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Abstract One of the many gaps that needs to be solved by precision agriculture tech-

nologies is the availability of an economic, automated, on-the-go mapping system that can

be used to obtain intensive and accurate ‘real-time’ data on the levels of nitrate nitrogen

(NO3–N) in the soil. A soil nitrate mapping system (SNMS) has been developed to provide

a way to collect such data. This study was done to provide extensive field-scale validation

testing of the system’s nitrate extraction and measurement sub-unit (NEMS) in two crop

(wheat and carrot) production systems. Field conditions included conventional tillage (CT)

versus no tillage (NT), inorganic versus organic fertilizer application, four soil groups and

three points in time throughout the season. Detailed data analysis showed that: (i) the level

of agreement, as measured by root mean squared error (RMSE), mean absolute error

(MAE) and coefficient of efficiency (CE), between NEMS soil NO3–N and standard

laboratory soil NO3–N measurements was excellent; (ii) at the field-scale, there was little

practical difference when using either integer or real number data processing; (iii)

regression equations can be used to enable field measurements of soil NO3–N using the

NEMS to be obtained with laboratory accuracy; (iv) future designs of the SNMS’s control

system can continue to use cheaper integer chip technology for processing the nitrate ion-

selective electrode (NO3
-–ISE) readings; and (v) future designs of the SNMS would not
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need a soil moisture sensor, ultimately saving on manufacturing costs of a more simple

system.

Keywords Soil nitrate measuring � Ion-selective electrode � Precision agriculture

Abbreviations
NO3–N Nitrate nitrogen

SNMS Soil nitrate mapping system

NEMS Nitrate extraction and measurement sub-unit

NO3–ISE Nitrate ion-selective electrode

GPS Global positioning system

IN Integer number data processing

RN Real number data processing

PGW52 Pugwash 52 soil group

PGW82 Pugwash 82 soil group

DRT22 Debert 22 soil group

DRT52 Debert 52 soil group

LDM Liquid dairy manure

IF Inorganic fertilizer

CT Conventional tillage

NT No tillage

DPM Data processing method

IN ? MCC Integer number plus moisture content correction data processing

RN ? MCC Real number plus moisture content correction data processing

INFits Integer number regression fit values

RNFits Real number regression fit values

Introduction

The profitability and sustainability of modern agriculture are being challenged by eco-

nomic globalization and environmental concerns. Fertility practices play a major role in

both these challenges. Excessive nitrogen fertilizer application may reduce crop profits by

potentially increasing fertilizer costs, decreasing crop quality and price, and or depressing

yields for crops with a parabolic yield response. Over-application of either inorganic or

manure fertilizers can also result in the contamination of water sources and it is also the

cause of many of the environmental issues with agricultural production practices (Spalding

and Exner 1993; Jemison and Fox 1994; MacDonald 2000; Dinnes et al. 2002).

Precision agriculture offers an exciting opportunity to use highly advanced technology

to identify better production practices that not only mitigate associated environmental

issues, but also increase the overall sustainability of modern agriculture. The ultimate goal

of such technology is to enable farmers to analyze variation more intensively and precisely

in field conditions throughout the growing season. For example, environmental and crop

response data to make the best site- and time-specific management decisions possible. This

capability can offer new production efficiencies to farmers and at the same time offer

assurances to the public that agricultural practices are conducted with the minimum pos-

sible negative environmental impact.

Precision Agric (2009) 10:162–174 163

123



One of the many gaps that needs to be solved by precision agriculture technologies is

the availability of an economic, automated, on-the-go mapping system that can be used to

obtain intensive and accurate ‘real-time’ data on the levels of nitrate nitrogen (NO3–N) in

the soil. The inability to determine soil characteristics rapidly and inexpensively remains

one of the biggest limitations of precision agriculture (Adamchuk et al. 2004). If these

limitations could be overcome, a positive contribution towards achieving the ultimate goal

of precision agriculture would be made.

The soil nitrate mapping system (SNMS) (Fig. 1) could be one such technology; it can

obtain the data to analyze soil nitrate variation both spatially and temporally. The SNMS

consists of six sub-units (as numbered in Fig. 1): (1) soil sampler, (2) soil metering and

conveying, (3) nitrate extraction and measurement, (4) auto-calibration, (5) control and (6)

global positioning system (GPS). The system automatically takes a soil sample (0–15-cm

depth), mixes it with water, and analyzes it electrochemically for nitrate concentration in

real-time (6 s) with a nitrate ion-selective electrode (NO3
-–ISE). Geo-referenced data are

recorded simultaneously by GPS at each sampling location to enable a nitrate map to be

created for the field. The system can be used to analyze soil samples automatically while

on-the-go, or manually while stationary by placing samples by hand into the nitrate

extraction and measurement sub-unit (NEMS). It is envisioned that two configurations of

the system will eventually be used in practice—a tractor-mounted version (as shown in

Fig. 1) and a portable ‘suitcase’ version (not shown).

From its first prototype (Adsett 1990; Adsett and Zoerb 1991), the SNMS has undergone

several developmental iterations. The use of a NO3
-–ISE in this type of application has

been tested in the laboratory (Thottan et al. 1994; Thottan 1995; Brothers et al. 1997).

Development and preliminary field testing of sub-units 1–5 and their integration into one

Fig. 1 Soil nitrate mapping system with six sub-units: (1) soil sampler, (2) soil metering and conveying, (3)
nitrate extraction and measurement, (4) auto-calibration, (5) control and (6) global positioning system (GPS)
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complete system followed (Thottan 1995; Adsett et al. 1999). In 2001, a new electronics

and control system that incorporated the GPS sub-unit was added. The next step in the

development of the SNMS was extensive field-scale validation of the NEMS against

standard laboratory measurements. In addition, the effect on results obtained by using

cheaper integer number (IN) chip technology (as opposed to real number (RN) chip

technology) in the control system for processing the NO3
-–ISE readings needed to be

investigated. It was also of interest to explore whether a soil moisture content sensor was

necessary to achieve accurate results in the field.

In this study, field-scale validation testing of the SNMS’s NEMS was done with

the objectives of determining: (i) the level of agreement between NEMS soil NO3–N

measurements and standard laboratory measurements for a range of field conditions,

(ii) whether IN or RN data processing of NO3
-–ISE readings agreed more closely with

standard laboratory measurements, (iii) regression equations to enable field measurements

from the NEMS to be given with the accuracy of laboratory measurements and

(vi) whether a soil moisture content sensor was necessary to achieve accurate results with

the NEMS compared to standard laboratory measurements. The scope of this study was

limited to testing in two locally available fields at the same time as other related experi-

ments were being done in two crop production systems (wheat and carrot) of high

economic importance to the Atlantic region of Canada in particular, and internationally in

general. The field conditions included two crops, two tillage methods, two fertilizer types

and four soil groups, as described below.

Materials and methods

Field sites and experimental designs

During the 2006 season, field experiments were established in two adjacent fields (#203

and #207) on the Nova Scotia Agricultural College (NSAC) farm, Truro, Nova Scotia,

Canada (45�220N 63�160W) concurrent with other experiments being conducted by the

Nova Scotia Water Quality Research Group (NSWQRG). These fields have been used by

NSWQRG since 1995 for many bio-environmental, cropping management and water

quality studies, and their soils characteristics and cropping histories have been well doc-

umented (Webb and Langille 1996; Elmi et al. 2005; Gordon et al. 2005).

The four soil groups in the fields are: (i) Pugwash 52 (PGW52), (ii) Pugwash 82

(PGW82), (iii) Debert 22 (DRT22) and (iv) Debert 52 (DRT52). The PGW52 and PGW82

soil groups have a friable, fine sandy loam textured Ap horizon 15–20 cm thick, underlain

by a fine sandy loam textured Bm horizon. Below the Bm horizon is a friable to firm, fine

sandy loam textured, platy structured, fragic BCxj horizon. They are moderately well-

drained and well-drained, respectively. These soil groups are classified as Orthic Humo-

Ferric Podzol in Canada, which is equivalent to Typic Haplorthod and Orthic Podzol under

the FAO and USDA classification systems, respectively. The DRT22 and DRT52 soil

groups have a friable, sandy loam textured Ap horizon 25–30 cm thick, underlain by a

friable to firm sandy loam textured Bmgj horizon. Below the Bmgj horizon are firm, poorly

structured sandy loam to loam textured subsoil horizons that include fragipan (BCxj,

BCxjgi) and compact basal till (Cgj). They are both imperfectly drained. These soil groups

are classified as Gleyed Sombric Brunisol in Canada, which is equivalent to Cambisol and

Dystrochrepts under the FAO and USDA classification systems, respectively. The soil

descriptions are according to Webb and Langille (1996).
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Both fields have systematic tile drainage systems (100-mm diameter) installed at 0.8 m

depth with 12 m spacing between drains. Soil moisture content at the 0–15 cm depth in the

fields during the sampling periods varied between 12.5 and 28.5% on a wet basis.

Field #203 comprised soil groups PGW82, DRT22 and DRT52; it was tilled conven-

tionally, seeded with carrot (Daucus carota L.) and had fertility management treatments of

liquid dairy manure (LDM) and inorganic fertilizer (IF). Field #207 comprised soil groups

PWG52, DRT22 and DRT52; LDM was applied to the entire field, it was seeded with

spring wheat (Triticum aestivum L.) and had tillage management treatments of conven-

tional tillage (CT) and no tillage (NT). Randomized complete block experimental designs

were used by NSWQRG in both fields, with soil groups as blocks. Field #203 had 8 plots (2

fertility treatments 9 4 blocks) and Field #207 had 10 plots (2 tillage treatments 9 5

blocks).

Soil sampling and analyses

Within each field, soil samples were taken at the nodes of a 6.0 m 9 7.5 m grid within the

plots to provide soil NO3–N data for the 0–15 cm soil depth. There were 13 sampling

locations for each wheat plot and eight for each carrot plot. The grids in each plot were laid

out manually in relation to the tile drains so that sampling points were along each drain tile

and at mid-points between the drain tiles. Each sampling location was staked to enable

repeated sampling and its coordinates were recorded with the GPS. This configuration

enabled data to be obtained for this study simultaneously with two other related studies

(not reported here) investigating the relationships between soil NO3–N and drain water

quality, and the spatial and temporal variation of soil NO3–N.

Soil samples were taken as follows: (i) just before planting and fertilizing (3 May for

wheat, 4 May for carrot), (ii) approximately 3 weeks after fertilizing (30 May for wheat, 20

June for carrot) and (iii) after the crop harvest (7 November for both wheat and carrot).

Samples were taken manually by coring with a standard 19 mm diameter tubular soil

sampling tool to a depth of 15 cm. Four cores were taken at each location, placed in a

plastic bag and mixed to give a bulked sample. All samples were taken within a radius of

0.3 m of the sampling location and were kept in Styrofoam coolers while in the field. After

sampling was completed, they were taken to the laboratory and refrigerated (4�C) until

processing could be completed (6–38 days). A total of 582 soil samples was collected and

analyzed for this study.

Standard laboratory analysis for NO3–N content of the samples was done in the NSAC’s

Soils Analysis Laboratory using inorganic N extraction procedures, according to the

methods of Voroney et al. (1993). Moist sub-samples of ±20 g each were combined with

100 ml (1:5 soil/extractant ratio) of 2 M KCl and shaken for 60 min at 170 cps. After

shaking, all samples were allowed to settle for 15 min, and then filtered through Whatman

#42 filter paper into 20-ml HDPE scintillation vials. The vials were placed immediately

into a freezer (-16�C) until NO3–N quantification could be completed (12–36 days).

Samples were subsequently thawed, and NO3–N was quantified colorimetrically using a

Lachat flow injection autoanalyzer (FIA) (Lachat Quickchem, Milwaukee, WI), according

to the method of Keeney and Nelson (1982). Moist sub-samples of 10–15 g each were also

weighed out at the time of extraction, and the moisture content of each sample was

quantified gravimetrically using the standard oven-dry method.

The SNMS analysis of the samples for NO3–N content was done using only its NEMS

in order to isolate the performance of this sub-unit from that of the soil sampling sub-unit.

Calibration of the ion-selective electrode (ISE) was performed using standards prepared
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manually from reagent-grade KNO3 powder and distilled water. Moist sub-samples of

15.1 g each were weighed out manually and placed in the nitrate extraction and measure-

ment chamber. Extraction and quantification of NO3–N was completed automatically in

58.0 ml of vigorously stirred distilled water for 6 s per sample. The ISE used was a new

Orion 9707 ionplus electrode (Thermo Electron Corp., USA). Details of the SNMS’s cal-

ibration procedures and its functional operation are well documented elsewhere (Thottan

et al. 1994; Thottan 1995; Brothers et al. 1997; Adsett et al. 1999). Strict quality control

measures (Table 1) were implemented during the analysis to minimize experimental error.

Data processing and statistical analyses

Four data processing methods (DPM) were used for calculating the NO3–N content of the

soil samples analyzed by the NEMS: (i) integer number (IN); (ii) real number (RN); (iii)

integer number plus moisture content correction (IN ? MCC); and (iv) real number plus

moisture content correction (RN ? MCC). The level of agreement between NEMS mea-

surements and standard laboratory measurements for each DPM was determined by two

absolute measures, root mean squared error (RMSE) and mean absolute error (MAE), and

one relative measure, coefficient of efficiency (CE).

If NEMS measurements are denoted by Pi and standard laboratory measurements are

denoted by Oi, then

RMSE is calculated using

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 Oi � Pið Þ2

n

s

ð1Þ

MAE is calculated using

MAE ¼
Pn

i¼1 jOi � Pij
n

ð2Þ

and CE is calculated using

CE ¼ 1�
Pn

i¼1 Oi � Pið Þ2
Pn

i¼1 Oi � �Oð Þ2
ð3Þ

Table 1 Quality control measures for NEMS analyses

Control measure Action

Sample placement timing Sample placed into chamber as belt pocket rounded conveyor tail-end roller

Sample consistency Hand-granulated in plastic bag prior to weighing. Weighing ±0.1 g

Electrode calibration Electrode calibrations were 59 ± 2 mV/decade

Calibration standards Manually prepared standards were checked against Orion ionplus certified
NaNO3 standard

Temperature Room temperature 20–22�C. Soil vs. calibration standards ± 1�C

Electrode accuracy and
repeatability

Electrode accuracy and repeatability checked against set of manually prepared
decaded standards

Electrode drift At least one blank and repeat sample measurements were randomly made for
each plot. When drift exceeded ±2% electrode sensing module was replaced

Electrode response time Electrode response time in standards compared to stirred soil sample solution
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where �O is the mean of the laboratory measurements and n is the number of data.

Smaller values of RMSE and MAE indicate better performance of the NEMS, but one

also needs a reference value of NEMS measurements to judge whether these measures are

acceptably small. Perfect agreement gives RMSE and MAE values of zero. The RMSE

values are either equal to or larger than the MAE values because they are based on squared

deviations, hence are more sensitive to the inflating effect of larger deviations (Astatkie

2006). Both measures were used to assess the presence of extreme differences between

laboratory and SNMS measurements. On the other hand, for the unitless relative measure

CE, a negative value indicates that estimating the laboratory measurements by the NEMS

measurements is worse than estimating them by a typical (average) value, a positive value

indicates that estimating the laboratory measurements by the NEMS measurements is

better than estimating them by the average, a value of zero indicates that the agreement is

as good as estimating all values by the average and a value of one indicates the NEMS

measurements are in perfect agreement with the laboratory measurements. A DPM that

gives a CE closer to one performs better. Detailed description of these measures and their

applications in simulation and forecasting models are available in Astatkie (2006).

For each DPM, simple linear regression models of Y (laboratory value) on X (DPM

value) were fitted for the different sampling dates, treatments, soil groups and crops. After

verifying the validity of all model assumptions (normality, constant variance and inde-

pendence), nested linear regression models (Bates and Watts 1988) were fitted and tested to

determine if the different groups of data shared a common intercept and slope at the 0.05

level of significance.

After confirming that the different groups shared the same intercept and slope, one final

linear regression model was fitted for each DPM using all data combined across sampling

dates, treatments, soil groups and crops. These final regression models were fitted to enable

field measurements using the NEMS to be given with the same accuracy as those deter-

mined in the laboratory.

To determine whether a soil moisture content sensor was necessary to improve the

accuracy of results from the NEMS compared to standard laboratory measurements, a

comparison of the IN and RN regression equations’ fitted values, both with and without

moisture content correction, with the laboratory values was made using the performance

indicator measures, namely, RMSE, MAE and CE as discussed above.

All raw data calculations were made using Excel (Microsoft Corp., California, USA.;

Ver. Prof. Ed. 2003). All measures of agreement, and regression analyses were computed

using macros written for and executed by Minitab (Minitab Inc., Pennsylvania, USA; Ver.

15.0).

Results and discussion

The NEMS data from the first sampling dates for each crop (3 May for carrot and 4 May

for wheat) were excluded from the analyses because of inconsistent operation of the NEMS

during sample processing. Exclusion of these data did not limit applicability of the NEMS

results, however, because the full range of soil NO3–N values from the later dates included

those from the first dates. The problem with the NEMS operation was rectified prior to

processing the remaining samples.

Representative graphs comparing NEMS and laboratory measurements over all the field

conditions tested are shown in Fig. 2. These graphs illustrate the admirable performance of
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the NEMS on an individual sample basis, regardless of the field condition from which the

sample originated. They also indicate the responsiveness of the ISE, as the values are

displayed by sampling location (x-axis) in the order of measurement. The electrode appears

to respond equally well regardless of whether the NO3–N level changes from lower to

higher, or higher to lower during a sequence of measurements.

Comparison of NEMS and laboratory measurements

Table 2 shows that there are no marked differences in the values of the agreement mea-

sures for sampling date, treatment, crop or soil group data sets. Therefore, all data sets were

combined and the agreement measures were calculated again. For all data combined (first

column in Table 2), the RMSE values are between 2.23 and 3.73 mg kg-1, the MAE

values are between 1.67 and 2.68 mg kg-1 and the CE values are between 0.836 and 0.941.

The difference between the RMSE and MAE values is an indication of the presence of

some large individual errors. The order of magnitude of the three agreement measures from

smallest to largest for comparison with the laboratory values is consistent for the four

DPMs, with RN ? MCC DPM having the smallest values, followed by IN ? MCC, IN,

and RN. From a practical perspective, however, all DPMs are close to each other as the

maximum difference in MAE values between RN and RN ? MCC is only 1.01 mg kg-1

(2.68 - 1.67 mg kg-1) which is equivalent to 2.32 kg ha-1. On an absolute basis, the

maximum difference between the NEMS and the laboratory values is 2.68 mg kg-1 for the

RN DPM, which is equivalent to 6.05 kg ha-1. It is unlikely that either of these levels of

difference would have much consequence on field-scale use of the SNMS.

The same is true for the difference between NEMS measurements with and without

moisture content correction. Statistically, moisture content correction of the NEMS mea-

surements are more similar to the laboratory values than those without the correction as

shown in Table 2 (CE values: RN ? MCC = 0.941 and IN ? MCC = 0.902 compared

with RN = 0.836 and IN = 0.881). From a practical field perspective, however, the
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difference is minimal. For the worst case of MAE values between RN and RN ? MCC, the

difference of 1.01 mg kg-1 (2.32 kg ha-1) would be of little consequence in the field.

Based on these results, we concluded that the level of agreement between NEMS NO3–

N measurements and standard laboratory ones for the variety of field conditions tested was

excellent. The results also suggest that the NEMS is robust enough to be used in the crops,

soil groups, fertility types and tillage conditions tested, as well as at any time throughout

the season. Wider testing of the system is required, however, to assess the generality of the

findings to other crops, soil textural classes, soil management systems and geographic

regions.

Integer number compared with real number data processing

Table 2 shows that the difference in the results between using IN or RN data processing in

comparison to standard laboratory measurement is minimal. The three agreement measures

are similar when comparing results between the IN and RN DPMs, either alone or with

moisture content correction. Without moisture content correction, the RMSE, MAE and

CE values for IN compared with RN are 3.18 mg kg-1 compared with 3.73, 2.30 mg kg-1

compared with 2.68 mg kg-1 and 0.881 compared with 0.836, respectively. With moisture

content correction, the RMSE, MAE and CE values for IN compared with RN are 2.89 mg

kg-1 compared with 2.23, 2.11 mg kg-1 compared with 1.67 mg kg-1 and 0.902 compared

with 0.941, respectively. On an absolute basis, the maximum difference between IN and

RN is 0.44 mg kg-1 (0.98 kg ha-1). It is unlikely that this level of difference would have

much consequence on field-scale use of the SNMS.

Based on these results, we concluded that at the field-scale there was little practical

difference in the results when using either the IN or RN data processing method. The

implication of this finding is that future designs of the SNMS’s control system can continue

to use cheaper IN chip technology for processing the NO3
-–ISE readings.

Regression analyses

The nested linear regression models had common intercepts and slopes for the different

sampling dates (excluding the first dates as discussed above), treatments, soil groups and

crops (regressions are not shown here). These results indicate that the NEMS had the same

level of performance over all field conditions tested. Therefore, linear regression models

for each DPM were fitted for all data combined (Fig. 3). Depending on the data set being

modeled, the seven or eight outliers identified during regression with standardized resid-

uals greater than 3.0 were excluded. The final fitted regression equations given below were

based on 380 or 381 data points:

For the IN DPM,

Lab NO3�N ¼ 0:727þ 1:09 NEMS IN NO3�N R2 ¼ 0:905; n ¼ 381
� �

ð4Þ

For the RN DPM,

Lab NO3�N ¼ 0:131þ 1:24 NEMS RN NO3�N R2 ¼ 0:933; n ¼ 381
� �

ð5Þ

For the IN ? MCC DPM,

Lab NO3�N ¼ 0:490 þ 0:89 NEMS IN þ MCC NO3�N R2 ¼ 0:910; n ¼ 380
� �

ð6Þ

For the RN ? MCC DPM,
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Lab NO3�N ¼ �0:040 þ 1:00 NEMS RN þ MCC NO3�N R2 ¼ 0:936; n ¼ 381
� �

ð7Þ

As for the results of the agreement measures discussed above, the RN ? MCC DPM also

resulted in the best match to the laboratory measurements (R2 = 0.936, slope = 1.00).

However, from a practical perspective all models described the relationship between

NEMS measurements and laboratory measurements very well since their R2 values were all

above 90%.

We concluded that any of the above regression equations that describe the relationship

between NEMS measurements and laboratory measurements for the four data processing

methods tested could be applied during data processing to enable field measurements of

soil NO3–N using the NEMS to be given with the same accuracy as laboratory ones.

Soil moisture content sensor

To determine whether a soil moisture content sensor was necessary to achieve results with

the NEMS that compare accurately to standard laboratory measurements, a comparison of

agreement measures for the IN and RN regression equations’ fitted values (INFits, RNFits)

with the laboratory values was made (Table 2). For all data combined, the RN fitted values

(RNFits CE = 0.939) show a closer agreement with laboratory values than do the IN fitted

values (INFits CE = 0.919). From a practical field perspective, however, either result is

just as good (2.1% difference). Table 2 shows that for all data combined, the maximum

difference in MAE values between RN ? MCC, INFits and RNFits (1.67, 1.97 and
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1.70 mg kg-1, respectively) of 0.30 mg kg-1 (0.67 kg ha-1) would have no marked

consequence in the field. Therefore, we concluded that future designs of the SNMS would

not need a soil moisture sensor, ultimately saving on manufacturing costs and keeping the

system design simpler. These results also confirm, as concluded above, that the IN and RN

regression equations can be used as predictors of laboratory measurements from NEMS

measurements.

Conclusions

Based on the results of this study, we made the following conclusions. The level of

agreement between NEMS soil NO3–N measurements and standard laboratory soil NO3–N

measurements for the variety of field conditions tested was excellent. The results also

suggest that the NEMS is robust enough to be used in the crops, soil groups, fertility types,

and tillage conditions tested, as well as at any time throughout the season. Wider testing of

the system is required, however, to assess the generality of the findings to other crops, soil

textural classes, soil management systems and geographic regions. At the field-scale there

was little practical difference in the results when using either the IN or RN data processing

method. The implication of this finding is that future designs of the SNMS’s control system

can continue to use cheaper IN chip technology for processing the NO3
-–ISE readings. In

addition, we concluded that any of the above regression equations that describe the rela-

tionship between NEMS measurements and laboratory measurements for the four data

processing methods tested could be applied to enable field measurements of soil NO3–N

using the NEMS to be given with the same accuracy as laboratory ones. Future designs of

the SNMS would not need a soil moisture sensor, ultimately saving on manufacturing costs

and keeping the system design simpler. Over the range of field conditions tested in this

study, accurate predictions of laboratory values can be obtained by using either of the IN or

RN regression equations during data processing calculations of soil NO3–N measurements

taken with the NEMS.
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