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Abstract The aim of this paper is to address a problem raised originally by L.
Gendre, later by W. Pleśniak and recently by L. Białas–Cież and M. Kosek. This
problem concerns the pluricomplex Green function and consists in finding new
examples of sets with so–called Łojasiewicz–Siciak ((ŁS) for short) property. So far,
the known examples of such sets are rather of particular nature. We prove that each
compact subset of RN, treated as a subset of CN, satisfies the Łojasiewicz–Siciak
condition. We also give a sufficient geometric criterion for a semialgebraic set in R2,
but treated as a subset of C, to satisfy this condition. This criterion applies more
generally to a set in C definable in a polynomially bounded o–minimal structure.

Keywords Siciak’s extremal function · (HCP) property ·Semialgebraic set ·
O–minimal structure
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1 Introduction

In C
N we consider the Euclidean norm: |z| := √|z1|2 + . . .+ |zN|2, for z =

(z1, . . . , zN). If b ∈ C
N and r > 0, then K(b , r) := {z ∈ C

N : |z− b | < r}. For a
nonempty set A ⊂ CN and h : A −→ CN′

, we put ‖h‖A := supz∈A |h(z)|. Moreover,
C := C ∪ {∞}, N := {1, 2, 3, . . .}.
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Our paper is devoted to Siciak’s extremal function. Recall that the extremal
function, associated with a (nonempty) compact set K ⊂ CN and introduced by J.
Siciak in [26], is defined by the formula

�K(z) := sup{|p(z)|1/deg p : p ∈ C[Z ] is nonconstant and ‖p‖K ≤ 1},
for z ∈ C

N (cf. [11, 22, 26, 27]). It is a deep result that log�K = VK , where

VK(z) := sup{u(z) : u ∈ L(CN), u ≤ 0 on K}
and L(CN) denotes the class of plurisubharmonic functions u in CN satisfying the
condition: supz∈CN

[
u(z)− log(1 + |z|)] < ∞ (cf. [27, 29]). The extremal function is a

powerful tool in real and complex analysis (for example, in the theory of holomorphic
functions, in approximation theory, as well as in potential and pluripotential theory–
for the latter two see [2, 8, 24]). A spectacular example of usefulness of the extremal
function is the Siciak’s extension of the Bernstein–Walsh theorem to the case of
several variables (cf. [26]).

If N = 1 and K is of positive logarithmic capacity, the upper semicontinuous
regularizationV∗

K of VK is the Green function of the unbounded component ofC \ K
(with pole at infinity). If N > 1, V∗

K is therefore sometimes called the pluricomplex
Green function.

It is particularly important to recognize, given a point a ∈ K, whether �K is
continuous at a (if so, then we say that K is L–regular at a). This problemwas studied
among others in [1, 15, 17–21, 25, 27].

While the problem of finding new L–regular sets is rather difficult, the construc-
tion of sets with so–called (HCP) property, which is a stronger condition than L–
regularity, is significantly harder. We say that a compact set K ⊂ C

N has the Hölder
continuity property (HCP) if there exist constants � > 0, μ > 0 such that

�K(z) ≤ 1 +� (dist(z; K))μ as dist(z; K) ≤ 1

(z ∈ C
N). The (HCP) property finds applications in the theory of polynomial inequal-

ities (for example, Markov’s inequality) and was investigated in [9, 13, 14, 16, 28].
Recently, L. Gendre introduced another condition, called the Łojasiewicz–Siciak

condition, or (ŁS) for short (cf. [7]). We say that a compact set K ⊂ C
N satisfies the

(ŁS) condition if it is polynomially convex1 and there exist constants η > 0, κ > 0
such that

�K(z) ≥ 1 + η (dist(z; K))κ as dist(z; K) ≤ 1

(z ∈ C
N). This condition is useful in approximation theory. For example, it was

used by L. Gendre to prove a result on approximation of functions in holomorphic
Carleman classes. In a planned sequel to the present article, we shall discuss other
motivations for studying this condition.

L. Białas–Cież and M. Kosek claim in [3] that so far very few examples of
sets with the (ŁS) property are known. Their paper is devoted to the problem

1We call a compact set K ⊂ CN polynomially convex if K = K̂ := {z ∈ CN : |P(z)| ≤ ‖P‖K for all
polynomials P ∈ C[Z ]}. One can prove that each compact subset of RN , treated as a subset of CN , is
polynomially convex. Moreover, a compact set K ⊂ C is polynomially convex if and only if C \ K is
connected.
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of delivering some new examples of such sets (which are connected with iterated
function systems). The main thrust of our paper is to prove Theorems 1.1 and 1.2.

Theorem 1.1 Each (nonempty) compact subset of RN, treated as a subset of CN,
satisf ies the (ŁS) condition with κ = 1.

For a compact set K ⊂ R2 treated as a subset ofC, we have amuch different result.
We say that b ∈ A ⊂ R

N is a regular point of A, if A in some neighbourhood of b
is a C1 submanifold of RN. The set of regular points is denoted by RegA. Moreover,
we put SingA := A \RegA.

Recall that a subset of RN is semialgebraic if it is a finite union of sets of the form

{x ∈ R
N : f (x) = 0, g1(x) > 0, . . . , gk(x) > 0},

where f, g1, . . . , gk ∈ R[X1, . . . , XN] (cf. [4]). Amap is said to be semialgebraic if its
graph is semialgebraic. We define the dimension dim A of a nonempty semialgebraic
set A ⊂ R

N to be the maximum of all d ∈ N ∪ {0} such that A contains a d–
dimensional C1 submanifold of RN.

In the next theorem the following assumption is made: all the interior angles of
the setR2 \ K at b are greater than 0. We will explain in the Section 3 (cf. Definition
3.6) what this precisely means. Roughly speaking, we require that R2 \ K have no
cusps.

Theorem 1.2 Assume that a (nonempty) set K ⊂ R
2 is compact, connected, semi-

algebraic and such that R2 \ K is connected. Suppose additionally that, for each
b ∈ ∂K := K \ IntK, all the interior angles of the set R2 \ K at b are greater than 0.
Then K, treated as a subset of C, satisf ies the (ŁS) condition.

Moreover, the exponent κ can be given ef fectively as follows. For each b ∈ Sing ∂K,
let θ1(b ), . . . , θp(b)(b ) ∈ (0, 2] be such that the interior angles of R2 \ K at b are equal
πθ1(b ), . . . , πθp(b)(b ). Put

σ := inf{θν(b ) : ν ≤ p(b ),b ∈ Sing ∂K} .
(If Sing ∂K = ∅, we let σ := 1). Then σ > 0 and (ŁS) holds with κ := max{1, σ−1}.

Remark 1.3 To make the paper as accessible as possible we decided to avoid,
with the exception of Section 6, the o–minimal setting. However, the statement of
Theorem 1.2 remains valid if the assumption that K is semialgebraic is replaced
by the assumption that K is definable in some polynomially bounded o–minimal
structure (see Section 6). The latter case is much more general. Nevertheless, the
way we prove Theorem 1.2 is such that it works for sets definable in polynomially
bounded o–minimal structures (and of course satisfying the remaining assumptions
of the theorem).

2 The Real Case

Theorem 1.1 completely solves the problem of the Łojasiewicz–Siciak condition for
compact subsets of RN, treated as subsets of CN. It is really surprising, because as
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we will see in the next sections, the situation becomes completely different, when
we consider a set in R2 not as a subset of C2, but as a subset of C. Namely, in the
latter case

• there are (very simple—even semialgebraic) polynomially convex sets which do
not satisfy the (ŁS) condition;

• there is no universal exponent κ > 0 for sets satisfying the (ŁS) condition, while
in the real case we can always take κ = 1.

Theorem 1.1 follows immediately from Proposition 2.1 below. Before we state it
recall that:

• �[−1, 1](z) = |z+√
z2 − 1| for z ∈ C, where the square root is so chosen that

�[−1, 1] ≥ 1;
• If K ⊂ E ⊂ C

N , then �K ≥ �E;
• If F : CN −→ C

N is an affine isomorphism, then �F(K) = �K ◦ F−1 (K ⊂ C
N).

Proposition 2.1 (R. Pierzchała, Approximation of holomorphic functions on compact
subsets of RN (in preparation)). Assume that K ⊂ R

N is a compact set containing at
least two distinct points, treated as a subset of CN. Then for each z ∈ C

N,

�K(z) ≥ 1 +�(z)dist(z; K) ,

where �(z) :=
√
(diamK)−1 (diamK + 2 dist(Re(z); K))−1.

The proof of this proposition is given in (R. Pierzchała, Approximation of
holomorphic functions on compact subsets of RN (in preparation)). However, for
the sake of completeness, we include the proof.

Proof Fix a ∈ C
N. Put b := Re(a), δ := (dist(b ; K))

2, δ′ := (dist(a; K))
2 and R :=

diamK
(
diamK + 2

√
δ
)
. Define

Ka :=
{
x ∈ R

N : √δ ≤ |x− b | ≤ √
R+ δ

}

and consider the polynomial

ϒ : CN � z �−→ R+ δ −
∑

(zν − b ν)
2 ∈ C .

Since ϒ(Ka) = [0, R] and ϒ (a) = R+ δ′, it follows that

�ϒ(Ka) (ϒ(a)) = �[0, R] (ϒ(a)) = �[−1, 1]
(

2ϒ(a)
R

− 1

)

= �[−1, 1]
(

2(R+ δ′)
R

− 1

)
=

(√
R+ δ′ + √

δ′
)2

R
.

As K ⊂ Ka we obtain easily the following estimates

�K(a) ≥ �Ka(a) ≥
√
�ϒ(Ka) (ϒ(a))
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and therefore

�K(a) ≥
√
�ϒ(Ka) (ϒ(a)) =

√
R+ δ′ + √

δ′√
R

≥ 1 +
√
δ′

R
= 1 + 1√

R
dist(a; K) ,

which is the desired estimate. ��

Remark 2.2 Theorem 1.1 along with the earlier results of W. Pawłucki and W.
Pleśniak (cf. [13]), as well as the results obtained by the author (cf. [14, 16]), enables
to give a rich family of natural sets satisfying both (HCP) and (ŁS) condition. All
compact, fat and semialgebraic sets constitute a part of this family. (Recall that a set
B is said to be fat if B = IntB.)

Remark 2.3 L. Białas–Cież informed me that Theorem 1.1 in the special case N = 1
was obtained independently by L. Białas–Cież and R. Eggink.

3 The Complex Case Semialgebraic Sets

Definition 3.1 (see [23]) Assume that  ⊂ R
2 = C. We say that  is a Dini–smooth

arc if there exists h : [α, β] −→ R2 of class C1 (α < β) such that

(1)  = h([α, β]);
(2) h is injective and h′(t) �= (0, 0) for t ∈ [α, β];
(3) For some (weakly) increasing function ω : [0, β − α] −→ [0,+∞) the following

conditions hold:

•
∫ β−α

0

ω(x)
x

dx < ∞,

• |h′(u)− h′(v)| ≤ ω(|u− v|), for u, v ∈ [α, β].

Definition 3.2 Suppose that b ∈ R
2 = C, r > 0 and θ ∈ [0, 2]. A set � ⊂ R

2 = C is
said to be a (θ,b , r)–set if there exist Dini–smooth arcs 1, 2 ⊂ R

2 with endpoints
a1, b and a2,b respectively such that

• a1, a2 ∈ ∂K(b , r),
• 1 \ {a1} ⊂ K(b , r), 2 \ {a2} ⊂ K(b , r),
• 1 ∩ 2 = {b } (in particular, a1 �= a2),
• � is one of the two connected components of the set K(b , r) \ (1 ∪ 2),
• the interior angle of � at b is equal πθ . (The arcs 1, 2 have the tangent lines

at b . These lines make the interior angle of� at b . For example, if θ = 0, then �

has a cusp at b , and if θ = 2, then R
2 \� has a cusp at b .)

By l� we will denote the open (i.e. without endpoints) subarc of ∂K(b , r) connecting
the points a1, a2 and contained in �.

Definition 3.3 A set  ⊂ R2 is called a simple semialgebraic arc if there exists a
semialgebraic function ξ : [α, β] −→ R of class C1 (α < β) such that

 = {(x, ξ(x)) : x ∈ [α, β]} or  = {(ξ(x), x) : x ∈ [α, β]} .

Lemma 3.4 Each simple semialgebraic arc is a Dini–smooth arc.
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Proof Let ξ : [α, β] −→ R (α < β) be of class C1 and semialgebraic. We will show
that the set  := {(x, ξ(x)) : x ∈ [α, β]} is a Dini–smooth arc. By the Łojasiewicz
inequality (cf. [12]), there exist�,μ > 0 such that

|ξ ′(u)− ξ ′(v)| ≤ �|u− v|μ ,
for u, v ∈ [0, 1]. We see that  satisfies the definition of a Dini–smooth arc with
h(t) := (t, ξ(t)), t ∈ [α, β], and ω(x) = �xμ, x ∈ [0, β − α]. In the same way we show
that {(ξ(x), x) : x ∈ [α, β]} is a Dini–smooth arc. ��

The following lemma is a special case of Lemma 6.1.

Lemma 3.5 Let E ⊂ R
2 be a closed semialgebraic set. If b ∈ ∂E is not an isolated

point of E, then one of the following two conditions holds:

(1) There exist p = p(b ) ∈ N and θ1 = θ1(b ), . . . , θp = θp(b ) ∈ [0, 2] such that, for
each suf f iciently small r > 0,

• K(b , r) \ E = �1 ∪ . . . ∪�p,
• �ν (ν = 1, . . . , p) are certain pairwise disjoint (θν,b , r)–sets,
• l�ν

⊂ R
2 \ E (ν = 1, . . . , p).

(2) For each suf f iciently small r > 0,

• E ∩ K(b , r) = ,
•  ⊂ R

2 is a simple semialgebraic arc with endpoints a,b,
• a ∈ ∂K(b , r),  \ {a} ⊂ K(b , r).

Definition 3.6 We keep the notation of the above lemma and let b ∈ ∂E.

• If the condition (1) holds, then the collection {πθ1(b ), . . . , πθp(b)(b )} will be
called the interior angles of the set R2 \ E at b;

• If the condition (2) holds or b is an isolated point of E, then we will say that 2π
is the interior angle of the set R2 \ E at b.

4 The Complex Case Proof of Theorem 1.2

In this section we will derive Theorem 1.2 from the following result.

Proposition 4.1 Let K ⊂ C be a compact, connected set such that #K ≥ 2 and C \ K
is connected. Suppose that there exists δ > 0 such that each point b ∈ ∂K is one of the
following types:

Type I: There exist p = p(b ) ∈ N, θ1 = θ1(b ), . . . , θp = θp(b ) ∈ [0, 2] and r =
r(b ) > 0 such that

• K(b , r) \ K = �1 ∪ . . . ∪�p,
• �ν (ν = 1, . . . , p) are certain pairwise disjoint (θν, b , r)–sets and θν ≥ δ,
• l�ν

⊂ C \ K (ν = 1, . . . , p).
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Type II: There exists r = r(b ) > 0 such that

• K ∩ K(b , r) = ,
•  ⊂ C is a Dini–smooth arc with endpoints a,b,
• a ∈ ∂K(b , r),  \ {a} ⊂ K(b , r).

Then there exists η > 0 such that

�K(z) ≥ 1 + η (dist(z; K))
κ as dist(z; K) ≤ 1

(z ∈ C), where κ := max{1, δ−1}.

Proof Note first that

• �K ≥ 1 in C;
• �K(z) = 1 ⇐⇒ z ∈ K (because K = K̂);
• �K is continuous in C (cf. [10]).

By the Riemann Mapping Theorem, there exists a conformal map ϕ : C \ K −→
K(0,1) such that ϕ(∞) = 0. The function z �−→ log

1

|ϕ(z)| is the Green function of

C \ K (with pole at infinity). Therefore

VK(z) = log
1

|ϕ(z)| for z ∈ C \ K ,

or equivalently

�K(z) = 1

|ϕ(z)| for z ∈ C \ K

(see the Introduction).
A standard argument via the Koebe One–Quarter Theorem shows that

|ϕ′(z)| ≤ 4
1 − |ϕ(z)|
dist(z; K)

,

for z ∈ C \ K. Therefore

|g′(w)| ≥ 1

4

dist (g(w); K)

1 − |w| , (1)

for w ∈ K(0,1) \ {0}, where g := ϕ−1 : K(0,1) −→ C \ K.
Suppose that, contrary to our claim, the statement of Proposition 4.1 is not valid.

Then we will find sequences

• z j ∈ C ( j ∈ N), dist(z j; K) ≤ 1,
• η j > 0 ( j ∈ N), η j → 0

such that

�K(z j) < 1 + η j
(
dist(z j; K)

)κ
. (2)

(Recall that κ := max{1, δ−1}.) Clearly, z j ∈ C \ K. Put w j := ϕ(z j) = g−1(z j).
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Passing to a subsequence if necessary, we can assume that z j → b ∈ C \ IntK.
Note that

�K(b ) = lim
j→∞

�K(z j) ≤ lim
j→∞

[
1 + η j

(
dist(z j; K)

)κ] = 1

and therefore b ∈ K. Consequently, b ∈ K \ IntK = ∂K.

Case 1 b is of Type I. Take p = p(b ) ∈ N, r = r(b ) > 0 and the sets�1, . . . ,�p as in
definition of Type I. Passing to a subsequence if necessary, we can assume that z j ∈
�ν0 ( j ∈ N) for some ν0 ≤ p. Put � := �ν0 . Recall that � is a (θ,b , r)–set with some
θ ≥ δ, and take a1, a2, 1, 2 and l� of Definition 3.2. Since 1 \ {a1}, 2 \ {a2} ⊂ K,
it follows that 1 ∪ 2 ⊂ K.

Take injective and continuous γ : [0, 1] −→ ∂K(b , r) such that

• γ (0) = a1, γ (1) = a2,
• γ ((0, 1)) = l�.

By Theorem 2.3 in [23],

• the limits

a′1 := lim
t→0+

ϕ(γ (t)) , a′2 := lim
t→1−

ϕ(γ (t))

exist,
• a′1 �= a′2 and a′1, a

′
2 ∈ ∂K(0, 1).

Therefore l′� ∪ {a′1, a′2}, where l′� := ϕ(l�), is a Jordan arc (that is, a homeomorphic
image of [0, 1]) with endpoints a′1, a

′
2. Note that

� ∩ [(C \ K) \ l�] = [� ∪ 1 ∪ 2 ∪ l�] ∩ [(C \ K) \ l�] = � .

Hence � is closed in (C \ K) \ l�. It is also open. Consequently, ϕ(�) is open and
closed in K(0,1) \ l′� and thus it must be one of the two connected components of
this set. Put �′ := ϕ(�).

The map �′ � w �−→ g(w) ∈ � is a conformal map between Jordan domains.
Therefore it can be extended to a homeomorphism G : �′ −→ � (cf. [23], Theorem
2.1). Note that

∂�′ = G−1(∂�) = l′� ∪ G−1(1 ∪ 2) .
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It is clear that

• G−1(1 ∪ 2) is a (closed) subarc of ∂K(0, 1) connecting the points a′1, a
′
2;• G−1(1) ∩G−1(2) = G−1(1 ∩ 2) = {G−1(b )};

• Gmaps the arcs G−1(1), G−1(2) respectively onto Dini–smooth arcs 1, 2.

By Theorem 3.7 in [23], the map

w �−→ g′(w)
(
w −G−1(b )

)θ−1

is bounded near G−1(b ). Therefore for some M ∈ (0,+∞),

|g′(w j)| ≤ M|G−1(b )−w j|θ−1 .

Combining this with Eq. 1 we obtain

1

4M
dist(z j; K) ≤ (1 − |w j|)|G−1(b )−w j|θ−1 . (3)

Note that, for j ∈ N large enough, |G−1(b )−w j| ≤ 1 and therefore

|G−1(b )−w j|θ−1 ≤ |G−1(b )−w j|min{0,θ−1} ≤ (|G−1(b )| − |w j|
)min{0,θ−1}

= (
1 − |w j|

)min{0,θ−1} ≤ (
1 − |w j|

)min{0,δ−1}
.

The above estimates and Eq. 3 imply that, for j ∈ N large enough,

1

4M
dist(z j; K) ≤ (1 − |w j|)(1 − |w j|)min{0,δ−1} = (1 − |w j|) 1

κ

=
(

1 − 1

�K(z j)

) 1
κ ≤ (

�K(z j)− 1
) 1

κ

and thus

�K(z j) ≥ 1 + 1

(4M)κ

(
dist(z j; K)

)κ
.

This contradicts the fact that Eq. 2 holds and η j → 0.

Case 2 b is of Type II. Take r = r(b ) > 0, a ∈ ∂K(b , r) and  as in definition of
Type II. Clearly, there exists a Jordan arc L with endpoints c ∈ ∂K(b , r) and b such
that L ∩  = {b } and L \ {c} ⊂ K(b , r). Let l1, l2 denote the two (open) subarcs of
∂K(b , r) connecting the points a and c. Each of the two curves  ∪ L ∪ l1,  ∪ L ∪ l2
bounds a Jordan domain contained in K(b , r). These domains will be denoted�1,�2

respectively.
Note that �1 is closed in (C \ K) \ (L ∪ l1) = (C \ K) \ [(L \ {b }) ∪ l1], because

�1 ∩ [(C \ K) \ (L ∪ l1)] = [�1 ∪  ∪ L ∪ l1] ∩ [(C \ K) \ (L ∪ l1)] = �1 .

Consequently, ϕ(�1) is open and closed in K(0,1) \ [ϕ(L \ {b }) ∪ ϕ(l1)] and thus
it must be one of the two connected components of this set. (Note that these
components are Jordan domains–compare the argument given in Case 1.) Put �′

1 :=
ϕ(�1). Similarly, we define �′

2 := ϕ(�2).
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The following maps

�′
1 � w �−→ g(w) ∈ �1 , �′

2 � w �−→ g(w) ∈ �2

are conformal maps between Jordan domains. Therefore they can be extended to
homeomorphisms

G1 : �′
1 −→ �1 , G2 : �′

2 −→ �2

(cf. [23], Theorem 2.1). Note that

∂�′
1 = G−1

1 (∂�1) = ϕ(L \ {b }) ∪ ϕ(l1) ∪ G−1
1 () ,

∂�′
2 = G−1

2 (∂�2) = ϕ(L \ {b }) ∪ ϕ(l2) ∪ G−1
2 () .

It is clear that

• G−1
1 (), G−1

2 () are closed subarcs of ∂K(0,1) connecting the points a′1, b
′

and a′2, b
′ respectively, where a′1 := G−1

1 (a), a′2 := G−1
2 (a) and b ′ := G−1

1 (b ) =
G−1

2 (b );
• {b ′} ⊂ G−1

1 () ∩ G−1
2 () ⊂ {b ′, a′1};• g (more precisely, the extension of g to K(0,1)) maps each of the arcs G−1

1 (),
G−1

2 () onto .

By Theorem 3.7 in [23], the map

w �−→ g′(w)

w − b ′

is bounded near b ′. We easily check that w j → b ′ and therefore, for some M̃ ∈
(0,+∞),

|g′(w j)| ≤ M̃|b ′ −w j| .
Combining this with Eq. 1 we obtain for j ∈ N large enough

1

4M̃
dist(z j; K) ≤ 1 − |w j| = 1 − 1

�K(z j)
≤ �K(z j)− 1

and thus

�K(z j) ≥ 1 + 1

4M̃
dist(z j; K) ≥ 1 + 1

4M̃

(
dist(z j; K)

)κ
.

The above estimates contradict the fact that Eq. 2 holds and η j → 0. ��

Proof that Proposition 4.1 =⇒ Theorem 1.2 We keep the notation of Theorem 1.2.
We may assume that #K ≥ 2, because otherwise �K = +∞ in C \ K. Therefore K is
without isolated points. Recall that

σ :=
{

inf{θν(b ) : ν ≤ p(b ),b ∈ Sing ∂K} if Sing ∂K �= ∅
1 otherwise .
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Since dim Sing ∂K < dim ∂K, it follows that Sing ∂K is a finite set (cf. [5]). In
particular, σ > 0. Put δ := min{1, σ }. Fix b ∈ ∂K. We apply Lemma 3.5 to E := K
and consider the following three cases.

Case 1: b ∈ Sing ∂K and the condition (1) of Lemma 3.5 holds. Note that
θ1(b ), . . . , θp(b)(b ) ≥ δ. Therefore the point b is of Type I (cf. Proposi-
tion 4.1).

Case 2: b ∈ Reg ∂K. Then the condition (1) of Lemma 3.5 holds with p =
p(b ) = 1 and θ1 = θ1(b ) = 1 or with p = p(b ) = 2 and θ1 = θ1(b ) = 1, θ2 =
θ2(b ) = 1. Clearly, θν(b ) ≥ δ. Therefore the point b is of Type I.

Case 3: the condition (2) of Lemma 3.5 holds. By Lemma 3.4, the point b is of
Type II.

We have checked that the assumptions of Proposition 4.1 are satisfied. Hence
there exists η > 0 such that

�K(z) ≥ 1 + η (dist(z; K))
κ as dist(z; K) ≤ 1

(z ∈ C), where κ := max{1, δ−1} = δ−1 = max{1, σ−1}. This finishes the proof. ��

5 Examples

In the first example we give a family of compact semialgebraic subsets of R2, treated
as subsets of C, such that:

• For each set of this family, the exponent κ obtained via Theorem 1.2 is optimal;
• There is no universal upper bound for these exponents. This reveals the first

major difference between the complex and the real case. Recall that in the latter
one we have the universal exponent κ = 1 (cf. Theorem 1.1).

Example 1 Let a > 0, r > 0, R := √
a2 + r2. Put K := K1 ∪ K2, where K1 :=

K(a, R), K2 := K(−a, R). Take δ > 0 such that πδ is the interior angle of the set
C \ K at ir. Clearly, δ ∈ (0, 1). Put

φ : C � z �−→ z− ir
z+ ir

∈ C .

It is easy to check that

φ(∂K1) = R · (a− ir) ∪ {∞} , φ(∂K2) = R · (a+ ir) ∪ {∞} .
It follows that φ(C \ K) = C \ (φ(K1) ∪ φ(K2)) = D, where

D :=
{
w = w1 + iw2 ∈ C : w1 > 0, |w2| < r

a
w1

}
.

Consider the following conformal maps

φ 1 : D � w �−→ w
1
δ ∈ {u ∈ C : Re u > 0} ,

φ 2 : {u ∈ C : Re u > 0} � u �−→ u+ 1

u− 1
∈ C \ K(0,1) .
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Since φ(∞) = 1, φ1(1) = 1, φ2(1) = ∞, it follows that

VK(z) = VK(0,1) ((φ2 ◦ φ1 ◦ φ)(z)) = log |(φ2 ◦ φ1 ◦ φ)(z)| = log

∣∣
∣∣
∣
φ(z)

1
δ + 1

φ(z)
1
δ − 1

∣∣
∣∣
∣
,

for z ∈ C \ K.
By Theorem 1.2, there exists η > 0 such that, for each z ∈ C with dist(z; K) ≤ 1,

�K(z) ≥ 1 + η (dist(z; K))
1
δ . (�)

Note that, for t ∈ (r,+∞),

�K(it) = exp VK(it) =
∣∣
∣∣
∣
φ(it)

1
δ + 1

φ(it)
1
δ − 1

∣∣
∣∣
∣
= 1 + 2(t− r)

1
δ

(t + r)
1
δ − (t− r)

1
δ

and

dist(it; K) =
√
a2 + t2 − R = t + r√

a2 + t2 + R
(t − r) .

It follows that in (�) the exponent
1

δ
is optimal. That is, it cannot be replaced by a

smaller one.

The next example shows the second major difference between the complex and
the real case. Namely, in C there are very simple (even semialgebraic) polynomially
convex sets which do not satisfy the (ŁS) condition.

Example 2 Let us see what happens in the previous example if a is fixed, say
a = 1, and r → 0. In the limit we obtain the set K := K(1,1) ∪ K(−1,1). Consider
the following conformal maps

ξ 1 : C \ K � z �−→ 1

z
∈ {w ∈ C : 2|Rew| < 1} ,

ξ 2 : {w ∈ C : 2|Rew| < 1} � w �−→ eiπw ∈ {u ∈ C : Re u > 0} ,
ξ 3 : {u ∈ C : Re u > 0} � u �−→ u+ 1

u− 1
∈ C \ K(0,1) .

Since ξ1(∞) = 0, ξ2(0) = 1, ξ3(1) = ∞, it follows that

VK(z) = VK(0,1) ((ξ3 ◦ ξ2 ◦ ξ1)(z)) = log |(ξ3 ◦ ξ2 ◦ ξ1)(z)| = log

∣
∣∣
∣∣
e

iπ
z + 1

e
iπ
z − 1

∣
∣∣
∣∣
,

for z ∈ C \ K. Therefore for t > 0,

�K(it) = expVK(it) =
∣
∣∣
∣
e

π
t + 1

e
π
t − 1

∣
∣∣
∣ = 1 + 2

e
π
t − 1

.

It is straightforward now to check that K does not satisfy the (ŁS) condition. (Note
that quite similar example is due to Siciak and given in [3].)
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Remark 5.1 Let K be as in Example 2. Note that the interior angles of the set R2 \
K at 0 are equal 0. Consequently, in Theorem 1.2 the assumption concerning the
interior angles of R2 \ K cannot be removed.

6 O–minimal Version of Theorem 1.2

In this section, we will describe how we can obtain a generalization of Theorem
1.2 to the case of sets definable in polynomially bounded o–minimal structures (see
Remark 1.3).

The theory of o–minimal structures is a far–reaching extension of the theory of
semialgebraic sets (cf. [5, 6]). LetM be an o–minimal structure. A typical example is
M = (Mn)n∈N, where Mn consists of all semialgebraic subsets of Rn. A set E ⊂ R

n

is called definable (inM) if E ∈ Mn. Amap is said to be definable (inM) if its graph
is definable. An o–minimal structure is polynomially bounded if for every definable
f : R −→ R there exists somem ∈ N such that f (x) = O(xm) as x → +∞.
Similarly to simple semialgebraic arcs we can define simple M–arcs (just replace

in Definition 3.3 “semialgebraic” by “definable in M”). If M is additionally poly-
nomially bounded, then each simple M–arc is a Dini–smooth arc. The proof is the
same as the proof of Lemma 3.4 (one needs to apply the o–minimal version of the
Łojasiewicz inequality).

The method of the proof of Theorem 1.2 carries over to the polynomially
bounded o–minimal setting, because we have at our disposal the above mentioned
generalization of Lemma 3.4 and the following generalization of Lemma 3.5.

Lemma 6.1 Let E ⊂ R
2 be a closed set def inable in a polynomially bounded o–

minimal structureM. If b ∈ ∂E is not an isolated point of E, then one of the following
two conditions holds:

(1) There exist p = p(b ) ∈ N and θ1 = θ1(b ), . . . , θp = θp(b ) ∈ [0, 2] such that, for
each suf f iciently small r > 0,

• K(b , r) \ E = �1 ∪ . . . ∪�p,
• �ν (ν = 1, . . . , p) are certain pairwise disjoint (θν,b , r)–sets,
• l�ν

⊂ R
2 \ E (ν = 1, . . . , p).

(2) For each suf f iciently small r > 0,

• E ∩ K(b , r) = ,
•  ⊂ R

2 is a simpleM–arc with endpoints a,b,
• a ∈ ∂K(b , r),  \ {a} ⊂ K(b , r).

Proof Fix b ∈ ∂E which is not an isolated point of E. Without loss of generality we
can assume that b = 0. Take a cell decomposition C of R2 partitioning the sets: ∂E,
[−1, 1]2, {0} (cf. [5]). Put

D := {D ∈ C : D ⊂ ∂E, 0 ∈ D} .
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Clearly, ∂E =
⋃

D∈C,D⊂∂E

D and therefore, for some ε0 > 0,

∂E ∩ K(0, ε0) =
( ⋃

D∈D
D

) ∩ K(0, ε0) . (4)

Since dim ∂E < 2, it follows that the family D consists of the set {0} and of a finite
number of cells of dimension 1. More precisely, D = {{0}} ∪D1 ∪D2 ∪D3 ∪D4,
where

(i) D1 = ∅ or there exist: ε1 > 0, m1 ∈ N and definable f1, . . . , fm1 : (0, ε1) −→ R

such that

• f1 < . . . < fm1 ,
• D1 = {graph( f1), . . . , graph( fm1)};

(ii) D2 = ∅ or there exists ρ1 > 0 such that D2 = {{0} × (0, ρ1)};
(iii) D3 = ∅ or there exist: ε2 > 0, m2 ∈ N and definable g1, . . . , gm2 : (−ε2, 0) −→

R such that

• g1 > . . . > gm2 ,
• D3 = {graph(g1), . . . , graph(gm2)};

(iv) D4 = ∅ or there exists ρ2 > 0 such that D4 = {{0} × (−ρ2, 0)}.
We arrange the elements of the set D1 ∪D2 ∪D3 ∪D4 into a sequence

D1, . . . , Dk. Note that k ≥ 1, because 0 ∈ ∂E and 0 is not an isolated point of E.
Take r0 > 0 such that

• r0 ≤ min{ε0, ε1, ε2, ρ1, ρ2};
• If D1 �= ∅, then f j|(0, r0) is of class C1 ( j = 1, . . . ,m1) and

f j|(0, r0) ≡ 0 or f ′j(x) �= 0 for x ∈ (0, r0) ;
• If D3 �= ∅, then g j|(−r0, 0) is of class C1 ( j = 1, . . . ,m2) and

g j|(−r0, 0) ≡ 0 or g′j(x) �= 0 for x ∈ (−r0, 0) .

Fix r ∈ (0, r0). By Eq. 4,

∂E ∩ K(0, r) = 1 ∪ . . . ∪ k , (5)

where  j := {0} ∪ [Dj ∩ K(0, r)]. It is easy to check that

(a) For each t ∈ (0, r], the set  j ∩ ∂K(0, t) is a singleton. Denote its only element
by a j(t);

(b) The points a1(t), . . . , ak(t) are distinct, for t ∈ (0, r];
(c)  j = {0} ∪ {a j(t) : t ∈ (0, r]};
(d)  j is a simpleM–arc2 with endpoints 0, a j(r) and

•  j \ {a j(r)} ⊂ K(0, r),
•  j is a Dini–smooth arc.3

2Use the fact that the following limits exist (finite or not): limx→0+ f ′j(x), limx→0− g′j(x).
3We need here the extension of Lemma 3.4 to polynomially bounded o–minimal structures.
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Case 1 k ≥ 2. Note first that the set K(0, r) \ (1 ∪ . . . ∪ k) = K(0, r) \ ∂E (cf. (5))
has exactly k connected components. Denote them W1, . . . ,Wk. Clearly,

Wj ⊂ [K(0, r) \ E] ∪ [IntE ∩ K(0, r)]
and therefore

Wj ⊂ K(0, r) \ E or Wj ⊂ IntE ∩ K(0, r)

( j= 1, . . . ,k). It follows that, for each j = 1, . . . , k,

Wj ⊂ K(0, r) \ E or Wj ∩ [K(0, r) \ E] = ∅ .
Consequently, the elements of the family

A := {
Wj : Wj ⊂ K(0, r) \ E

}

are exactly the connected components of the set K(0, r) \ E. Denote these elements
by �1, . . . ,�p. It is straightforward to verify that:

• p ≥ 1;
• �ν is a (θν,b , r)–set for some θν ∈ [0, 2] (ν = 1, . . . , p);
• �ν ∪ l�ν

⊂ R
2 \ ∂E = (R2 \ E) ∪ IntE. The set �ν ∪ l�ν

is connected4 and �ν ⊂
R

2 \ E, hence l�ν
⊂ R

2 \ E (ν = 1, . . . , p).

Therefore the condition (1) of our lemma holds.

Case 2 k = 1. We know already that 1 is a simple M–arc with endpoints 0, a1(r),
where a1(r) ∈ ∂K(0, r), and 1 \ {a1(r)} ⊂ K(0, r). By Eq. 5,

K(0, r) \ 1 = K(0, r) \ ∂E ⊂ R
2 \ ∂E = (R2 \ E) ∪ IntE .

Since K(0, r) \ 1 is connected, it follows that

K(0, r) \ 1 ⊂ IntE or IntE ∩ [K(0, r) \ 1] = ∅ .
Equivalently,

K(0, r) \ 1 ⊂ IntE or IntE ∩ K(0, r) = ∅ .
Suppose that K(0, r) \ 1 ⊂ IntE. Then

K(0, r) = [K(0, r) \ 1] ∪ 1 ⊂ IntE ∪ ∂E = E ,

which is impossible, because 0 ∈ ∂E. Therefore IntE ∩ K(0, r) = ∅ and via Eq. 5

1 = ∂E ∩ K(0, r) = E ∩ K(0, r) .

This means that the condition (2) of our lemma holds. ��
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