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ABSTRACT
Purpose To develop predictive models of apparent solubility
(Sapp) of lipophilic drugs in fasted state simulated intestinal fluid
(FaSSIF) and aspirated human intestinal fluid (HIF).
Methods Measured Sapp values in FaSSIF, HIF and phosphate
buffer pH 6.5 (PhBpH6.5) for 86 lipophilic drugs were compiled
and divided into training (Tr) and test (Te) sets. Projection to latent
structure (PLS) models were developed through variable selec-
tion of calculated molecular descriptors. Experimentally deter-
mined properties were included to investigate their contribution
to the predictions.
Results Modest relationships between Sapp in PhBpH6.5 and
FaSSIF (R2=0.61) or HIF (R2=0.62) were found. As expected,
there was a stronger correlation obtained between FaSSIF and
HIF (R2=0.78). Computational models were developed using
calculated descriptors alone (FaSSIF, R2=0.69 and RMSEte of
0.77; HIF, R2=0.84 and RMSEte of 0.81). Accuracy improved
when solubility in PhBpH6.5 was added as a descriptor (FaSSIF,
R2=0.76 and RMSETe of 0.65; HIF, R2=0.86 and RMSETe of
0.69), whereas no improvement was seen when melting point
(Tm) or logDpH 6.5 were included in the models.
Conclusion Computational models were developed, that reli-
ably predicted Sapp of lipophilic compounds in intestinal fluid, from
molecular structures alone. If experimentally determined pH-
dependent solubility values were available, this further improved
the accuracy of the predictions.
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INTRODUCTION

Modern drug discovery programs using high throughput
screening and combinatorial chemistry continue to favor the
selection of large and lipophilic new chemical entities (NCE).
This is in spite of their poor aqueous solubility [1–4], the
increased awareness of related problems and the multitude
of mnemonic rules for avoiding these compounds with low or
variable absorption and pharmacokinetics [5–7]. Solubility in
intestinal fluids is a key property for estimating absorption of
oral drugs and in this context aspirated human intestinal fluid
(HIF) has been described as the gold standard medium for
these estimations [8,9]. However, there are disadvantages
associated with its use. Ethical concerns about HIF sampling
regulate the availability of the fluid. The amount available to
the scientific community is therefore sparse and expensive.
Other concerns are its low buffer capacity and batch variation
in pH and bile content. These variations are due to differences
in aspiration protocols and individual differences between
volunteers [9,10], although differences due to the latter can
be somewhat alleviated by pooling samples. Alternatives to
HIF for dissolution testing and solubility measurements be-
came available when Dressman and colleagues introduced
fasted state simulated intestinal fluid (FaSSIF) in 1998 [11].
Other biorelevant dissolution media (BDM) have been devel-
oped since then, some to closer mimic the intestinal milieu
[12,13] and others for ease of preparation or lower expense
[14,15]. Nonetheless the use of FaSSIF continues to be wide-
spread and a large number of compounds and formulations
have been evaluated in them. The medium contains
taurocholate and lecithin that form mixed lipid aggregates in
the form of vesicles which are colloidal structures known to
efficiently solubilize drug molecules. The extent of
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solubilization is dependent on lipid concentration and
substance-specific properties such as size, charge, flexibility,
and lipophilicity. Drugs with a partition coefficient between
octanol and water (logP) greater than 3 have considerably
higher apparent solubility (Sapp; the total concentration of
drug dissolved in the lipid-containing dissolution medium) in
BDM than in water or buffers [16–19]. Solubilization in lipid
aggregates and molecular ionization as a response to the pH
of the fluid can increase the Sapp in BDM of compounds
several orders of magnitude compared to that observed in
water.

Solubility measurements are time consuming. More im-
portantly, the substances of interest must be synthesized before
their solubility can be evaluated. Computational predictions
of solubility, on the other hand, are rapid and can be per-
formed on large compound libraries without synthesis of the
substances. This provides the medicinal chemists with solubil-
ity profiles on which they can make better informed decisions,
and the costs associated with the pharmaceutical profiling
cycle are reduced because of decreased demand for expensive
simulated or aspirated intestinal fluid. Solubility predictions in
BDM, or even better HIF, are therefore highly warranted.

Numerous models for the prediction of intrinsic aqueous
solubility (S0), i.e., the solubility of the neutral compound, have
been developed [20]. One of the most renowned is the general
solubility equation (GSE) [21] and derivatives thereof [22,
23]. These are based on logP, which typically can be compu-
tationally predicted with an RMSE of around one log10 unit,
and experimentally determined melting temperature (Tm).
The latter is sometimes replaced with other properties more
amenable to trivial calculations or prediction such as MW
[24]. Aqueous solubility can also be successfully predicted
using calculated molecular descriptors, see e.g. [25,26],.
However, in the gastrointestinal tract, pH values range from
~2.5 in the stomach to ~6.9 in the jejunum [10]. This pH-
gradient greatly impacts the ionization of protolytic com-
pounds and hence, the observed Sapp is dependent on the
extent of ionization of a particular molecule. The pH-
dependent solubility can be calculated from S0 and the disso-
ciation constant (pKa) with the Henderson-Hasselbalch equa-
tion [27]. However, the accuracy of these estimations varies
considerably because the Henderson-Hasselbalch equation
does not take into account aggregation or common ion/salt
effects [28]. The complexity increases even more when solu-
bility is measured in BDM since the apparent solubility in
these media is a result of ionization, aggregation and solubi-
lization. We have previously attempted to predict Sapp in
biorelevant media using a small dataset [16,17]. A predictive
artificial neural network (ANN) model for FaSSIF solubility is
also available in the commercial software ADMET Predictor
from Simulations Plus. However, no transparent models for
prediction of FaSSIF Sapp have been developed using publicly
available solubility data for drugs, nor have any predictive

models of HIF Sapp been proposed. Here, we report an open
database applicable for solubility modeling in FaSSIF and
HIF. This database has been used to develop transparent
and reliable models for the prediction of solubility in FaSSIF
and HIF with the aim of revealing molecular features that
drive solubilization in these fluids.

METHODS

Datasets

Sapp values for 86 drugs in FaSSIF (3 mM taurocholate,
0.75 mM lecithin in PhBpH6.5 [11]) were extracted from in-
house databases [8,16,17,29] and literature sources [30–38]
(Table I). To reduce experimental variability in the dataset the
main part of the compounds was obtained from our in-house
databases in which solubility measurements taking use of
shake-flask or the μDISS Profiler are reported. Only com-
pounds with a calculated logP greater than 2 were included
since it is assumed that there is significant solubilization of
highly lipophilic compounds in the mixed lipid aggregates
present in FaSSIF [16–19]. Hence, we argue that for com-
pounds with log P<2, in silico models predicting solubility in
pH-adjusted water/simple buffer are also predictive of their
solubility in intestinal fluid (Fig. S1). The FaSSIF Sapp values
were supplemented with the corresponding Sapp values in
PhBpH6.5 and the Tm, when available, for the free base or
free acid (i.e., not salts).

This same approach was used in the selection of a dataset
for which solubility in aspirated HIF was available (Table I).
An additional criterion for this dataset was that corresponding
solubility measurements were available in FaSSIF and that the
same protocol had been used for solubility measurements in
FaSSIF and HIF. The final HIF dataset consisted of 48
compounds. In addition to the FaSSIF and HIF literature
datasets, a discovery dataset of 26 AstraZeneca proprietary
compounds for which the Sapp in FaSSIF, HIF and PhBpH6.5

were available was used as an external validation dataset for
the developed models.

Calculation of Molecular Descriptors

Molecular structures for the compounds were obtained as
SMILES strings (Table SI) and converted to energy-mini-
mized, three-dimensional structures with added implicit hy-
drogens using Corina 3.49 (Molecular Networks, Germany).
Molecular descriptors from the resulting structures were gen-
erated using DragonX 6.0.16 (Talete, Italy). The descriptors
were blinded to avoid selection bias, cubic-root transformed,
mean-centered and scaled to unit variance. Thereafter, any
descriptors not displaying normal distribution were excluded
from the model development.
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We also used ADMET Predictor 6.5 (Simulations Plus,
CA) to predict FaSSIF Sapp for the compounds and to calcu-
late pKa (Table SI) and pH-dependent lipophilicity at pH 6.5
(logDpH6.5), polar surface area (PSA), and number of rotatable
bonds, see Table I. The predictions of FaSSIF were used as a
comparator for our predictions.

In Silico Model Development

Partial least squares projection to latent structures (PLS)
models were developed with the purpose of predicting Sapp
values in FaSSIF and in HIF. The respective models were
developed with Simca-P 13.0.2.0 (Umetrics, Sweden) using a
standardized protocol previously implemented by our group
[39,40]. The responses were used in the logarithmic form of
the solubility in the two different media. For the FaSSIF
model, the compounds were randomized into a training (Tr,
n=56) and a test (Te, n=30) set. The compounds were sorted
by their Sapp to achieve an even distribution and as wide a
predictive range as possible. Every third compound was then
assigned to the test set. The structural diversity and the suit-
ability of the selected test set was thereafter tested by a prin-
cipal component analysis (PCA) extracted from all descriptors.
Any training set outliers identified in the PCA (Supporting
Information, Fig. S2) or distance–to–the–model–of–X [41]
(DmodX) were moved to the corresponding test set to avoid
such compounds weighting the training of the models. PCA
was also used to ensure that the training and test sets were well
distributed in the chemical space. In addition to the literature-
derived test set, a discovery dataset of 26 AstraZeneca in-
house compounds was used to challenge the model. For the
HIF model, these discovery compounds were used as the sole
test set while the training set consisted of the literature values.
PCA confirmed that the chemical space of this dataset was
covered by the training set (Fig. S2).

All but the top 100 descriptors (Table SII) (as defined by
variable of importance–to–projection, VIP) were excluded in
the first step of model development. The variable selection
procedure was thereafter based on the VIP and the loading
plots, and monitored by the leave-one-out (using 7 groups),
cross-validated R2 (Q2). The variable selection was performed
to remove non-significant descriptors and increase model
robustness. If the exclusion of a variable resulted in an equal
or improved Q2, the variable was permanently eliminated
from the model. The variable selection procedure was repeat-
ed until no further descriptors could be removed without a
resultant lower Q2. Only thereafter was the accuracy of the
prediction of the test set investigated.

In the second step, the impact of experimental data com-
monly available during early development was investigated by
adding such measured data to the final model obtained after
the completion of variable selection. The investigated exper-
imental data were Sapp in PhBpH6.5, Tm, and logDpH6.5.

Measured PhBpH6.5 Sapp was available for 76% of the
compounds (Table I). It was not possible to extract
measured logDpH6.5 for a large number of the com-
pounds and therefore the calculated logDpH6.5

(ADMET Predictor, Simulations Plus, CA) was used
for all of them. Whether these properties were beneficial
or not for the models was evaluated in the same man-
ner as for the calculated descriptors, see above.

In addition to the models above, a consensus model was
established which used the developed FaSSIF PLS model
based on calculated descriptors only and the predictions ob-
tained from ADMET Predictor ANN model. No weighting
was performed. The consensus model used the average of the
predicted logSapp from the developed PLS model and the
commercial ANN model.

RESULTS

Physicochemical Properties and Apparent Solubility

The datasets used were structurally diverse. The FaSSIF
modelling dataset (Table I) ranged in size from 206.3 to
1202.6 Da with a median mass of 369; hydrogen bond
capacity in the form of PSA ranged from 2.2 to 325 Å2

with a median of 122 Å2; and molecular flexibility
(described by the number of rotatable bonds count)
ranged from 0 to 22, with a median of 5. The dataset
was selected to focus on lipophilic compounds and
therefore all compounds had a calculated AlogP-value
>2 (obtained from the software DragonX). In spite of
this lipophilicity criterion, the predicted pH-dependent
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Fig. 1 Training- and testset Sapp ranges for FaSSIF. The literature training (Tr)
and test sets (Te) are shown with blue and yellow circles respectively and the
discovery test set is denoted with green circles.
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lipophilicity logD6.5 values from ADMETPredictor
ranged over 10 orders of magnitude, from -0.2 to
10.0. The solubility varied 2000- and 10,000-fold in
FaSSIF and HIF, respectively (Table I).

The solubility range of the training set was similar to that of
the literature test set, whereas the 26 discovery compounds
used to challenge the models had a somewhat lower solubility
(Fig. 1).

The solubility values of the dataset revealed modest rela-
tionships between measured solubility in PhBpH6.5 and
FaSSIF or HIF (R2:0.61 and R2:0.62, respectively, Fig. 2).
The PhBpH6.5 and FaSSIF Sapp correlation was considerably
weaker for the more lipophilic compounds (logDpH6.5>4) for
which R2 decreased to 0.28. However, for compounds with a
logDpH6.5<3, there was a strong correlation (R2: 0.82) The
correlation between FaSSIF Sapp andHIF Sapp was also strong
(R2: 0.78) but unaffected by lipophilicity (Fig. 2c). Under- or
over-prediction of the solubility was not related to melting
point or lipophilicity.

Prediction of Intestinal Solubility

The developed PLS models are summarized in Table II.
The FaSSIF model (Fig. 3a) required seven calculated
descriptors to produce two principal components
resulting in R2 of 0.69, Q2 of 0.64 and an RMSEtr of
0.48 log10 units. The HIF model (Fig. 4a), based on
nine descriptors, had a higher R2 of 0.84 (Q2 of 0.78)
and a lower RMSEtr (0.34). The inclusion of experi-
mentally determined Sapp in PhBpH6.5 strengthened the
predictive power of both models to R2 of 0.76 (FaSSIF)
and 0.86 for HIF (Figs. 3b and 4b, respectively), and it
reduced the RMSE of the test sets (Table II). Inclusion
of Tm and logDpH6.5 did not improve the developed
models. Further, these properties were unable to identify
over- or under-predicted compounds or any clusters.

All descriptors remaining after the variable selection
were significant in either both or the last component.
For the FaSSIF model these include: i) eigenvalues
weighted by bond order (Eig04_EA(bo)) or edge degree
(Eig04_AEA(ed)); ii) a spectral moment of order 6 from
Burden matrix weighted by van der Waals volume; and
iii) a second-component accessibility directional WHIM
index weighted by van der Waals volume; all these
descriptors negatively influenced the solubility. These

descriptors are related to some extent to molecular size.
Geary autocorrelation (GATS4s) and Morse signal
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26(Mor26s), both weighted by intrinsic state and the
frequency of N – O at a topological distance of 5
(F05[N-O]) correlated with a high Sapp in FaSSIF
(Fig. 5a and b).

The HIFmodel descriptors included an eigenvalue weight-
ed by bond order (Eig03_AEA(bo)), Morse signal 4 weighted
by ionization potential (Mor04i) and an eigenvalue from
reciprocal squared distance matrix (SpMax_H2); these were
found to limit the Sapp. The HIF Sapp was further positively
influenced by the following descriptors:, R maximal index
(RTe+) and a WHIM index (E3e) both weighted by
Sanderson electronegativity, R maximal autocorrelation
weighted by ionization potential (R1i+), the presence of N –
O at topological distance 5(B05[N-O]), CATS2D acceptor-
acceptor at lag 09 (CATS2D_09_AA) and hydrogen attached
to alpha carbons (H-051) (Fig. 5c and d).

The model using calculated descriptors over-predicted the
FaSSIF Sapp of albendazole and cilostazole by one logarithmic
unit or more. On the other hand, ivermectin, tamsulosin, and
tolectin were all under-predicted by one log10 unit or more.
The inclusion of measured Sapp in PhBpH6.5 as a descriptor
improved the predictions for cilostazole and albendazole and
reduced their residual values by 0.41 and 0.69 log10 units
respectively.

The consensus model based on the calculations obtained
from our FaSSIF model and the ADMET Predictor results
exhibited a lower RMSEte (0.70) compared to each of the
models separately (Table III). The PLS model was however
more accurate compared to the consensus model in the

prediction of the solubility of the discovery test set.
Importantly, predictions of outliers resulting from each of
the PLS and ANN models were greatly improved by consen-
sus modelling (Fig. 6).

DISCUSSION

Intestinal solubility, together with permeability over the intes-
tinal wall, are the two most important drug properties deter-
mining absorption after oral intake. Solubility measurements
in HIF will continue to be important in understanding intes-
tinal solubility, but the medium is expensive and subject to
batch variations. Therefore, a number of BDMs have been
developed as robust and reproducible surrogates. The strong
correlation between FaSSIF and HIF Sapp found herein con-
firms those reported previously [8, 9] and further supports the
use of in vitro experiments in BDMs, such as FaSSIF, for the
prediction of intestinal solubility.

The aim of this study was to develop predictive models for
Sapp in FaSSIF and HIF using calculated descriptors alone or
in conjunction with experimental data likely to be available in
early drug discovery or development stages. The descriptors
included in the final FaSSIF model can be used to interpret
molecular properties of importance for solubility in FaSSIF.
The descriptors reveal that larger structures are solubilized to
a lesser extent than the smaller ones. Most likely this is as a
result of the increased cavity that needs to be formed in the

Table II Model Summary.
Model Descriptors R2 Q2 RMSETr RMSETe n in Te

FaSSIF 7 calculated 0.69 0.64 0.48 0.77 49

Tr n:56 + Sapp in PhBpH 6.5 0.76 0.70 0.39 0.65 47

HIF 9 calculated 0.84 0.78 0.34 0.80 26

Tr n:43 + Sapp in PhBpH 6.5 0.86 0.79 0.32 0.68 26
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Predicted HIF logSapp (M)
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water as well as the increased molecular surface area exposed
to the water. In addition, aromatic structures were revealed to
be less hydrated than aliphatic ones. We speculate that this
could be because of their stronger crystal lattices, due to the
stronger van der Waals interactions formed by the dense
packing. Further, when in the water, rigid aromatic structures
have a larger molecular surface area exposed to the solvent
than flexible aliphatic chains that can change conformation to
shield the carbon skeleton from water molecules. The descrip-
tors also identify the importance of hydrogen bond donor and
acceptors for the hydration of the molecule. Although the
descriptors in the HIF model differ to some extent from those
of the FaSSIF model, they too reflect similar properties.

During the model development we tested three empirical
or semi-empirical descriptors. The addition of experimentally
determined Sapp in PhBpH6.5 as a descriptor improved both
developed PLS models considerably. This solvent can be
regarded as a blank FaSSIF because it is a phosphate buffer
(pH 6.5) that does not contain any mixed lipid aggregates.
Ionizable compounds are therefore charged to the same ex-
tent in both media and information on this effect facilitates the
prediction. The relationship between PhBpH6.5 and FaSSIF
Sapp was modest and weak for the lipophilic compounds. It is
therefore interesting to note that such a divergence was not
seen in the PLS predictions regardless of whether or not
PhBpH6.5 was included as an experimentally determined de-
scriptor. Tm and lipophilicity expressed as logP or logDpH6.5

are common inputs for aqueous solubility predictions, and
were therefore tested herein. However, neither logDpH6.5

nor Tm improved the developed models. Intestinal fluids
contain lipid aggregates that may solubilize lipophilic drug
molecules and it is well-known that logP is not a good descrip-
tor of solubility in lipids, see e.g. [40],. The reduced solubility
of the bulk water seen in intestinal fluids with higher logDpH6.5

is to some extent compensated by partitioning to and/or
solubilization in the aggregates. To elucidate if Tm or
logDpH6.5 were described to some extent by the selected
calculated descriptors these properties were used as responses
in the models. We found no indication of correlation between
the selected descriptors and lipophilicity or solid state proper-
ties of the compounds (R2<0.45). An interesting aspect of the
increased accuracy of the predictions when Sapp in PhB6.5 is
included as descriptor is that the influence of the solid state on

the Sapp is diminished. Hence, the PhB6.5 contributes to better
predictions at two levels; the hydration is better described as a
result of the correct description of the pH-dependent solubility
and the impact of the dissociation of molecules from the
crystal lattice is embedded in this solubility input variable.

It was possible to further improve the FaSSIF predictions
by performing consensus modeling based on the combination
of two different computational models that used only calcu-
lated descriptors. The combination of the (ANN) FaSSIF
model results (obtained from ADMET Predictor) with the
PLS predictions increased the predictive power, as identified
from the lowered RMSEte (Table III). Three test sets were
evaluated: all test compounds (n=75), a literature-derived test
set (n=49), and a discovery test set of AstraZeneca proprietary
compounds (n=26). For all three, the consensus model per-
formed better than the worst-performing computational mod-
el. Most importantly, the consensus model increased the ro-
bustness and reduced the number of outliers (Fig. 6). Indeed,
for the 23 compounds that were 10 to 320-fold over- or under-
predicted by either of the two models, the employment of the
consensus model reduced the RMSE to <1 log unit for 12 of
them. Of these 23 compounds, 14 were significantly falsely
predicted by the ANN, 5 by the PLS, and 4 by both. Since it is
difficult to deem beforehand which one of several models will
be the most accurate predictor for any new compound or
compound series, it is advisable to employ consensus model-
ling based on two or more models.

There are a number of hurdles to allow increased accuracy
in solubility predictions in BDM. The models developed here-
in that are based on calculated descriptors alone are reliable
and statistically strong, but the observed residual errors do
imply that the predictions could be up to tenfold off in either
direction. This is not uncommon for predictions of solubility
in aqueous media and the developed models are certainly
accurate enough for guiding decision-making in drug

Table III Consensus model performance.a

Test Set FaSSIFPLS FaSSIFANN FASSIFConsensus

CombinedTe 0.77 0.82 0.70

LiteratureTe 0.89 0.73 0.71

AZTe 0.62 0.91 0.69

a RMSEs for the different test sets of the developed PLS model, the commer-
cial ANN model, and the resulting average consensus model

Predicted FaSSIF logSapp (M)
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discovery and development. To further improve the compu-
tational predictions of solubility in media containing mixed
lipid aggregates molecular dynamics (MD) simulation is a
promising tool to study solubilization interactions [42,43].
MD simulation also has the potential to predict self-
aggregation and the tendency to form mixed micelle aggre-
gates. Food effects on bioavailability is another issue related to
BDM and larger datasets need to be studied for solubility in
fed state BDM to obtain information on molecular features of
drug molecules that are significantly affected by the increased
lipid content in the fed state.

CONCLUSIONS

Measurements of solubility in physiologically relevant media
such as FaSSIF andHIF are costly and in part restricted by the
limited access to intestinal fluids aspirated from donors.
Herein we present computational approaches to instead pre-
dict intestinal solubility taking use of calculated molecular
descriptors to allow this property to be estimated already
before compound synthesis. It was found that the Sapp of
lipophilic compounds in FaSSIF and in HIF was possible to
predict by this approach. The most accurate predictions were
obtained when a consensus modeling approach was used,
which reduced the number of outliers obtained from predic-
tions based on a single computational model. Further, we
have examined experimental parameters within reach during
early drug development and identified pH-dependent solubil-
ity as a descriptor that further increases the accuracy of the
predictions.
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