Skip to main content
Log in

Upconversion-based receivers for quantum hacking-resistant quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a novel upconversion (sum frequency generation)-based quantum-optical system design that can be employed as a receiver (Bob) in practical quantum key distribution systems. The pump governing the upconversion process is produced and utilized inside the physical receiver, making its access or control unrealistic for an external adversary (Eve). This pump facilitates several properties which permit Bob to define and control the modes that can participate in the quantum measurement. Furthermore, by manipulating and monitoring the characteristics of the pump pulses, Bob can detect a wide range of quantum hacking attacks launched by Eve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Security concerns arising from nonlinear interactions in the waveguide, especially the conversion of photons injected by Eve at the signal wavelength after interacting with Bob’s pump, will be examined in the next subsections.

  2. Alternatively, an appropriate filter can be used, but a coiled fiber offers a lower loss and cost-effective solution.

  3. We assume that the optical fibers in front of the receiver would readily fuse, disconnecting the receiver from the quantum channel, for \(\gtrsim \)10 W average input powers [43].

  4. In fact, using the formula for conversion efficiency [2, 3], the actual \(\eta _c < 1\,\%\) and with propagation losses around 3 dB, the peak power on the detectors would be \(<1\,\upmu \hbox {W}\).

  5. In Fig. 3, the basis choice is implemented by a phase modulator (PM) in the pump arm. An optical path that allows reflection(s), carrying an imprint of the modulation, to propagate out of the system at least physically exists if we assume a fiber-optical wavelength division multiplexer (WDM) instead of the free-space dichroic mirror (DM).

  6. The detector is in linear mode after the gate and displays superlinear characteristics at the falling edge, i.e., when it is making a transition from the Geiger mode to the linear mode.

References

  1. Midwinter, J., Warner, J.: Up-conversion of near infrared to visible radiation in lithium-meta-niobate. J. Appl. Phys. 38(2), 519–523 (1967)

    Article  ADS  Google Scholar 

  2. Tucker, J., Walls, D.F.: Quantum theory of parametric frequency conversion. Ann. Phys. 52(1), 1–15 (1969)

    Article  ADS  Google Scholar 

  3. Kumar, P.: Quantum frequency conversion. Opt. Lett. 15(24), 1476–1478 (1990)

    Article  ADS  Google Scholar 

  4. Huang, J., Kumar, P.: Observation of quantum frequency conversion. Phys. Rev. Lett. 68, 2153–2156 (1992)

    Article  ADS  Google Scholar 

  5. Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)

    Article  ADS  Google Scholar 

  6. Vandevender, A.P., Kwiat, P.G.: High efficiency single photon detection via frequency up-conversion. J. Mod. Opt. 51(9–10), 1433–1445 (2004)

    Article  ADS  MATH  Google Scholar 

  7. Diamanti, E., Takesue, H., Honjo, T., Inoue, K., Yamamoto, Y.: Performance of various quantum-key-distribution systems using \(1.55-\mu \)m up-conversion single-photon detectors. Phys. Rev. A 72, 052311 (2005)

    Article  ADS  Google Scholar 

  8. Ma, L., Slattery, O., Tang, X.: Single photon frequency up-conversion and its applications. Phys. Rep. 521(2), 69–94 (2012)

    Article  ADS  Google Scholar 

  9. Thew, R.T., Tanzilli, S., Krainer, L., Zeller, S.C., Rochas, A., Rech, I., Cova, S., Zbinden, H., Gisin, N.: Low jitter up-conversion detectors for telecom wavelength GHz QKD. New J. Phys. 8(3), 32 (2006)

    Article  ADS  Google Scholar 

  10. Pelc, J.S., Ma, L., Phillips, C.R., Zhang, Q., Langrock, C., Slattery, O., Tang, X., Fejer, M.M.: Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Opt. Express 19(22), 21445–21456 (2011)

    Article  ADS  Google Scholar 

  11. Pelc, J.S., Zhang, Q., Phillips, C.R., Yu, L., Yamamoto, Y., Fejer, M.M.: Cascaded frequency upconversion for high-speed single-photon detection at 1550 nm. Opt. Lett. 37(4), 476–478 (2012)

    Article  ADS  Google Scholar 

  12. Eckstein, A., Brecht, B., Silberhorn, C.: A quantum pulse gate based on spectrally engineered sum frequency generation. Opt. Express 19(15), 13770–13778 (2011)

    Article  ADS  Google Scholar 

  13. Huang, Y.P., Kumar, P.: Mode-resolved photon counting via cascaded quantum frequency conversion. Opt. Lett. 38(4), 468–470 (2013)

    Article  ADS  Google Scholar 

  14. Kowligy, A.S., Manurkar, P., Corzo, N.V., Velev, V.G., Silver, M., Scott, R.P., Yoo, S.J.B., Kumar, P., Kanter, G.S., Huang, Y.P.: Quantum optical arbitrary waveform manipulation and measurement in real time. Opt. Express 22(23), 27942–27957 (2014)

    Article  ADS  Google Scholar 

  15. Tanzilli, S., Tittel, W., Halder, M., Alibart, O., Baldi, P., Gisin, N., Zbinden, H.: A photonic quantum information interface. Nature 437(7055), 116–120 (2005)

    Article  ADS  Google Scholar 

  16. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1, 165–171 (2007)

    Article  ADS  Google Scholar 

  17. Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008)

    Article  ADS  Google Scholar 

  18. Bennett, C.H., Brassard, G.: In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  19. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–196 (2002)

    Article  ADS  Google Scholar 

  20. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301–1350 (2009)

    Article  ADS  Google Scholar 

  21. Inoue, K., Waks, E., Yamamoto, Y.: Differential phase shift quantum key distribution. Phys. Rev. Lett. 89(3), 37902 (2002)

    Article  ADS  Google Scholar 

  22. Zhang, Q., Takesue, H., Honjo, T., Wen, K., Hirohata, T., Suyama, M., Takiguchi, Y., Kamada, H., Tokura, Y., Tadanaga, O., Nishida, Y., Asobe, M., Yamamoto, Y.: Megabits secure key rate quantum key distribution. New J. Phys. 11(4), 045010 (2009)

    Article  ADS  Google Scholar 

  23. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  24. Liu, Y., Chen, T.Y., Wang, L.J., Liang, H., Shentu, G.L., Wang, J., Cui, K., Yin, H.L., Liu, N.L., Li, L., Ma, X., Pelc, J.S., Fejer, M.M., Peng, C.Z., Zhang, Q., Pan, J.W.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111(13), 130502 (2013)

    Article  ADS  Google Scholar 

  25. Xu, H., Ma, L., Mink, A., Hershman, B., Tang, X.: 1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm. Opt. Express 15(12), 7247–7260 (2007)

    Article  ADS  Google Scholar 

  26. Scarani, V., Kurtsiefer, C.: The black paper of quantum cryptography: real implementation problems. Theor. Comput. Sci. 560, 27–32 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8(8), 595–604 (2014)

    Article  ADS  Google Scholar 

  28. Jain, N., Stiller, B., Khan, I., Elser, D., Marquardt, C., Leuchs, G.: Attacks on practical quantum key distribution systems (and how to prevent them). arXiv:1512.07990

  29. Website, Vadim Makarov. http://www.vad1.com

  30. Wiechers, C., Lydersen, L., Wittmann, C., Elser, D., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G.: After-gate attack on a quantum cryptosystem. New J. Phys. 13(1), 013043 (2011)

    Article  ADS  Google Scholar 

  31. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Thermal blinding of gated detectors in quantum cryptography. Opt. Express 18(26), 27938–27954 (2010)

    Article  ADS  Google Scholar 

  32. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2, 349 (2011)

    Article  ADS  Google Scholar 

  33. Sauge, S., Lydersen, L., Anisimov, A., Skaar, J., Makarov, V.: Controlling an actively-quenched single photon detector with bright light. Opt. Express 19(23), 23590–23600 (2011)

    Article  ADS  Google Scholar 

  34. Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107(11), 5 (2011)

    Article  Google Scholar 

  35. Lydersen, L., Jain, N., Wittmann, C., Maroy, O., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G.: Superlinear threshold detectors in quantum cryptography. Phys. Rev. A 84(3), 032320 (2011)

    Article  ADS  Google Scholar 

  36. Weier, H., Krauss, H., Rau, M., Fürst, M., Nauerth, S., Weinfurter, H.: Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors. New J. Phys. 13(7), 073024 (2011)

    Article  ADS  Google Scholar 

  37. Bugge, A.N., Sauge, S., Ghazali, A.M.M., Skaar, J., Lydersen, L., Makarov, V.: Laser damage helps the eavesdropper in quantum cryptography. Phys. Rev. Lett. 112(7), 70503 (2014)

    Article  ADS  Google Scholar 

  38. Li, H.W., Wang, S., Huang, J.Z., Chen, W., Yin, Z.Q., Li, F.Y., Zhou, Z., Liu, D., Zhang, Y., Guo, G.C., Bao, W.S., Han, Z.F.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84(6), 062308 (2011)

    Article  ADS  Google Scholar 

  39. Jain, N., Anisimova, E., Khan, I., Makarov, V., Marquardt, C., Leuchs, G.: Trojan-horse attacks threaten the security of practical quantum cryptography. New J. Phys. 16(12), 123030 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  40. Jain, N., Stiller, B., Khan, I., Makarov, V., Marquardt, C., Leuchs, G.: Risk analysis of Trojan-horse attacks on practical quantum key distribution systems. IEEE J. Sel. Top. Quantum Electron. 21(3), 1–10 (2015)

  41. Kanter, G.S.: In: CLEO: 2015, p. JW2A.7. Optical Society of America (2015)

  42. Ferreira da Silva, T., Xavier, G.B., Temporão, G.P., von der Weid, J.P.: Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems. Opt. Express 20(17), 18911–18924 (2012)

    Article  ADS  Google Scholar 

  43. Lucamarini, M., Choi, I., Ward, M.B., Dynes, J.F., Yuan, Z.L., Shields, A.J.: Practical security bounds against the Trojan-horse attack in quantum key distribution. Phys. Rev. X 5(3), 031030 (2015)

  44. Bennett, C.H.: Let Eve do the Heavy Lifting, While John and Won-Young Keep Her Honest. http://dabacon.org/pontiff/?p=5340

  45. Dong, H., Pan, H., Li, Y., Wu, E., Zeng, H.: Efficient single-photon frequency upconversion at 1.06 \(\mu \)m with ultralow background counts. Appl. Phys. Lett. 93(7), 071101 (2008)

  46. Itzler, M.A., Jiang, X., Entwistle, M., Slomkowski, K., Tosi, A., Acerbi, F., Zappa, F., Cova, S.: Advances in InGaAsP-based avalanche diode single photon detectors. J. Mod. Opt. 58(3–4), 174–200 (2011)

    Article  ADS  Google Scholar 

  47. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Hughes, R.J., Morgan, G.L., Peterson, C.G.: Quantum key distribution over a 48 km optical fibre network. J. Mod. Opt. 47(2–3), 533–547 (2000)

    ADS  MathSciNet  Google Scholar 

  49. Ekert, A., Rarity, J.G., Tapster, P., Massimo, G.: Palma, practical quantum cryptography based on two-photon interferometry. Phys. Rev. Lett. 69(9), 1293–1295 (1992)

    Article  ADS  Google Scholar 

  50. Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H., Legré, M., Gisin, N.: Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004)

    Article  ADS  Google Scholar 

  51. Yuan, Z., Shields, A.: Continuous operation of a one-way quantum key distribution system over installed telecom fibre. Opt. Express 13(2), 660–665 (2005)

    Article  ADS  Google Scholar 

  52. Boyd, R.W.: Nonlinear Optics, 3rd edn. Academic Press, London (2008)

    Google Scholar 

  53. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73(2), 1–6 (2006)

    Article  Google Scholar 

  54. Dichroic Mirrors/Beamsplitters: 1180 nm Cutoff Wavelength. www.thorlabs.com

  55. Dichroic filter 1400BS. www.omegafilters.com

  56. Tanzilli, S., Martin, A., Kaiser, F., De Micheli, M., Alibart, O., Ostrowsky, D.: On the genesis and evolution of integrated quantum optics. Laser Photonics Rev. 6(1), 115–143 (2012)

    Article  Google Scholar 

  57. Harris, N.C., Grassani, D., Simbula, A., Pant, M., Galli, M., Baehr-Jones, T., Hochberg, M., Englund, D., Bajoni, D., Galland, C.: Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys. Rev. X 4, 041047 (2014)

    Google Scholar 

  58. \(1\times 2\) 1310/1550 nm High Isolation Filter WDM. www.opneti.com

  59. 1550 nm CWL, 12.5 mm Dia. Hard Coated OD 4 50 nm Bandpass Filter. www.edmundoptics.com

  60. 830 nm MaxLine Laser Clean-Up Filter. www.semrock.com

  61. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 686–689 (2010)

  62. Zhao, Y., Fung, C.H., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78(4), 042333 (2008)

    Article  ADS  Google Scholar 

  63. Vakhitov, A., Makarov, V., Hjelme, D.: Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. J. Mod. Opt. 48(13), 2023–2038 (2001)

    Article  ADS  MATH  Google Scholar 

  64. Kurtsiefer, C., Zarda, P., Mayer, S., Weinfurter, H.: The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks? J. Mod. Opt. 48(13), 2039–2047 (2001)

    Article  ADS  Google Scholar 

  65. Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74(2), 1–12 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the DARPA Quiness program (Grant Number: W31P4Q-13-1-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, N., Kanter, G.S. Upconversion-based receivers for quantum hacking-resistant quantum key distribution. Quantum Inf Process 15, 2863–2879 (2016). https://doi.org/10.1007/s11128-016-1315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1315-y

Keywords

Navigation