κ ′(s+) − c2

)
τ− = 1,

and hence the path is in A
. It is readily checked that, using κ(t̄) = −c2 t̄ and
ϑ(s+)/(c1 − c2) = t̄ ,

I(f−) =
∫ τ−

−τ−−τ ′−
sup

s

(−sκ ′(t̄) − κ(−s)
)

dτ +
∫ 0

−τ−
sup

s

(−sκ ′(s+) − κ(−s)
)

dτ

= α

(
c2 − c1

−ϑ ′(s+)
· t̄κ ′(t̄) − κ(t̄)

−κ ′(t̄) − c2
+ s+κ ′(s+) − κ(s+)

−ϑ ′(s+)

)
+ (1 − α)

t̄κ ′(t̄) − κ(t̄)

−κ ′(t̄) − c2

= −αs+ − (1 − α)t̄ .
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This proves the stated. We remark that, in the Brownian case, a pictorial illustration
of the paths to overflow is given in [31, Fig. 3]; the paths in the non-Brownian case
look similar. �

Remark 3.6 Above we mentioned that we had to select an appropriate value of the
‘time horizon’ T . From the proof of Proposition 3.5 it is clear that any T larger than
max{τ+, τ0, τ− + τ ′−} can be chosen.

The following theorem is a direct consequence of Propositions 3.4 and 3.5.

Theorem 3.7 If α < α−, then

lim
x→∞

1

x
logπα(x) = αs+ + (1 − α)t̄;

if α− < α < α+, then

lim
x→∞

1

x
logπα(x) = αs(α) + (1 − α)t (α);

if α > α+, then

lim
x→∞

1

x
logπα(x) = αs−.

Example 3.8 Let A ∈ Bm(0,1); below we explain how to translate the results to
the case A ∈ Bm(μ,σ 2) for any μ < c2 and σ 2 > 0. Hence ϑ(s) = 1

2 s2 + c1s, and
s̄ = −c1, ϑ̄ = − 1

2c2
1, and t̄ = −2c2. The condition s̄ < t̄ is equivalent to c1 > 2c2.

Also, s− = −2c1 and s+ = 2(c2 − c1) (which is smaller than s̄ under s̄ < t̄).
Hence we obtain from (4) that for α larger than α+ := c1/(2c1 − c2) the point

(s−,0) is optimal, with decay rate αs− = −2αc1. For α < α− := (c1 − 2c2)/(2c1 −
3c2) the point (s+, t̄) is optimal, with decay rate −2α(c1 − c2) − 2(1 − α)c2. For
α in between α− and α+, the optimum is reached in (s, (c1 − c2)

−1ϑ(s)) for s ∈
(s−, s+); the optimal s equals (αc2 − c1)/(1 − α). Tedious calculations yield that the
corresponding t equals

− (c1 − αc2)(αc2 + (1 − 2α)c1)

2(1 − α)(c1 − c2)
,

yielding the decay rate

−1

2

(c1 − αc2)
2

(1 − α)(c1 − c2)
.

Recall that in case c1 < 2c2 it is seen that (s+, t̄) cannot be optimal.
The above results can easily be extended to general Brownian input, i.e., for gen-

eral μ < c2 and σ 2 > 0. It can be verified that in order to generalize the results one
simply has to set x ← x/σ and ci ← (ci − μ)/σ , i = 1,2, in the above asymptotics.
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Example 3.9 Let us now consider the compound Poisson case with exponential
jobs, i.e., A ∈ CP(λ,β(·)), with β(s) = ν/(ν + s). It can be verified that κ(s) =
λ(β(s) − 1). To ensure stability, we assume that λν−1 < c2 < c1. We find

κ(s) = − sλ

ν + s
; ϑ(s) = − sλ

ν + s
+ c1s; ϑ ′(s) = − λν

(ν + s)2
+ c1.

Furthermore,

s̄ =
√

λν

c1
− ν; ϑ̄ = −(√

c1ν − √
λ
)2; t̄ = λ

c2
− ν.

It is easily verified that the condition s̄ < t̄ is equivalent to c1 > (ν/λ) · c2
2, and that

s− = λ/c1 − ν and s+ = −ν(c1 − c2)/c1, where s+ is smaller than s̄ under s̄ < t̄ . We
next deduce that

α+ = c2
1ν − c1λ

c2
1ν − c2λ

; α− = c2
1λ − c1c

2
2ν

c2
1λ − c3

2ν
.

Using Theorem 3.7, we find the following decay rates.

• For α < α−:

λ
1 − α

c2
+ ν

αc2 − c1

c1
.

• For α ∈ (α−, α+):

− (−ν
√

c − αc2 + √
(1 − α)λν)((1 − α)λ

√
c1 − αc2 − (c1 − αc2)

√
(1 − α)λν)

(c1 − c2)
√

c1 − αc2
√

(1 − α)λν
;

this requires straightforward, though tedious, calculus, and uses

s(α) = ν(αc2 − c1) + √
(1 − α)(c1 − αc2)λν

c1 − αc2
,

t (α) = − c1ν((α − 2)λ + √
(1 − α)(c1 − αc2)λν) − λ(αc2ν + √

(1 − α)(c1 − αc2)λν)

(c1 − c2)
√

(1 − α)(c1 − αc2)λν
.

• For α > α+:

α

(
λ

c1
− ν

)
.

3.2 Heavy-tailed input

In this subsection we identify the exact asymptotics of πα(x) in the case of CP input
with regularly varying jobs; we have that P(B > x) = x−δL(x), for some δ > 1 and
L(·) being a slowly varying function [12]. We do so by relying on the ‘principle of a
single big jump,’ the intuition underlying the proof being that the event of interest is
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essentially due to one large service requirement. In other words: in order for the work-
load of queue 1 to exceed αx, and for the workload of queue 2 to exceed (1 − α)x,
with overwhelming probability this is due to a single job, whose size is roughly of
the order x. This idea has been used in several papers before, see e.g. [24, 44], or, in
a more complex model, [7].

The proof consists of a lower bound that focuses on the probability of the single
most likely event, in conjunction with an upper bound that shows that all other scenar-
ios (for instance those with multiple big jumps) yield negligible contributions. The
lower bound is relatively straightforward, and provides us with interesting insights
into the way the rare event under consideration occurs. The upper bound requires
more work, but the ‘standard recipe’ from [43, pp. 37–39] applies directly here, as
we will argue below.

Lower bound Suppose a job, arriving at the system in stationarity, enters at time −t .
Then we may wonder how large it should be to make sure that queue 1 is larger
than αx at time 0, and queue 2 larger than (1 − α)x. First focus on the first queue.
As the first buffer, roughly, drains at rate μ − c1, it is clear that the job should be
at least αx + (c1 − μ)t. Now consider the second queue. As traffic leaves the first
queue at a maximum rate c1, it is readily seen that t should be at least tαx, with
tα := (1 − α)/(c1 − c2).

This idea can be used to construct a lower bound on πα(x), as follows. Because of
the (weak) law of large numbers, we can find, for any ζ, ε > 0, an x0 such that for all
t ≥ tαx0,

P

(
A(−t,0)

t
> μ − ε

)
> 1 − ζ.

Jobs arriving at rate λ, this leads to the lower bound

πα(x) ≥
∫ ∞

tαx

λP
(
B > αx + (c1 − μ + ε)t

)
P
(
A(−t,0) > (μ − ε)t

)
dt

≥ (1 − ζ )

∫ ∞

tαx

λP
(
B > αx + (c1 − μ + ε)t

)
dt.

After a change-of-variable αx + (c1 −μ+ε)t =: y, and using that, due to Karamata’s
theorem,

∫ ∞

u

x−δL(x)dx ∼ 1

δ − 1
u1−δL(u),

we obtain

πα(x) ≥ (1 − ζ )
λ

c1 − μ + ε

1

δ − 1

(
c1 − μ + ε

c1 − c2
− α

(
c2 − μ + ε

c1 − c2

))1−δ

· x1−δL(x).

Letting ζ, ε ↓ 0, we obtain

lim inf
x→∞

πα(x)

x1−δL(x)
≥ λ

c1 − μ

1

δ − 1

(
c1 − μ

c1 − c2
− α

(
c2 − μ

c1 − c2

))1−δ

. (8)
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Upper bound We have identified above the most likely scenario. Now we show that
all other scenarios can be asymptotically neglected. We follow the same steps as in
[43, pp. 38–39]; as many of the arguments are standard—and essentially identical to
those in, for example, [44]—we chose to leave out some details.

• With D(−τ,0) the amount of traffic leaving from the first queue between −τ and
0, we have that

πα(x) = P
(∃σ > 0 : A(−σ,0) − c1σ > αx,∃τ > 0 : D(−τ,0) − c2τ > (1 − α)x

)
.

The first step is to prove that

lim sup
x→∞

1

πα(x)
· P

(∃σ ≥ Mx : A(−σ,0) − c1σ > αx,

∃τ ≥ Mx : D(−τ,0) − c2τ > (1 − α)x

)
→ 0 (9)

as M → ∞, i.e., that we can restrict ourselves to considering just the time inter-
val [−Mx,0]. This is done as follows. Observe that, with Ex := {A(−Mx,0) <

(μ + ζ )Mx} and ζ > 0, the following lower bound applies:

P
(∃σ ≥ Mx : A(−σ,0) − c1σ > αx,∃τ ≥ Mx : D(−τ,0) − c2τ > (1 − α)x

)

≤ P
(∃σ ≥ Mx : A(−σ,0) − c1σ > αx

)

= P
(∃σ ≥ Mx : A(−σ,−Mx) − c1(σ − Mx) > αx + c1Mx − A(−Mx,0)

)

≤ P
(
Ex; ∃σ ≥ Mx : A(−σ,−Mx) − c1(σ − Mx) > αx + c1Mx

− A(−Mx,0)
) + P

(
Ec

x

)

≤ P
(∃σ ≥ Mx : A(−σ,−Mx) − c1(σ − Mx) > αx + (c1 − μ − ζ )Mx

)

+ P
(
Ec

x

)
. (10)

Now consider these two probabilities separately. Due to the fact that Lévy
processes have stationary independent increments, the first probability in (10) reads

P
(∃σ ≥ 0 : A(−σ,0) − c1σ > αx + (c1 − μ − ζ )Mx

)

= P
(
Q1 >

(
α + (c1 − μ − ζ )M

)
x
)
,

which is asymptotically equal to, see e.g. [13, 16],

c1

c1 − μ
· (α + (c1 − μ − ζ )M

)1−δ · x1−δL(x).

Now consider the second probability in (10), i.e., P(Ec
x). Using the argumentation

as in the proof of [32, Proposition 3.3],

P
(
Ec

x

) = P
(
A(−Mx,0) − (μ + ζ/2)Mx ≥ (ζ/2)Mx

)

≤ P
(∃σ > 0 : A(−σ,0) − (μ + ζ/2)σ ≥ (ζ/2)Mx

) = P
(
Q̄ ≥ (ζ/2)Mx

)
,
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where Q̄ is defined as Q1, but now with service rate μ+ ζ/2 rather than c1. Again
applying e.g. [13, 16], the latter probability is asymptotically equal to

μ + ζ/2

ζ/2
· (ζM/2)1−δ · x1−δL(x).

The claim (9) follows by first applying the asymptotic lower bound (8) to πα(x),
then letting x grow large, and finally tending M → ∞.

• Due to the previous step, we only have to consider the time interval [−Mx,0].
The next step is to prove that there is at least one big job in this interval, in order to
realize the event of interest; here a big job is defined as a job larger than εx, with
ε > 0. This is done by considering the complementary probability of no big jobs
in this interval. The argumentation is as in [43, p. 39]: the desired property follows
directly by applying a result in [38], which is Lemma 2.4.1 in [43]. It yields that
the probability of exceeding level αx (level (1 − α)x, respectively) in the first
(second) queue, with no big jumps in the interval [−Mx,0] is negligible relative
to x1−δL(x), for x large.

• Now consider the probability of multiple big jumps in [−Mx,0]. As in [43, p. 39],
it can be argued that this probability is regularly varying of index 1−2δ, and hence
negligible relative to x1−δL(x), for x large.

• The last point is slightly different from the recipe in [43], as we want to rule out
big jumps in (−tαx,0] as well. These can be excluded for the following reason.
Suppose the big jump occurs after −tαx. Then, in order to make sure that enough
traffic accumulates in the second queue, the first queue must have been non-empty
for a time interval of length proportional to x. Busy periods have tail asymptotics
that are regularly varying of index −δ [34], whereas the contribution of the big
jump in (−tαx,0] is regularly varying of index 1 − δ. Conclude that big jumps in
(−tαx,0] lead to a contribution that is negligible with respect to x1−δL(x), for x

large.

As indicated in [43, p. 39], now that we have made sure that only the ‘dominant
scenario’ plays a role asymptotically, establishing the upper bound is a matter of a
straightforward computation, which is fully analogous to the corresponding compu-
tation in the single-M/G/1 context. It means that the asymptotics of a single big jump
between −Mx and −tαx are to be determined; these turn out to agree with the lower
bound. We have thus arrived at the following result.

Theorem 3.10 As x → ∞,

πα(x) ∼ λ

c1 − μ

1

δ − 1

(
c1 − μ

c1 − c2
− α

(
c2 − μ

c1 − c2

))1−δ

· x1−δL(x).

The above result agrees with the asymptotics of P(Q1 > x) when letting α ↑ 1,
see [13, 16]; indeed, we essentially automatically have Q2 > 0 whenever Q1 > x.
When letting α ↓ 0, it is clear that we should not obtain the asymptotics of P(Q2 > x),
as there is a significant probability that Q2 > x occurs, but Q1 = 0. It is easily
checked that for analyzing P(Q2 > x) the ‘dominant scenario’ has the following
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form. Suppose again that the large job, of size b, arrives at −t ; for reasons ex-
plained above, t needs to be larger than t0x. Then the first buffer is empty af-
ter about b/(c1 − μ) units of time; then the content of the second buffer is about
b(c1 − c2)/(c1 − μ). After that period, the second buffer drains at a rate μ − c2.

Hence, b should be such that

b

c1 − μ
(c1 − c2) +

(
t − b

c1 − μ

)
(μ − c2) > x,

or, equivalently, b > x + (c2 − μ)t. This leads to the expression

P(Q2 > x) ≈
∫ ∞

t0x

λP
(
B > x + (c2 − μ)t

)
dt

≈ λ

c2 − μ

1

δ − 1

(
c1 − μ

c1 − c2

)1−δ

x1−δL(x). (11)

In [19, Theorem 5.7] it was shown that this approximation is asymptotically exact
(which can also be proven with sample-path lower and upper bounds, as was done
above for πα(x)); in the next section we retrieve this relation as a corollary of a more
general result, see Example 4.8.

4 Asymptotics of the downstream queue

In this section we focus on the tail asymptotics of the downstream (i.e., second)
queue, rather than on the joint asymptotics. It turns out that we can derive exact
asymptotics, both in the light-tailed and heavy-tailed cases. The results complement
those in [19, Sects. 4–5]. As we will see, depending on whether the Lévy process
has light tails or heavy tails, we need to apply two different methods to derive the
asymptotics: for the light-tailed case specific techniques are available (cf. the ‘Heavi-
side approach’ in [1], relying on, e.g., [20]), which are intrinsically different from the
Tauberian techniques to be used in the heavy-tailed case, see e.g. [11].

4.1 Light-tailed input

In this subsection we derive the asymptotics of P(Q2 > x) in case that the Lévy
process has light tails, i.e., in case κ(s) is also defined for some negative s. The
following lemma turns out to be useful, and is straightforward to prove, using (2) and
integration by parts.

Lemma 4.1 For all t ≥ 0,

∫ ∞

0
e−tx

P(Q2 > x)dx = 1

t

(
(c1 − c2)t − (c1 − μ)ϑ−1((c1 − c2)t)

(c1 − c2)(t − ϑ−1((c1 − c2)t))

)
. (12)

Now let us consider the t < 0 for which the transform (12) is still well-defined. In
the first place, in the notation of the previous section, we should have that t is larger
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than the branching point ϑ̄/(c1 −c2). Also, recall that t̄ , as introduced in the previous
section, corresponds to a pole of (12), as it solves (c1 − c2)(t −ϑ−1((c1 − c2)t)) = 0.
We arrive at the following lemma.

Lemma 4.2 If c1 > −κ ′(t̄) then the rightmost singularity of Ee−tQ2 is the pole
tp := t̄ , else the rightmost singularity is the branching point tb := ϑ̄/(c1 − c2).

Proof The proof follows from the above and the proof of Lemma 3.3, in conjunction
with the fact that t̄ > s̄ is equivalent to ϑ ′(t̄)/(c1 −c2) > 0, which in turn is equivalent
to c1 > −κ ′(t̄). �

We now study the tail behavior of P(Q2 > x); it turns out that Lemma 4.2 entails
that there is a sharp dichotomy (or, ‘trichotomy,’ as there is a boundary case that
needs to be treated separately).

• Let us first focus on the case that c1 > −κ ′(t̄), i.e., the case that the pole dominates.
Define

K := − lim
t↓tp

t − ϑ−1((c1 − c2)t)

t − tp
= c1 − c2

ϑ ′(ϑ−1((c1 − c2)tp))
− 1 = c1 − c2

ϑ ′(tp)
− 1.

Then evaluate the transform (12) for t ↓ tp. From

(t − tp)

∫ ∞

0
e−tx

P(Q2 > x)dx ∼
(

c2 − μ

c1 − c2

)
1

K
,

standard techniques for asymptotic inversion of Laplace transforms yield

P(Q2 > x) ∼ c2 − μ

c1 − c2

1

K
etpx.

• Now consider the case c1 = −κ ′(t̄), that is, the pole tp and the branching point tb
coincide. It is readily checked that

ϑ−1((c1 − c2)t
) − tp ∼

√
2(c1 − c2)

ϑ ′′(tp)
√

t − tp,

implying that (12) behaves as, with W1 := √
2(c1 − c2)/ϑ ′′(tp), K1 denoting an

(irrelevant) constant, and t ↓ tb = tp,

1

t

(
(μ − c2)tp − (c1 − μ)W1

√
t − tp

(c1 − c2)(t − tp − W1
√

t − tp)

)

∼ 1

tp(c1 − c2)

(
(μ − c2)tp − (c1 − μ)W1

√
t − tp

−W1
√

t − tp

)

∼ K1 + c2 − μ

c1 − c2

1

W1

1
√

t − tp
.
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Using techniques as those in, e.g., [1], this leads to

P(Q2 > x) ∼ 1

�( 1
2 )

c2 − μ

c1 − c2

√
ϑ ′′(tp)

2(c1 − c2)

1√
x

etpx

= 1√
2π

c2 − μ

c1 − c2

√
ϑ ′′(tp)
c1 − c2

1√
x

etpx.

• Finally consider the case c1 < −κ ′(t̄). Now

ϑ−1((c1 − c2)t
) − s̄ ∼

√
2(c1 − c2)

ϑ ′′(s̄)
√

t − tb,

so that (12) behaves as, with W2 := √
2(c1 − c2)/ϑ ′′(s̄), K2 denoting an (irrele-

vant) constant, and t ↓ tb,

1

t

(
(c1 − c2)t − (c1 − μ)(s̄ + W2

√
t − tb)

(c1 − c2)(t − s̄ − W2
√

t − tb)

)

= 1

t (c1 − c2)

(
(c1 − c2)t − (c1 − μ)(s̄ + W2

√
t − tb)

t − s̄ − W2
√

t − tb

)(
t − s̄ + W2

√
t − tb

t − s̄ + W2
√

t − tb

)

∼ K2 − c2 − μ

(tb − s̄)2

√
2

(c1 − c2)ϑ ′′(s̄)
√

t − tb,

and hence

P(Q2 > x) ∼ − 1

�(− 1
2 )

c2 − μ

(tb − s̄)2

√
2

(c1 − c2)ϑ ′′(s̄)
1

x
√

x
etbx

= 1√
2π

c2 − μ

(tb − s̄)2

√
1

(c1 − c2)ϑ ′′(s̄)
1

x
√

x
etbx;

cf. again [1], but also the busy-period asymptotics in [17].

The following theorem states the asymptotics of P(Q2 > x).

Theorem 4.3 For c1 > −κ ′(t̄),

P(Q2 > x) ∼ c2 − μ

c1 − c2

ϑ ′(tp)
c1 − c2 − ϑ ′(tp)

etpx;

for c1 = −κ ′(t̄), with tp = tb,

P(Q2 > x) ∼ 1√
2π

c2 − μ

c1 − c2

√
ϑ ′′(tp)
c1 − c2

1√
x

etpx;
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for c1 < −κ ′(t̄),

P(Q2 > x) ∼ 1√
2π

c2 − μ

(tb − s̄)2

√
1

(c1 − c2)ϑ ′′(s̄)
1

x
√

x
etbx.

Example 4.4 Again consider A ∈ Bm(0,1); as before, this can be translated in a
straightforward way to A ∈ Bm(μ,σ 2) for any μ < c2 and σ 2 > 0. We now use
Theorem 4.3 to compute the asymptotics of P(Q2 > x), also relying on the findings
of Example 3.8. We find, after some simplification, for c1 > 2c2,

P(Q2 > x) ∼ c1 − 2c2

c1 − c2
e−2c2x;

for c1 = 2c2,

P(Q2 > x) ∼ 1√
2πc2

1√
x

e−2c2x;

for c1 < 2c2,

P(Q2 > x) ∼ 1√
2π

(
c1 − c2

x

)3/2 4c2

c2
1(c1 − 2c2)2

exp

(
− c2

1

2(c1 − c2)
x

)
.

These findings are in agreement with [19, Corollary 4.4], where the asymptotics were
derived by first explicitly calculating the full distribution function P(Q2 > x).

Interestingly, observing that tp does not depend on c1, one could say that The-
orem 4.3 implies that essentially two regimes exist: for c1 ≥ −κ ′(t̄) the first queue
hardly affects the tail asymptotics of the downstream queue, as c1 only affects the
proportionality constant. For c1 < −κ ′(t̄) the first queue plays a more explicit role
in delaying and reshaping the traffic before entering the second queue. This sharp
dichotomy is in line with those in, e.g., [15, 33].

4.2 Heavy-tailed case

In this subsection we assume that the Lévy input process is heavy-tailed, implying
that the rightmost singularity of Ee−tQ2 is 0. We can then use Tauberian theorems
to derive the asymptotics of P(Q2 > x) as x → ∞. Let us first present the following
definition, see [21].

Definition 4.5 We say that f (x) ∈ Rδ(n, η), with δ ∈ (n,n + 1), for x ↓ 0, if

f (x) =
n∑

i=0

f (i)(0)

i! xi + ηxδL(1/x), x ↓ 0,

for a slowly varying function L, i.e., L(x)/L(tx) → 1 for x → ∞, for any t .

The following lemma follows directly from Lemma 5.2 in [21]. Recall that
ϑ ′(0) = c1 − μ = 1/(ϑ−1(0))′.



222 Queueing Syst (2008) 60: 203–226

Lemma 4.6 Suppose that ϑ(s) ∈ Rδ(n, η). Then

ϑ−1(t) ∈ Rδ

(
n,− η

(ϑ ′(0))δ+1

)
= Rδ

(
n,− η

(c1 − μ)δ+1

)
;

ϑ−1((c1 − c2)t
) ∈ Rδ(n, ζ ), ζ := − η(c1 − c2)

δ

(c1 − μ)δ+1
,

for s ↓ 0.

In order to apply Tauberian theorems, we need to characterize the behavior of
E

−tQ2 as t ↓ 0. Due to Lemma 4.6 we have that ϑ−1((c1 − c2)t) ∈ Rδ(n, ζ ), so that,
with ξ := (c2 − μ)/(c1 − c2),

Ee−tQ2 = ξ · ϑ−1(t (c1 − c2))

t − ϑ−1(t (c1 − c2))
= ξ ·

∑n
i=1 ait

i + ζ tδL(1/t)

t (1 − a1) − ∑n
i=2 ait i − ζ tδL(1/t)

,

for appropriately chosen constants a1, . . . , an (where a1 = (c1 − c2)/(c1 − μ), as is
easily verified). Dividing both numerator and denominator by t (1 − a1), we obtain

ξ ·
∑n−1

i=0 (ai+1/(1 − a1))t
i + (ζ/(1 − a1))t

δ−1L(1/t)

1 − ∑n−1
i=1 (ai+1/(1 − a1))t i − (ζ/(1 − a1))tδ−1L(1/t)

.

Now applying the standard representation 1/(1 − x) = ∑∞
i=0 xi , we directly observe

that we find two terms of the order tδ−1: one is proportional to ζ/(1 − a1), the other
is proportional to a1ζ/(1 − a1)

2, and hence, for t ↓ 0,

Ee−tQ2 ∈ Rδ−1(n − 1, ξ · ζ̄ ), ζ̄ := ζ

1 − a1
+ a1ζ

(1 − a1)2
= ζ

(
c1 − μ

c2 − μ

)2

.

The Tauberian theorem in Bingham, Goldie, and Teugels [12, Theorem 8.1.6] now
yields the following result; see also [11].

Theorem 4.7 If ϑ(s) ∈ Rδ(n, η), with n ∈ {1,2, . . . } and δ ∈ {n,n + 1}, then, as
x → ∞,

P(Q2 > x) ∼ (−1)n

�(2 − δ)
· (ξ · ζ̄ ) · x1−δL(x)

= (−1)n+1

�(2 − δ)

η

c2 − μ

(
c1 − μ

c1 − c2

)1−δ

x1−δL(x).

Example 4.8 Suppose P(B > x) ∼ x−δL(x). From ϑ(s) = c1s + λβ(s) − λ, it fol-
lows that θ(s) ∈ Rδ(n,λ�(1 − δ)(−1)n) by applying ‘Tauber.’ Then the above
theorem entails that the approximation given in (11) is asymptotically exact (use
(1 − δ) · �(1 − δ) = �(2 − δ)).

Example 4.9 Let us consider the case of spectrally-positive α-stable Lévy motion;
this means that, in the notation of [30, p. 10] and [8, p. 217], β ≡ 1. In this case
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κ(s) = Csδ , for some positive constant C and δ ∈ (1,2); see e.g. [30, Exercise 3.7]
and [25]. The above theorem can be applied instantly, with n = 1 and η = C, and we
retrieve [19, Theorem 5.5].

5 Discussion and concluding remarks

Compound Poisson with subexponential jobs Restricting ourselves to the case of
compound Poisson input, the light-tailed results cover the case in which the jobs
have a finite moment generating function in a neighborhood of the origin: β(α) < ∞
for some α < 0; as a result, in this situation all moments are finite. On the other hand,
the heavy-tailed results correspond to the situation in which just a finite number of
moments are finite. In between, however, there is a third class of distributions: those
for which all moments are finite, but without an analytic continuation for α < 0 (that
is β(α) = ∞ for all α < 0). Examples of the subexponential distributions in this
class are the Weibull and Log-Normal distributions. It is likely that, just as is the
case in the single-node situation, the results for regularly varying jobs carry over to
subexponential jobs, see e.g. [35, 41].

Exact asymptotics In the light-tailed case, we found in Sect. 3.1 just logarithmic as-
ymptotics. A subject for future research concerns the identification of the correspond-
ing exact asymptotics. The results for the special case of Brownian input [31] indicate
that it can be expected that for α in some specific range these have a purely exponen-
tial shape, whereas for other α in addition a factor 1/

√
x will appear. In [5, Sect. 5],

which has been written simultaneously with the present paper, this has already been
done for the compound Poisson case as well as the purely Brownian case. We re-
mark that the techniques used in [5] substantially differ from ours; in addition, our
approach also yields the ‘most likely paths to overflow,’ as determined in the proof of
Proposition 3.5. Also, [5] does not consider the heavy-tailed case.

Tandem series with more than two nodes Let us now consider a three-node tandem
queue with light-tailed Lévy input, and suppose we wish to find the asymptotics of

P(Qi > αix, i = 1,2,3),

with αi > 0 and α1 + α2 + α3 = 1.

Without loss of generality, assume that c1 > c2 > c3 > μ. Define ϑi(s) := κ(s) +
cis, and let ϑ−1

i (·) denote the inverse of ϑi(·), i = 1,2,3. Then it is known [18] that,
for (s, t, u) ∈ R

3+,

Ee−sQ1−tQ2−uQ3 = (c3 − μ)u

ϑ3(u)
× ϑ−1

1 ((c1 − c2)t + (c2 − c3)u) − s

ϑ−1
1 ((c1 − c2)t + (c2 − c3)u) − t

× ϑ−1
2 ((c2 − c3)u) − t

ϑ−1
2 ((c2 − c3)u) − u

× (c1 − c2)t + (c2 − c3)u − ϑ1(t)

(c1 − c2)t + (c2 − c3)u − ϑ1(s)
× (c2 − c3)u − ϑ2(u)

(c2 − c3)u − ϑ2(t)
,
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which can be rewritten to

− (c3 − μ)u

ϑ−1
2 ((c2 − c3)u) − u

× ϑ−1
2 ((c2 − c3)u) − t

ϑ−1
1 ((c1 − c2)t + (c2 − c3)u) − t

× ϑ−1
1 ((c1 − c2)t + (c2 − c3)u) − s

(c1 − c2)t + (c2 − c3)u − ϑ1(s)
,

the product of three factors: one with just u, one with t and u, and one with s, t ,
and u. This relation holds for positive arguments, but again there may be a convex
set of (s, t, u) ∈ R

3− for which this is finite; the factorization above may help to fur-
ther specify this convex set. It is now seen that, relying on the Chernoff bound, again
an upper bound on the decay rate of P(Qi > αix, i = 1,2,3) can be found by solv-
ing a convex programming problem. As before, we can then use sample-path large-
deviations to show that this bound is tight; now it is expected that the most likely path
consists, in some of the scenarios, of three linear segments (the third queue starting
to build up first, then the second queue, and finally the first queue).

This procedure can in fact be followed for any number of hops. Assuming
c1 > c2 > · · · > cn−1 > cn > μ to ensure stability and non-triviality, and with
ϑi(s) := κ(s) + cis and ϑ−1

i (·) defined as before. Exploiting [18], we find that, for
(s1, . . . , sn) ∈ R

n+,

Ee−∑n
i=1 siQi = (cn − μ)sn

θn(sn)
×

n−1∏

j=1

ϑ−1
j (

∑n
k=j+1(ck−1 − ck)sk) − sj

ϑ−1
j (

∑n
k=j+1(ck−1 − ck)sk) − sj+1

×
n−1∏

j=1

∑n
k=j+1(ck−1 − ck)sk − ϑj (sj+1)

∑n
k=j+1(ck−1 − ck)sk − ϑj (sj )

. (13)

Using that ϑi(s) = ϑi−1(s) + (ci − ci−1)s, i = 2, . . . , n, we find that (13) reduces to

− (cn − μ)sn∑n
k=2(ck−1 − ck)sk − ϑ1(s1)

×
n−1∏

j=1

ϑ−1
j (

∑n
k=j+1(ck−1 − ck)sk) − sj

ϑ−1
j (

∑n
k=j+1(ck−1 − ck)sk) − sj+1

. (14)

Finally, rearranging (14) yields

Ee−∑n
i=1 siQi = −ϑ−1

1 (
∑n

k=2(ck−1 − ck)sk) − s1∑n
k=2(ck−1 − ck)sk − ϑ1(s1)

×
(

n−1∏

j=2

ϑ−1
j (

∑n
k=j+1(ck−1 − ck)sk) − sj

ϑ−1
j−1(

∑n
k=j (ck−1 − ck)sk) − sj

)

× (cn − μ)sn

ϑ−1
n−1((cn−1 − cn)sn) − sn

.

We observe the remarkable fact that the transform can be rewritten as the product of n

fractions, where both the numerator and denominator of the ith fraction only depend



Queueing Syst (2008) 60: 203–226 225

on si , . . . , sn, i = 1, . . . , n. This factorization may be useful in order to explicitly
derive the boundary of the ‘feasible region’ (that is, the region in which the joint
Laplace transform E exp(−∑n

i=1 siQi) is finite).
In the case of heavy-tailed input, the intuition is as in Sect. 3.2: the asymptotics

of the probability P(Qi > αix, i = 1,2,3) are fully dominated by the scenario of
one single big jump. Evidently, if this large job arrives at time −t , it must be at least
α1x + (c1 −μ)t , where t should be larger than both α2x/(c1 −c2) and α3x/(c2 −c3).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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