Skip to main content
Log in

Fatou closedness under model uncertainty

  • Published:
Positivity Aims and scope Submit manuscript

A Correction to this article was published on 26 November 2018

This article has been updated

Abstract

We provide a characterization in terms of Fatou closedness for weakly closed monotone convex sets in the space of \({\mathcal P}\)-quasisure bounded random variables, where \({\mathcal P}\) is a (possibly non-dominated) class of probability measures. Applications of our results lie within robust versions the Fundamental Theorem of Asset Pricing or dual representation of convex risk measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 26 November 2018

    There is an error in Proposition 3.10. In fact, the stated proof only shows

  • 26 November 2018

    There is an error in Proposition?3.10. In fact, the stated proof only shows

  • 26 November 2018

    There is an error in Proposition?3.10. In fact, the stated proof only shows

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs, vol. 105, 2nd edn. American Mathematical Society, Providence (2003)

    Book  Google Scholar 

  3. Aliprantis, C.D., Tourky, R.: The super order dual of an ordered vector space and the Riesz–Kantorovich formula. Trans. AMS 354(5), 2055–2077 (2001)

    Article  MathSciNet  Google Scholar 

  4. Beißner P.: Coherent price systems and uncertainty-neutral valuation. IMW working paper series (2013)

  5. Biagini, S., Frittelli, M.: On the extension of the Namioka-Klee theorem and on the Fatou property for risk measures. In: Delbaen, F., et al. (eds.) Optimality and Risk-Modern Trends in Mathematical Finance, pp. 1–28. Springer, Berlin, Heidelberg (2009)

    MATH  Google Scholar 

  6. Bion-Nadal, J., Kervarec, M.: Risk measuring under model uncertainty. Ann. Appl. Probab. 22(1), 213–238 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bouchard, B., Nutz, M.: Arbitrage and duality in nondominated discrete-time models. Ann. Appl. Probab. 25(2), 823–859 (2015)

    Article  MathSciNet  Google Scholar 

  8. Burzoni, M., Frittelli, M., Maggis, M.: Model-free super hedging duality. Ann. Appl. Probab. (forthcoming) (2016)

  9. Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L.: Complete monotone quasiconcave Duality. Extended version: Working Paper 80 Carlo Alberto Notebooks

  10. Cheridito, P., Kupper, M., Tangpi, L.: Representation of increasing convex functionals with countably additive measures. preprint (2015)

  11. Cohen, S.N.: Quasi-sure analysis, aggregation and dual representations of sublinear expectations in general spaces. Electron. J. Probab 17(62), 1–15 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

    Article  MathSciNet  Google Scholar 

  13. Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Springer, New York (2006)

    MATH  Google Scholar 

  14. Denis, L., Hu, M., Peng, S.: Functions spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal. 34(2), 139–161 (2011)

    Article  MathSciNet  Google Scholar 

  15. Drapeau, S., Kupper, M.: Risk preferences and their robust representation. Math. Oper. Res. 28(1), 28–62 (2013)

    Article  MathSciNet  Google Scholar 

  16. Dudley, R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  17. Dunford, N., Schwartz, J.: Linear Operators. Part I: General Theory. Interscience Publishers, New York (1958)

    MATH  Google Scholar 

  18. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems (Part I), Classics in Applied Mathematics. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  19. Föllmer, H., Schied, A.: Stochastic Finance. An Introduction in Discrete Time, 3rd edn. de Gruyter Studies in Mathematics (2011)

  20. Frittelli, M., Maggis, M.: Dual representation of quasiconvex conditional maps. SIAM J. Financ. Math. 2, 357–382 (2011)

    Article  Google Scholar 

  21. Frittelli, M., Rosazza, G.E.: Putting order in risk measures. J. Bank. Finance 26(7), 1473–1486 (2002)

    Article  Google Scholar 

  22. Grothendieck, A.: Espaces Vectoriels Topologiques. Sociedade de Matematica de Sao Paulo, Sao Paulo (1954)

    MATH  Google Scholar 

  23. Halmos, P.R., Savage, L.J.: Application of the Radon–Nikodym theorem to the theory of sufficient statistics. Ann. Math. Stat. 20(2), 225–241 (1949)

    Article  MathSciNet  Google Scholar 

  24. Kreps, D.: Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Econ. 8(1), 15–35 (1981)

    Article  MathSciNet  Google Scholar 

  25. Meyer-Nieberg, P.: Banach Lattices. Springer, Berlin (1991)

    Book  Google Scholar 

  26. Nutz, M.: Superreplication under model uncertainty in discrete time. Financ. Stoch. 18(4), 791–803 (2014)

    Article  MathSciNet  Google Scholar 

  27. Soner, H.M., Touzi, N., Zang, J.: Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16, 1844–1879 (2011)

    Article  MathSciNet  Google Scholar 

  28. Vorbrink, J.: Financial markets with volatility uncertainty. J. Math. Econ. 53(issue C), 64–78 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Svindland.

Appendices

Auxiliary results for Theorem 3.1

Recall the set \({\mathcal Z}\) defined in (3.2).

Proposition A.1

If \({\mathcal Z}=\emptyset \), then there exists a countable subset \({\widetilde{{\mathcal P}}}\subset {\mathcal P}\) such that \({\widetilde{{\mathcal P}}}\thickapprox {\mathcal P}\). The latter implies that there is a probability measure \(Q\in {\mathcal M}_1\) such that \(\{Q\}\thickapprox {\mathcal P}\).

Proof

We claim that for each \(\varepsilon >0\), there exists \(P_1,\ldots , P_n\in {\mathcal P}\) and \(\delta >0\) such that \(P_i(A)<\delta \) for all \(i=1,\ldots , n\) implies that for all \(P\in {\mathcal P}\) we have \(P(A)<\varepsilon \). Suppose this is not the case. Then there exists \(\varepsilon >0\) such that for any \(P_1\in {\mathcal P}\) there is \(A_1\in {\mathcal F}\) and \(P_2\in {\mathcal P}\) satisfying

$$\begin{aligned} P_1(A_1)<1/2 \quad \text{ and }\quad P_2(A_1)\ge \varepsilon . \end{aligned}$$

Then there also exists \(A_2\in {\mathcal F}\) and \(P_3\in {\mathcal P}\) such that

$$\begin{aligned} P_1(A_2)<1/4,\, P_2(A_2)<1/4 \quad \text{ while }\quad P_3(A_2)\ge \varepsilon . \end{aligned}$$

Continuing this procedure we find sequences \((A_n)_{n\in {\mathbb N}}\subset {\mathcal F}\) and \((P_{n})_{n\in {\mathbb N}}\in {\mathcal P}\) such that

$$\begin{aligned} P_i(A_n)<\frac{1}{2^n}, \, i=1,\ldots , n, \quad \text{ and }\quad P_{n+1}(A_n)\ge \varepsilon . \end{aligned}$$

Consider \(N:=\bigcap _{n\in {\mathbb N}}\bigcup _{k\ge n} A_k\). Then \(P_i(N)=0\) for each \(i\in {\mathbb N}\), because for all \(n>(i-1)\)

$$\begin{aligned} P_i(N)\le \sum _{k=n}^\infty P_i(A_k)\le \frac{1}{2^{n-1}}. \end{aligned}$$

Hence, replacing the above sequence \(A_n\) by \(B_n:=A_n\setminus N\), \(n\in {\mathbb N}\), we still have

$$\begin{aligned} P_i(B_n)<\frac{1}{2^n}, \, i=1,\ldots , n, \quad \text{ and }\quad P_{n+1}(B_n)\ge \varepsilon . \end{aligned}$$

Now let \(E_n:=\bigcup _{k\ge n}B_k\), \(n\in {\mathbb N}\). It follows that \(E_n\downarrow \emptyset \). However, for each \(n\in {\mathbb N}\)

$$\begin{aligned} c(E_n)\ge P_{n+1}(E_n)\ge P_{n+1}(B_n)\ge \varepsilon \end{aligned}$$

which contradicts \({\mathcal Z}=\emptyset \).

Now let \(\delta _n>0\) and let \(P^{(n)}_1,\ldots , P^{(n)}_{m(n)}\in {\mathcal P}\) be such that for all \(P \in {\mathcal P}\) it holds \(P(A)<1/n\) whenever \(P^{(n)}_i(A)<\delta _n\) for all \(i=1,\ldots , m(n)\). Define

$$\begin{aligned} \mu :=\sum _{n=1}^\infty \sum _{i=1}^{m(n)}\frac{1}{2^n}\frac{1}{2^i}P_i^{(n)}. \end{aligned}$$

Then \(\mu \in ca_+\), and \(\mu (A)=0\) implies that \(P_i^{(n)}(A)=0\) for all \(i=1,\ldots , m(n)\) and \(n\in {\mathbb N}\). Eventually this implies that for all \(P\in {\mathcal P}\) we have \(P(A)<1/n\) for all \(n\in {\mathbb N}\), hence \(P(A)=0\). Thus

$$\begin{aligned} {\widetilde{{\mathcal P}}}:=\{P_i^{(n)}\mid i\in \{1,\ldots , m(n)\}, n\in {\mathbb N}\}\quad \text{ and }\quad Q:=\frac{1}{\mu (\Omega )}\mu \end{aligned}$$

satisfy the assertion. \(\square \)

Proposition A.2

Let \((B,\Vert \cdot \Vert )\) be a Banach lattice of (equivalence classes of) random variables on \((\Omega ,{\mathcal F})\) containing all simple random variables such that the order \(\le \) on B satisfies \(0\le 1_A\le 1_{A'}\) whenever \(A\subset A'\) for \(A,A'\in {\mathcal F}\). If \(B^*\subset ca\), in the sense that every \(l\in B^*\) is of type

$$\begin{aligned} l(X)=\int X\,d\mu , \quad X\in B, \end{aligned}$$

for some \(\mu \in ca\), then \(\Vert 1_{A_n}\Vert \rightarrow 0\) \((n\rightarrow \infty )\) for all \((A_n)_{n\in {\mathbb N}}\subset {\mathcal F}\) such that \(A_n\downarrow \emptyset \).

Conversely, if \(\Vert 1_{A_n}\Vert \rightarrow 0\) \((n\rightarrow \infty )\) for all \((A_n)_{n\in {\mathbb N}}\subset {\mathcal F}\) such that \(A_n\downarrow \emptyset \), then for every \(l\in B^*\) there is a \(\mu \in ca\) such that \(l(Y)=\int Y\, d\mu \) for all simple random variables Y.

Proof

Suppose that \(B^*\subset ca\) and let \((A_n)_{n\in {\mathbb N}}\subset {\mathcal F}\) such that \(A_n\downarrow \emptyset \). Then \(1_{A_n}\rightarrow 0\) with respect to \(\sigma (B,B^*)\) since every element in \(B^*\) corresponds to a \(\sigma \)-additive measure. Hence,

$$\begin{aligned} 0\in \overline{co\{1_{A_n}\mid n\in {\mathbb N}\}} \end{aligned}$$

where the closure is taken in the \(\sigma (B,B^*)\)-topology. As the closed convex set in the \(\sigma (B,B^*)\)-topology and in the norm topology coincide, we have that there is a sequence of convex combinations

$$\begin{aligned} c_k:=\sum _{i=1}^{m(k)}a_i(k)1_{A_{n_i(k)}}, \quad k\in {\mathbb N}, \end{aligned}$$

where \(a_i(k)\in {\mathbb R}\) and \(n_1(k)\le n_2(k)\le \ldots \le n_{m(k)}(k)\) for all \(k\in {\mathbb N}\) such that \(\Vert c_k\Vert \rightarrow 0\) for \(k\rightarrow \infty \). Moreover, since \(0\in \overline{co\{1_{A_n}\mid n\ge N\}}\) for any \(N\in {\mathbb N}\), we may assume that \(n_1(k)\le n_1(k+1)\) for all \(k\in {\mathbb N}\). However, \(c_k\ge 1_{A_k}\) where \(A_k=A_{n_{m(k)}(k)}\), because \(A_n\supset A_{n+1}\) for all \(n\in {\mathbb N}\). Thus, as \(\Vert \cdot \Vert \) is a lattice norm, the subsequence \(1_{A_ k}\) converges to 0 in norm and hence also \(1_{A_{n}}\) converges to 0 in the norm topology (again due to \(A_n\supset A_{n+1}\) for all \(n\in {\mathbb N}\)).

Finally suppose that \(\Vert 1_{A_n}\Vert \rightarrow 0\) \((n\rightarrow \infty )\) for all \((A_n)_{n\in {\mathbb N}}\subset {\mathcal F}\) such that \(A_n\downarrow \emptyset \). Then for any \(l\in B^*\), the set function

$$\begin{aligned} \mu (A):=l(1_A), \quad A\in {\mathcal F}, \end{aligned}$$

is \(\sigma \)-additive. By linearity of l we deduce that \(l(X)=\int X\, d\mu \) for all simple random variables X. \(\square \)

Penot–Volle duality theorem

Theorem B.1

(see e.g. [20, Theorem 1.1]) Let L be a locally convex topological vector space, \( L^{\prime }\) be its dual space and \(f:L\rightarrow \overline{\mathbb {R}}:= \mathbb {R}\cup \left\{ -\infty \right\} \cup \left\{ \infty \right\} \) be quasiconvex and lower semicontinuous. Then

$$\begin{aligned} f(X)=\sup _{X^{\prime }\in L^{\prime }}R(X^{\prime }(X),X^{\prime }) \end{aligned}$$
(B.1)

where \(R:\mathbb {R\times }L^{\prime }\rightarrow \overline{\mathbb {R}}\) is defined by

(B.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maggis, M., Meyer-Brandis, T. & Svindland, G. Fatou closedness under model uncertainty. Positivity 22, 1325–1343 (2018). https://doi.org/10.1007/s11117-018-0578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-018-0578-1

Keywords

Mathematics Subject Classification

Navigation