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Abstract Prior research has highlighted the importance of educational achievement
throughout school in predicting subsequent progression to higher education in England.
However, progress assessments may not only demonstrate students’ prior academic
achievement but also influence their future achievement. I compare students who have
received different grades on one such assessment, despite performing almost identical-
ly, to see whether grade labels influence their progress to post-compulsory education.
Further, I investigate whether any impact differs according to socio-economic status.
Results indicate that grade labels received in eighth grade influence students’ perfor-
mance in school-leaving exams and enrollment in post-compulsory schooling. For
lower socio-economic students, this impact is higher than for other students and
extends to university enrollment.

Keywords Grade labels . University access . Equity . Regression-discontinuity design

1 Introduction and conceptual framework

Like many countries, England’s recent governments have promoted higher education as
a means to national economic growth. Enrollment rates have increased accordingly: the
proportion of citizens aged 18–22 years enrolled in a degree course has risen from 5%
in 1960 to 40% in 2013 (Callender 2006; Vignoles 2013).

However, this expansion has disproportionately served students from the higher
socio-economic classes (Anders 2012a; Archer et al. 2003; Chowdry et al. 2013). By
2009, students from the most advantaged quintile of households were six times more
likely to attend university than those from the least advantaged quintile (Vignoles and
Powdthavee 2009). Thus, although England’s three major political parties all support
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increasing undergraduate enrollment among poorer students (Conservatives 2015;
Labour 2015; Liberal Democrats 2015), concerns about access persist.

While researchers have offered a range of theorizations for this disparity, the
strongest inferential studies to date indicate that achievement in the early and middle
years of schooling is crucial. Such research demonstrates that achievement measures in
national examinations explain a great deal of the gap in undergraduate enrollment
across socio-economic classes (see, for example, Anders 2012a; Chowdry et al. 2013;
Marcenaro-Gutierrez et al. 2007; Vignoles and Powdthavee 2009). However, the
mechanisms by which earlier achievement drives future enrollment behavior have not
been fully clarified.

In this study, I test a key assumption in education policy, namely that national
summative assessments, which in England are ostensibly low stakes until age 16 years,
reflect students’ academic ability in a transparent and innocuous manner. In contrast, I
examine whether these assessment results play a role in shaping students’ subsequent
educational outcomes, and whether any impact may differ according to students’ socio-
economic class. I do this by separating the information that students receive about their
academic achievement from the underlying achievement itself.

More specifically, I aim to distinguish the impact upon a student’s educational
progress of receiving a lower or higher grade at age 14 years, independent of achieve-
ment. For example, do students who receive a higher grade in mathematics attain at a
higher level in the future than those who performed indistinguishably but received a
lower grade? Through a regression discontinuity design, I compare the impact of
receiving the average grade, versus receiving the grade below, on the transition to
post-compulsory education. In addition, I test whether impacts differ according to
students’ socio-economic status, thus exploring whether this factor may help to explain
disparities in university enrollment.

The exams used are the Key Stage 3 national assessments in English and mathe-
matics that, until 2009, students took at the end of eighth grade. 1 The key grade
boundary of interest lies between the average grade and the grade just below. Grades
are defined according to cut-points in the underlying, continuous test score; students,
parents, and teachers receive information on the grades but not on the continuous test
scores. Examining authorities do not decide the cut-points until after students have sat
the exams, and these cut-points change every year. The outcomes of interest are three of
the criteria by which academic progress is often judged in English policy debates: (1)
achievement in tenth-grade national examinations, (2) enrollment in the non-
compulsory grades of high school, and (3) enrollment in a university degree course.

I find some evidence that grade labels influence students’ educational progress years
later: students who receive the higher grade in their eighth grade English assessment
perform better in tenth-grade examinations and are more likely to enroll in the non-
compulsory grades of high school. However, when exploring heterogeneous effects by
socio-economic status, there is far stronger evidence of a bifurcation among low-SES
students. For these students, the higher grade label leads to a more sizeable increase in
future exam performance, and effects extend to college enrollment. In contrast, there is
relatively limited evidence of an impact among high-SES groups, suggesting that grade

1 These assessments are now commonly replaced by an alternative, Cognitive Assessment Tests, the impli-
cations of which I discuss later in this manuscript.
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labels have a disproportionately large impact on those students least likely to progress
to post-compulsory education.

1.1 England’s education system

One key feature of England’s national curriculum is that students begin to specialize in
subjects from an early age. At age 14 years, students select about ten subjects—from
approximately 40 options—on which they will be tested at age 16 years in national
General Certificates of Secondary Education (GCSE) examinations. Schooling ceases
to be compulsory after these exams; those who do not pass five or more GCSEs—
around 40% of students (House of Commons Education Committee 2013)—tend to
leave the standard high school system in favor of more vocational courses or
employment.

Those that do pass at least five GCSEs are able to continue to the final 2 years of
high school to take advanced levels (A-levels), which are generally seen as providing
the most academically rigorous courses and a pre-requisite for university study. Stu-
dents tend to choose three or four A-level subjects, can only study those for which they
took GCSEs, and must select specific subjects in order to study a particular subject for
university. For example, students hoping to study medicine at university are advised to
take advanced science options at GCSE and have to take chemistry at A-level. In their
university applications, students must specify which subject they plan to study. During
their undergraduate degree programs, students do not take introductory classes across a
range of subjects; instead, they only study courses in either a single- or dual-subject
program from the outset.

All undergraduate applications are managed by a single organization: the Universi-
ties and Colleges Admissions Service (UCAS). The application process is largely
uniform across institutions: universities have access to candidates’ personal statements,
anticipated A-level results (as predicted by schoolteachers), and GCSE results. Only a
minority of institutions uses interviews to further screen applicants.

Students hoping to progress beyond the compulsory stages of education are thus
required to choose appropriate GCSE subjects at age 13–14 years and perform well in
these subjects at age 15–16 years. GCSEs provide a strong predictor of future univer-
sity attendance (Chowdry et al. 2013), operating as a Bsymbolic and material currency
in terms of future educational progression^ (Davey and Fuller 2013). UCAS has been
in place for 20 years, GCSE exams for 28 years, and A-levels for over 60 years. For
two decades then, the national school curriculum and undergraduate admissions pro-
cess for English universities have followed a consistent pattern with uniform processes.
However, this system also puts pressure on students to envisage coherent academic
trajectories and perform well in examinations from mid-adolescence.

1.2 The role of summative testing

Although GCSE results are the first examinations to formally influence students’
subsequent opportunities, national assessments begin earlier in the lifespan. In fifth
grade, students complete Key Stage 2 assessments in English, science, and mathemat-
ics. Until 2009, students would repeat these subjects in Key Stage 3 assessments during
eighth grade. In 2009, the UK government abolished testing in Key Stage 3 exams. A
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standardized alternative, Cognitive Abilities Tests (CATs), has become increasingly
widespread in recent years; the producer of these tests claims that they are now used by
two thirds of schools (GL assessment 2015). The UK government has not mandated
CATs but does promote their use (Department for Education 2014). In the Sect. 4 of this
manuscript, I will return to the implications of the use of these CATs instead in place of
the Key Stage 3 assessments; for all empirical analysis, though, I focus on conditions in
which students took the Key Stage 3 assessments.

For the Key Stage 3 assessment in each subject, a given student, their parent(s), and
teachers received level scores, equivalent to discrete letter-grade boundaries. Conse-
quently, this grading system allowed for direct comparisons among students. In theory,
all national examinations prior to year 11 are low stakes for students in the sense that
their primary role is to assess the performance of schools (Daugherty 1995), rather than
to provide students with qualifications that influence their subsequent study and
employment opportunities. Yet, Conner (1999) argued that Key Stage 3 exams had
attained a de facto high-stakes status, and the motivational impact on students of
knowing how one has been ranked in such assessments should not be overlooked
(Broadfoot 1999).

As noted, the strongest inferential studies to date have established that strong
predictors of post-secondary enrollment occur from childhood and early adolescence.
Among these predictors, prior attainment in national examinations is the most powerful
(Vignoles 2013). However, while such studies have established the predictive power of
attainment measures, the mechanisms by which attainment measures might influence
enrollment have not yet been confirmed through quantitative analyses. One starting
point is to divide explanations between those for which pre-existing attributes define
and are reflected in attainment measures—such as academic aptitude, self-discipline,
and confidence—and those for which assessment feedback has some impact in itself,
independent of underlying causes of a given level of attainment. In this study, I focus
on the latter.

Among policymakers, a common rationale for summative testing is that it raises
academic standards (Harlen and Deakin Crick 2003; Kellaghan and Greaney 2001), but
this perspective may take too little account of the complexity of factors relating to
motivation (Kellaghan et al. 1996). There is countervailing evidence suggesting that
summative testing is detrimental to students who achieve lower grades, i.e., instead of
general uplift, testing leads to greater polarization (Bourdieu 1998; Paris et al. 1991;
Pollard et al. 2000). Correlational studies between students’ self-esteem and achieve-
ment find an increase in this relationship for cohorts who have taken more national
examinations (Davies and Brember 1998, 1999). Ethnographic studies find that class-
room interactions changed in the wake of students receiving exam results, with the self-
esteem of lower performers dropping (Leonard and Davey 2001; Reay and William
1999).

Prior research across the social sciences offers a range of potential theorizations for
why the Key Stage 3 assessments might have a detrimental influence on those receiving
lower grades. Among these, perhaps the most pervasive in educational research is
attribution theory, a phenomenological approach that focuses on an individual’s judg-
ment of the cause underlying a negative experience. The three key dimensions of an
individual’s reasoning are whether an event was due to factors that the individual
believed to be (1) internal to themselves, (2) controllable, and (3) stable (Weiner 2010).
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For example, if a student attributes a disappointing exam result to insufficient effort,
this cause is internal, unstable, and controllable, so they will experience guilt and regret,
which are positive motivators. In contrast, a student who receives identical negative
feedback but attributes this to insufficient aptitude, a cause that is internal, uncontrol-
lable, and stable, will experience hopelessness, shame, and humiliation, and so will see
little point in studying for future assessments. In this theorization, summative exami-
nations such as those at Key Stage 3 are detrimental to motivation and achievement
(Graham 1990). This is because they can consolidate what Dweck (2006) labels a
Bfixed mindset^: in response to this form of feedback, children are likely to frame exam
results as evidence of permanent ability traits, lessening their belief that ability can be
developed through work and so deterring future effort (Dweck 1986, 2000).

There is evidence that students in the UK link school exam results to fixed traits that
they then project into adult life. For example, on the basis of their observations in a
London school, Reay and William (1999) depict a classroom climate where Key Stage
examinations serve as a criterion by which students judge themselves and one another.
When asked what a high Key Stage grade would say about a classmate, one student
responds Bthat he’s heading for a good job and a good life and it shows he’s not gonna
be living on the streets,^ whereas her own expectation of a low grade would say that BI
might not have a good life in front of me and I might grow up and do something
naughty^ (pp. 346–347).

Of course, it is not students alone who might be influenced by exam grades. For
example, policy demands for accountability may pressure teachers into allocating more
resources to some students than others. In recent years, policymakers have treated the
number of students achieving five GCSEs (including English and mathematics) at
grade C as a key criterion in judging school performance (Vignoles 2013), and this
metric figures prominently in governmental school inspections (see, for example,
Taylor 2012; Wilshaw 2013). Teachers and school leaders may allocate resources
accordingly, with less focus placed on those students projected to perform well above
or below this cutoff (Ball et al. 2012; Gillborn and Youdell 2000).

As noted already, England’s school system is characterized by early subject special-
ization. Within schools, ability streams may influence student achievement (Ireson et al.
2005), and only some students may be able to take higher-tier GCSE examinations, in
which they can attain the higher grades, or more advanced GCSE subjects, such as
triple science. Given the high correlation between students’ earlier and later perfor-
mance in national assessments (Alcott 2013), Key Stage 3 grade levels are likely to
present an important tool for teacher and school leaders to help make such decisions.
Teachers receive the exam results in terms of discrete grades rather than the continuous
underlying scores, and may prefer this heuristic to some form of assessment marked on
a continuous scale that they would have to generate in addition to the national
examinations.

There are also grounds to hypothesize that such processes exacerbate socio-
economic disparities in educational outcomes. A body of literature claims that, even
during pre-elementary and elementary education, formal schooling legitimizes the
cultural practices and preferences more typical of the upper and middle classes over
those more typical of the lower classes (see, for example, Reay 1995, 1998; Vincent
et al. 2008; Walker and Clark 2010). From the earliest years of schooling, teachers label
students as intelligent, average, or slow, and stream them accordingly; these
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designations are often predicted by social class and have a lasting impact on students’
academic confidence (Alcott, 2017; Steedman 1988; Thomas et al. 2012). In inter-
views, Reay (1995) found that middle-class parents were quick to raise concerns about
group-reading activities for fear that these were aiding other children’s progress at the
expense of their own.

Such class disparities widen further when differential parental knowledge and
confidence lead to asymmetrical competition to gain entry for their children to specific
middle schools and, by extension, GCSE courses (Ball et al. 1996). England’s school
system makes the consequences of subject choice and performance in middle school for
later opportunities considerable; as a result, early manifestations of the constraining
factors identified within habitus are compounded by the time students reach the later
years of schooling, well before their course choices and exam performance have easily
visible implications for university applications (Vincent 2001). Hence, while many
studies focus on students around the final years of the compulsory school system, this
associated research indicates that the institutionalized constraints that students face are
established from the earliest years of schooling.

Within this conceptualization of formal education, exams serve a key factor, as
across schooling, they may serve to consecrate the advantages of more privileged
students, serving as both cause and effect of greater separation (Bourdieu 1998, p.
104). Researchers of education in England have used Bourdieu s theories to argue not
only that better aggregate performance on exams serves to separate social classes but
also that differences in parental behavior according to social class further exacerbate
disparities. This is because parents from lower social classes have less confidence in
contesting practices within a school, such as placing their child in a lower ability stream
or demanding more extensive feedback on classwork (Cochrane 2007, 2011; Giddens
1991; Pugsley 1998).

Consequently, working-class families may be especially prone to accepting
summative judgments about their children’s progress and ability levels. National
exams are a key case in point, as parents from lower social classes are less likely
to challenge their validity or encourage their children to accept them as incontest-
able judgments of ability. Following from attribution theory, learners who attribute
success to effort, and who perceive ability to be changeable and controllable, are
likely to deal with failure constructively and so persevere with future learning
tasks (Schunk 1991). Hence, differential responses to exam results by class are
important because it is plausible that this may serve to exacerbate pre-existing
attainment gaps.

1.2.1 Aims of the present work

In this manuscript, I undertake an inferential verification of the presence, or lack
thereof, of a labeling effect from Key Stage 3 exams, and so can initiate the type of
generalizable analyses on these phenomena that are currently lacking for the English
context. To date, those studies that are more critical of summative assessment in
England have relied predominantly on qualitative research methods to discern the
impact of examinations on student behavior (see, for example, Leonard and Davey
2001; Reay and William 1999). The major exceptions, by Davies and Brember (1998,
1999), provide quantitative representations of the impact of Key Stage 1 and Key Stage

274 Educ Asse Eval Acc (2017) 29:269–296



2 assessments on self-esteem, but without providing the type of valid counterfactual
scenarios necessary to make inferential claims.

Quasi-experimental methods have not yet been applied to estimate the impact,
if any, of grades received during these assessments on students’ progress to post-
compulsory education. Such methods have already identified effects of perfor-
mance feedback in different educational settings. In Swedish elementary schools,
Sjögren (2010) found mixed impacts of the use of grading according to gender and
parental education levels. Positive effects of feedback on subsequent educational
progress have been found for high school students in Spain (Azmat and Iriberri
2010) and the USA (Papay et al. 2010). In the UK, Sartarelli (2011) has explored
the impact of Key Stage scores on student behavior, finding no impact on most
outcomes with the exception of bullying.

I aim to transfer such quasi-experimental methods to the study of the impact of low-
stakes summative assessments in England on students’ subsequent educational out-
comes. Specifically, I attempt to identify the impact of receiving a low or high exam
grade, independent of achievement. In addition, I investigate whether any effects differ
for students of different socio-economic strata. Using a regression discontinuity design,
I compare the impact of receiving the average exam level (versus below average) on the
following outcomes:

1. GCSE performance at age 16 years.
2. Enrollment in A-levels by age 19 years.
3. Enrollment in a university degree course by age 20 years.

2 Method

2.1 Data

I use data from the Longitudinal Study of Young People in England (LSYPE). The
LSYPE used a two-stage probability proportional to size sampling procedure, with the
primary sampling units being schools. LSYPE respondents were born between Sep-
tember 1, 1989 and August 31, 1990. Interviews were conducted annually between the
spring of 2004, when the youths were in eighth grade, and 2010, providing seven
waves of data. As with most longitudinal surveys, the LSYPE is prone to sample
attrition in later waves (Anders 2012a; Piesse and Kalton 2009). While the survey’s first
wave sampled 15,770 youths, sample sizes are reduced to 14,947, 11,186, and 8233
according to whether the outcome of interest related to GCSEs, A-levels, or university
enrollment, respectively.

The key predictor variables in my analyses are respondents’ Key Stage 3 test results
in English and mathematics. I do not analyze respondents’ Key Stage 3 test results in
science for two reasons. First, unlike English and mathematics, it is not possible to
assess students’ subsequent progress in science because students do not follow a core
curriculum with a common exam in this subject. Second, the predominance of English
and math performance in school league tables could mean that science results factor
less into teachers’ planning for student interventions and ability streaming. Conse-
quently, any impact of test results in science on the more general outcomes of
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enrollment in A-levels and university study may differ from the respective impacts of
mathematics and English.

LSYPE is linked to the UK Government’s National Pupil Database, which holds
administrative data on the test scores that students obtained in their Key Stage 3 subject
tests. In each subject test, students could receive a grade of 3, 4, 5, 6, or 7 (as well as 8
for mathematics only) depending on the marks that they obtained, from within a range
0–100 for English and 0–150 for mathematics. Figure 1 provides an example of how
continuous score mapped onto grade levels in one of these assessments.

Data on the first outcome, passing GCSE examinations, is obtained through the
LSYPE’s link to the National Pupil Database. This outcome is defined in two respects:
subject-specific and general performance. Subject-specific performance compares stu-
dents Key Stage math grades to whether they receive a grade of C or higher in GCSE
math, and the equivalent for Key Stage English to GCSE English. General performance
is assessed through the capped GCSE score, which comprises a continuous point score
based on the eight best exam results for a given student. The capped GCSE score is a
common measure in education policy in England (Vignoles 2013); it is based on
students’ performance in just eight, rather than all, exams to account for the tendency
for students at fee-paying schools to take more GCSE examinations than do students in
the state-provided system. The second and third outcomes, enrollment in A-levels and
enrollment in university, rely on students’ self-reports during the survey’s fourth and
subsequent waves.

To analyze heterogeneous effects according to socio-economic status, I use the
three-class grouping—higher, intermediate, and lower—of the National Statistics
Socio-economic Classification (henceforth NSSEC) offered by the UK government’s
Office for National Statistics (2014), with the caveat that the long-term unemployed are
also included in the Blower^ grouping due to insufficient sample sizes. Students for
whom NSSEC data is missing are included in models of general effects but are not
included in models of differential impacts according to socio-economic status.

Table 1 provides descriptive statistics on the label thresholds and outcome
measures, first for all students and then according to socio-economic status. There
is a clear socio-economic disparity for each of the label thresholds and outcome
measures, with higher NSSEC students outperforming intermediate NSSEC stu-
dents, who in turn outperform lower NSSEC students. Table 2 presents average
outcomes for all sampled students according to whether they scored above or
below the level 6 threshold in each subject. For each subject, those scoring above
the threshold realize each of the outcomes at higher rates than those who scored
below the threshold, and always by at least a factor of two. All differences are
statistically significant at any conventional level.

Fig. 1 An example of how test score maps to Key Stage level. Note: Example comes from 2003 English
assessment, which LSYPE respondents took. Fewer than 1% of respondents score below level 3

276 Educ Asse Eval Acc (2017) 29:269–296



2.2 Analytical approach

The use of regression-discontinuity designs (RDDs) in social science research dates
back half a century (see Thistlethwaite and Campbell 1960; Campbell and Stanley
1963). Although the approach received limited attention in subsequent decades (Cook
2008), it has become increasingly popular in recent years (Lee and Lemieux 2010;
McCall and Bielby 2012). In the field of education, studies have used the RDD
approach to investigate a range of influences such as financial aid (Van der Klaauw
2002), scholarships (DesJardins and McCall 2014), remedial education programs
(Jacob and Lefgren 2004), and pre-school interventions (Ludwig and Miller 2007).

RDD’s popularity is likely due to its intuitive appeal as the most valid estima-
tion strategy under specific allocation mechanisms, absent random allocation
(Cook 2008; Lee and Lemieux 2010). The specific mechanisms are those in which
treatment is assigned via a cutoff point on an observed continuous variable. So
long as individuals are unable to manipulate whether they fall on one side of the

Table 1 Test scores and outcomes for full sample and according to NSSEC level

By NSSEC level:

All Lower Intermediate Higher

English level 6 or above 0.34 0.26 0.35 0.55
Math level 6 or above 0.53 0.44 0.59 0.74
Mean capped GCSE point score 303 287 317 353
Attain C or higher in GCSE English 0.59 0.51 0.65 0.81
Attain C or higher in GCSE mathematics 0.54 0.46 0.60 0.76
Enroll in A-levels 0.56 0.51 0.47 0.73
Enroll in university degree 0.49 0.41 0.46 0.62

Results for the full sample (BAll^) include students with missing NSSEC data. Source: Longitudinal Study of
Young People in England

Table 2 Sample averages for outcomes by level 6 threshold

Below level 6 Level 6 and above p value

English
Capped GCSE point score 265 376 <0.001
Attain C or higher in GCSE English 0.41 0.96 <0.001
Enroll in A-levels 0.40 0.84 <0.001
Enroll in university degree 0.32 0.73 <0.001

Mathematics
Capped GCSE point score 239 359 <0.001
Attain C or higher in GCSE mathematics 0.15 0.89 <0.001
Enroll in A-levels 0.32 0.75 <0.001
Enroll in university degree 0.25 0.64 <0.001

Source: Longitudinal Study of Young People in England
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cutoff point or the other, the variation in treatment around this point is essentially
random (Lee and Lemieux 2010). The present study is well suited to an RDD
approach because the assessment feedback device—discrete exam grades—varies
at distinct cutoff points on the underlying continuous scores that students achieve
in each test. Students are unable to manipulate which side of the grade cutoff their
scores fall because grade boundaries are not defined until after each year’s test. In
addition, students, parents, and teachers are provided with discrete grades after the
test but not the exact value on the underlying continuous mark scale. This is
important because knowledge of the continuous mark might mitigate the response
of any of these groups in relation to the grade; for example, teachers might see
students who scored just below the threshold as more comparable to those scoring
just above it than to those scoring many points below the threshold.

In order to get a higher grade on the Key Stage test, students must meet or exceed a
given test score. Thus, a given student’s receipt of a higher grade (G) depends on her
test score (S). More specifically, the grade depends on their score in relation to a grade
cutoff (C), whereby those students for whom S ≥ C receive grade G. Taking receipt of a
higher grade as a treatment, for student i its relation to a future outcome (Y) can be
denoted as

Y i ¼ Y 1
i if Gi ¼ 1

Y 0
i if Gi ¼ 0

�
ð1Þ

or

Y i ¼ Y 0
i þ Gi Y 1

i −Y
0
i

� � ð2Þ

However, the inferential challenge is that it is not possible to observe both Yi
1 and Yi

0

because student i cannot both receive and not receive the treatment G. Random
allocation overcomes this challenge since, taking α as a vector of all variables that
could influence Yi prior to receipt of the treatment, in the equation

Y i ¼ αþ τGi þ εi ð3Þ

Gi and the error term εi are independent. Thus, the estimate of the treatment effect τ
is obtained by subtracting the average of Y for all untreated students from the average of
Y for all treated students.

The properties of the Key Stage grade boundaries make it possible to partially
emulate this ideal randomized scenario through a Bsharp^ RDD design. In a sharp
design, the cutoff variable perfectly predicts allocation of the treatment (Imbens and
Lemieux 2008), so that

Gi ¼ 1 Si≥cf g
Gi ¼ 0 Si < cf g ð4Þ

The sharp design is possible because all students whose scores fall below the
boundary receive the lower discrete grade, while all those whose scores fall at or above
the boundary receive the higher grade.
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Returning to Eq. 4, accepting that the expected value of the error term εi varies with
Si, but assuming that it does so as a continuous function of S, Hahn et al. (2001) have
shown that

τ ¼ lim
x↓c

E Y ijSi ¼ s½ �− lim
x↑c

E Y ijSi ¼ s½ � ð5Þ

provides the treatment effect of G. In other words, the treatment effect can be found by
taking the difference in outcome Y between those observations just above (specifically,
within x points of) the cutoff point c, and those observations just below (again, within x
points of) the same cutoff point c.

One key consequence is that this approach only uses observations from the arbi-
trarily selected range [c − x, c + x] around the cutoff point (McCall and Bielby 2012),
whereas all observations may be used under randomized allocation. Thus, the RDD
provides an estimate of the local average treatment effect, but it does not allow for
extrapolations to observations further from the threshold (DiNardo and Lee 2011;
Shadish et al. 2002). In the present study then, any observed treatment effect of the
grade label will pertain to students whose attainment level falls near to the grade cutoff
point, but extrapolations to those with far higher or lower achievement levels are less
plausible.

In order to limit bias, kernel-based polynomials provide a popular means to predict τ
under the RDD design (Hahn et al. 2001; Lee and Lemieux 2010). Consequently,
researchers face choices regarding three factors that have implications for a given
model’s validity: the kernel, the bandwidth, and the use of polynomial terms in the
regression model (Mealli and Rampichini 2012). Among these, the choice of kernel is
of lesser importance because model estimates are not so sensitive to different kernels as
they are to different bandwidths and polynomial terms (Imbens and Lemieux 2008;
McCall and Bielby 2012). I follow McCall and Bielby (2012), who use a Gaussian
kernel, although all models were re-estimated with alternative kernels in order to check
whether estimates are highly sensitive to this choice. Estimates using these alternative
kernels were not substantively different to those using the Gaussian kernel.

As Mealli and Rampichini (2012) note, choice of bandwidth offers a tradeoff
between precision and bias. In order to allow for bandwidths larger than those most
commonly used in prior research (Calonico et al. 2014), I use the formulation offered
by Calonico et al. (2013) to select data-driven bandwidths for each model in order to
minimize the mean square error. In their formulation, Calonico et al. (2013) base their
confidence intervals on a bias-corrected discontinuity estimator to account for the
impact of large bandwidth choices, but depart from the prior literature by using an
alternative formulation of standard errors in order to account for the greater variability
in the calculation of a given t-statistic caused by estimated bias correction.

2.3 Limitations

A regression discontinuity design’s internal validity depends primarily on whether the
distribution of observations around the cutoff point is as good as random. For the
current study then, it is important that students cannot manipulate their positioning
around the grade threshold. For example, if more advantaged students were able to
systematically ensure that their scores fell just above the grade cutoff, a difference in
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subsequent outcomes between those just above and just below the grade boundary
could simply be due to prior advantage, making spurious an attribution to the grade
label itself. In recent years, McCrary s (2008) formal test of the distribution of the
running variable has become perhaps the most common means for examining potential
manipulations, by testing whether observations fall disproportionately on one side of
the cutoff point. As Fig. 2 indicates, the running variables—i.e., the test score in each
Key Stage 3 subject assessment—would not pass McCrary s test.

However, this can be explained by contextual factors. First, the examining authority
does not define grade boundaries until after the test, and the central examination body
already holds examination scores by the time that these boundaries are announced.
Second, one key practice that examiners use for the Key Stage 3 assessments is
Bborderlining,^ which is the practice of re-marking those papers that fall three marks
below the discrete level boundaries (QCA 2004; Quinlan and Scharaschkin 1999).
Since this is done for those papers falling just below the boundary but not for those just
above, and given the variation in examiners scores (House of Commons Children,
Schools and Families Committee 2008), it is natural that the frequency of scores will
drop just before the boundary and rise just after. While borderlining proved controver-
sial and was eventually stopped (House of Commons Children, Schools and Families
Committee 2008; National Audit Office 2008), it was still in use in 2004, the year in
which LSYPE respondents sat these assessments.

To test whether the practice of borderlining benefitted some student groups more
than others, I conduct an alternative sensitivity check for potential manipulation.
Presented in Appendix 2.A, I regress whether students fall just above or just below
each threshold on the key background characteristics of NSSEC grouping and Key
Stage 2 performance. Of the 18 models that I estimate in this sensitivity check, just one
has a coefficient significant at the 5% level, providing limited evidence of any
systematic manipulation of positioning around the level 6 threshold in any of the
exams.

Perhaps the greatest constraining factor on the research design’s external validity is
sample attrition. Whereas the proportion of English domiciled young people aged 17–
19 years enrolled in university was 33% in 2008/09 and 34% in 2009/2010

Fig. 2 Histograms of test scores by subject. Source: Longitudinal Study of Young People in England. On the
x-axis, scores are standardized so that −6, 0, and 6 represent the minimum scores for levels 5, 6, and 7,
respectively
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(Department for Business Innovation and Skills 2012), enrollment among the LSYPE
cohort averaged 43% across these years, even when using survey weights. This
indicates not only that survey attrition occurred among students with lower achieve-
ment but also that attrition depended on characteristics for which LSYPE’s sample
weights cannot control (Anders 2012b).

This attrition has lessened the extent to which LSYPE is representative of
the national cohort that it was intended to represent. Clearly, sample attrition is
not occurring at random: higher attaining students were more likely to continue
participating in LSYPE. In addition to this consideration, unobserved character-
istics—such as intrinsic motivation or interest in education—might differ be-
tween the sample and the national population of students. It is plausible that
such factors might influence not only survey participation but also reaction to a
grade label. For example, if, as I think plausible, more intrinsically motivated
students were more likely to continue participating in LSYPE, and were also
less likely to be influenced by an extrinsic stimulus such as a grade label, then
model estimates here might underestimate the impact of grade labels.

Another consequence of survey attrition is that the samples that I use for my three
outcomes of interest differ slightly from one another. As presented in Table 3, it appears
that respondents from higher socio-economic backgrounds and higher Key Stage 3
attainment were more likely to continue participating in the later LSYPE waves, during
which the questions on A-levels and university enrollment were asked. This adds a
further complicating factor because apparent changes in the impact of the grade label
over the educational stages (for example, evidence of a dissipating impact or a
compounding impact) may be partially attributable to differences between the sub-
samples analyzed at each stage.

Consequently, while findings are likely to be indicative of national trends,
subsequent model estimates should not be presumed to be nationally represen-
tative. Nonrandom missing data problems are a common concern in social
sciences (Allison 2002), and, because of attrition, are especially problematic
for longitudinal data analysis (Alderman et al. 2001; Goldstein 2009;
Molenberghs and Fitzmaurice 2008). This challenge is thus an important but
necessary tradeoff for the ability to link phenomena at one educational stage to
longer-term outcomes.

Table 3 Student characteristics by sub-sample

Observations When the following outcome is observed:

GCSE A-levels University
14,947 11,186 8233

NSSEC level (%)
Lower 27 27 25
Intermediate 30 28 28
Higher 43 45 47

Mean Key Stage 3 score (standard deviation)
English 33.1(6.3) 33.7 (6.1) 34.4 (6.0)
Mathematics 35.5 (8.1) 36.3 (8.0) 37.2 (7.8)

Source: Longitudinal Study of Young People in England
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3 Results

3.1 For all students

Model estimates for the impact of the level 6 label are presented in Table 4. An
accompanying visual depiction is presented in Fig. 3, where scores are standardized
so that the level 6 threshold is represented by zero. As noted in Sect. 2, estimates are
based on non-parametric models that use Calonico et al. s (2013) estimation procedure
in order to minimize standard errors. Consequently, bandwidth size varies across
models; information about the bandwidth and sample size used for each model is
presented in Appendix 2.B.

These findings provide moderate evidence of a labeling effect from the
English examination, but essentially no evidence of the mathematics label
having an impact. The level 6 label in the English assessment is associated
with a 3.7-point increase in capped GCSE point score. It is worth noting
though that this is only significant at the 0.1 level and that this coefficient
equates to less than a one-grade increase (e.g., from a C to a B) on a single
GCSE exam, which would be represented by a 6-point increase. In addition, the
level 6 label in English is associated with a 9.4 percentage-point increase in
enrollment in A-levels. This may seem a large increase given that 67% of the
full sample enrolls in A-levels, although it is worth noting that the lower bound
for this 9.4 percentage-point increase is just 1.4 percentage points. The level 6
label in English does not appear to have a statistically significant impact on a
given student s likelihood of attaining a C or higher in GCSE English. In the
mathematics examination, the level 6 label is not significant in relation to any
of the outcomes. For university enrollment, although the label from mathemat-
ics is close, neither it nor the English label is significant at the 10% level.

Table 4 Estimated impact of level 6 label

Outcome Subject

(1) English (2) Mathematics

Capped GCSE point score 3.741* 4.788
(2.738) (3.852)

Attain C or higher in GCSE subject 0.028 0.017
(0.025) (0.039)

Enroll in A-levels 0.094** 0.037
(0.041) (0.026)

Enroll in university degree 0.039 0.061
(0.033) (0.038)

Coefficients for the first row represent the expected change in GCSE points score associated with the level 6
label. Coefficients for the second, third, and fourth rows represent the percentage point change in probability,
associated with the level 6 label, of a student achieving the given outcome. Results include students with
missing NSSEC data. Standard errors are reported in parentheses. Source: Longitudinal Study of Young
People in England

*p < 0.1; ** p < 0.05; *** p < 0.01
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Fig. 3 Regression discontinuity estimates: all students. Source: Longitudinal Study of Young People in
England. On the x-axis, scores are standardized so that −6, 0, and 6 represent the minimum scores for levels 5,
6, and 7, respectively
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3.2 By socio-economic status

Estimates of the level 6 label according to socio-economic status are presented
in Table 5. These indicate that labeling effects differ according to socio-
economic status: while there is limited evidence of an impact for students from
the higher and mid-NSSEC groupings, substantial labeling effects are visible for
the lower NSSEC group.

For high-NSSEC students, three of the 11 models provide significant non-
zero estimates, albeit each of these is at the 10% level. The English label is
linked to improved performance in GCSE English, with a 4.6 percentage-point
increase in the likelihood of attaining a C or higher at GCSE. The level 6
label in mathematics is linked to a 10.8 percentage-point increase in the
likelihood of getting a C or above in GCSE mathematics and a 9.4
percentage-point increase in the likelihood of enrollment in A-levels. For
mid-NSSEC students, there is evidence of a labeling effect for just a single
outcome: the mathematics exam is positively associated with an increase of 14
percentage points in the likelihood of university enrollment by age 20, which
is significant at the 5% level.

Table 5 Estimated impact of level 6 label by NSSEC level

Subject

(1) English (2) Mathematics

NSSEC: lower
Capped GCSE point score 20.11** 28.21***

(8.40) (7.57)
Attain C or higher in GCSE subject 0.207*** 0.057

(0.062) (0.066)
Enroll in A-levels 0.110** 0.082

(0.054) (0.056)
Enroll in university degree 0.205** 0.008

(0.092) (0.066)
NSSEC: intermediate
Capped GCSE point score −1.189 5.438

(8.47) (5.862)
Attain C or higher in GCSE subject −0.020 0.055

(0.035) (0.071)
Enroll in A-levels 0.111 0.061

(0.075) (0.065)
Enroll in university degree 0.015 0.144**

(0.083) (0.071)
NSSEC: higher
Capped GCSE point score −1.062 9.494

(4.200) (5.160)
Attain C or higher in GCSE subject 0.046* 0.108**

(0.037) (0.054)
Enroll in A-levels −0.068 0.094*

(0.045) (0.055)
Enroll in university degree −0.030 0.039

(0.052) (0.048)

Standard errors are reported in parentheses. Source: Longitudinal Study of Young People in England

*p < 0.1; **p < 0.05; ***p < 0.01
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In contrast to the other two groupings, there is considerable evidence of a labeling
impact on lower-NSSEC students. The English examination appears to have a positive
impact on all four outcomes, with coefficients of 20 points for capped GCSE point
score (equivalent to a boost of more than three grade levels), 21 percentage points for
attaining at least a C in GCSE English, 11 percentage points for A-level enrollment, and
21 percentage points for university enrollment. The mathematics exam has a positive
impact on capped GCSE point score of 22 percentage points, but no discernible impact
on pass rates in GCSE mathematics or enrollment in either A-levels or a university
degree.

4 Conclusions and discussion

At Key Stage 3, it appears that the level 6 grade label had a polarizing effect on
otherwise similar students. This finding supports the hypothesis that feedback from
summative testing, even when ostensibly low-stakes, has an important impact on
behavior. It corroborates analyses conducted in non-English contexts on the impact
of exam results more broadly (e.g., Papay et al. 2010) or on non-academic outcomes
(e.g., Sartarelli 2011), and substantiates the claims made by a body of literature (e.g.,
Black and Wiliam 1998, 2006; Harlen and Deakin Crick 2003; Reay and William
1999) on the English context that has provided compelling phenomenological evidence
but lacks the inferential studies necessary to establish a plausible counterfactual.

Moreover, these findings add weight to the claim that students’ pathways through
formal education depend, at least partially, on social class. Specifically, labeling effects
appear to have been greatest for students from lower socio-economic classes providing
further support for claims that England’s school system does more to worsen than
redress educational inequalities. It is worth noting though that magnitude of these
estimated labeling effects, especially when considering the lower bounds of their
associated confidence intervals, cannot explain the majority of the link between social
class, school achievement and university enrollment that has been identified in the
literature (e.g., Chowdry et al. 2013; Anders 2012a). Nonetheless, it seems that grade
labels play some part both in the achievement-enrollment relationship and socio-
economic disparities in enrollment.

4.1 Implications for policy and practice

Since the purpose of testing at Key Stage 3 was not even to award qualifications to
students for their performance (and neither, implicitly, to punish those with relatively
poor performance), these findings indicate that it may be worth at least reassessing
current feedback procedures. Potential adjustments could lie on a spectrum at which the
more extreme end would be dropping assessments entirely, should they provide little
information about school quality. A less extreme change would be to not share results
with students, or, should it be the case that teachers or school leaders are the source of
labeling effects from the assessments, these tests might be anonymized. A more
moderate approach would be to provide feedback scores on a continuous scale. Even
if this were to complicate the interpretation of scores for children or parents, this would
likely be compensated for by the benefits of moving away from the present mode of
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over-simplification. Perhaps most moderate of all, greater care should be taken over
students and parents interpretation of the grades so that lower performers do not see
their grade levels as definitive judgments of academic ability, but rather as something
that is malleable with greater effort in future. Such an approach would be consistent
with the avowed policy objective of fostering Bgrowth^ mindsets (Dweck 2006) by
enabling students to respond and to persevere with setbacks (UK Department for
Education 2014).

With policy changes since the LSYPE cohort, there is already some greater flexi-
bility regarding how schools make use of summative assessment. Whereas Key Stage 2
assessments in English and mathematics follow a similar format to the assessments
taken by the LSYPE cohort, CATs, the common replacement for Key Stage 3 assess-
ments, differ from their predecessor more drastically. As noted, even though the
government does not require schools to use CATs, a majority of schools do so. Given
this absence of central enforcement, the implementation of CATs varies substantially
across schools, and our knowledge of this variation is limited. For instance, CATs
provide schools with each student’s underlying continuous score and band groupings,
and schools are also able to define their own band groupings. Some schools use these
tests to group children into ability bands, set achievement targets for both students and
teachers in the subsequent tenth-grade exams, and share results with students’ parents,
either in the format of the continuous score, achievement bands, or a mixture of the
two.

4.2 Implications for research

The uneven implementation of CATs constrains future inferential statistical research on
this age group in England. Even if data on CAT use were to become more widely
available, endogeneity would present a problem: there are likely to be unobservable
factors influencing why certain schools implement CATs in a particular way that will
also be linked to future educational outcomes. However, applications of the regression
discontinuity design could still be used for Key Stage 2 assessments to identify whether
labeling effects are visible from this earlier age too, and if so, whether their impact may
be greater or lesser than those occurring in adolescence. In addition, the UK govern-
ment has more secure datasets than the LSYPE that would enable more detailed
analyses of any relationship between Key Stage 2 assessments and student outcomes
in A-levels and higher education. For example, it would be possible to examine
performance in A-levels and the type of subjects studied. Similarly, for higher educa-
tion, it would be informative to analyze differences in institutional quality and subject
major. Among other benefits, such research would enable more nuanced analyses of the
relationship between Key Stage grade labels in a particular subject, e.g., mathematics,
and subject-specific outcomes, such as performance in GCSE mathematics, or the study
of STEM subjects at university.

A greater use of qualitative approaches would be especially beneficial to this
research field. While the inferential analysis presented here serves to verify the presence
of a grade label impact, it is incapable of unearthing who is responding to the grade
label or why. When considering the divergent impact of labels on students of different
social classes, prior research on social class in England could justify attributing this to
the behavior of students (Ball et al. 2002; Reay and William 1999), parents (for
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example, Cochrane 2007, 2011; Giddens 1991; Pugsley 1998), or teachers (for
example, Steedman 1988; Thomas et al. 2012). The far stronger evidence of impact
from the assessment of English than of math could be attributed to the foundational
differences in how assessment influences teaching in each subject (Hodgen and
Marshall 2005), although I would be inclined to focus on ability streaming practices
in England. Namely, while nearly all students are streamed by ability after the Key
Stage 3 assessments, 82% are already streamed by ability in math compared to 48% in
English (Department for Education 2010), which suggests that Key Stage 3 grades
mattered far more to ability streaming in English than to math.

However, such claims can be only speculative when based on the evidence available
here. Qualitative work could thus explore the competing and interacting nature of the
mechanisms underlying the impact of grade labels—such as whether such tests serve to
confirm that teacher prejudice or working-class families are especially prone to
accepting summative judgments about their children s progress and ability levels—in
a manner that is not possible with the research design undertaken here. Important work
has already been produced on the impact of Key Stage assessments on student esteem
(Leonard and Davey 2001; Reay and William 1999). Alterations in behavior may also
occur for students, peers, parents, teachers, or some other interested party. Further
studies that use qualitative methods, such as ethnographic observations or interviews,
could shed greater light on who else besides students is responding to grade labels, and
the mechanisms by which their responses have an impact.

In contrast to the more uniform practices of the Key Stage 2 exams, the
uneven implementation of CATs could be a boon for such research. The variety
in conditions could enable researchers to tease out the impact of small differ-
ences in how schools choose to share and act upon test results. For example,
more phenomenological analyses could investigate whether students respond
differently to grade labels when they have direct consequences, such as defin-
ing ability streams, or the more general form of judgment that stems from
being placed on an ability scale. Similarly, it would be useful to know whether
parents still rely on discrete grade boundaries when presented alongside the
underlying continuous scores. Thus, the very source of difficulty posed to
inferential research could prove fruitful for qualitative research, providing us
with more nuanced insights into the role of summative assessment in education.
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Appendix A: Sensitivity tests around the grade thresholds

This appendix tests the suitability of the Key Stage 3 data for the RDD approach by
testing for discontinuities in prior student characteristics around the level 6 cutoff point
in each assessment. Tables 6, 7, and 8 test for discontinuities in NSSEC status, and
Tables 9, 10, and 11 test for discontinuities in performance at Key Stage 2, as measured
by continuous test scores in those assessments.

Educ Asse Eval Acc (2017) 29:269–296 287



Judging the models as a group, there is little evidence that students were able to
systematically manipulate their position around the cutoff points. Of the 18 models, just
one provides an estimate that is significantly different from zero. The significant
estimate comes from the model that regresses students’ positions around the level 6
threshold of the Key Stage 3 mathematics assessment on their test scores in Key Stage
2 mathematics for students (column (1) of Table 10). This finding seems to be
counterintuitive, as it indicates that students scoring just above the level 6 threshold
did significantly worse in Key Stage 2 mathematics than those who scored just below
this threshold.

All models are created using Calonico et al.’s (2013a) bandwidth selection approach
and construction of standard errors. Each model uses a uniform kernel and local-
polynomial of order one, i.e., linear. For all tables, standard errors are provided in
parentheses. Significance levels are denoted as follows: ***p < 0.01, **p < 0.05, *p < 0.1

Appendix B: Specifications for discontinuity models

In this appendix, the following tables provide more detailed information about the RDD
models used in Sect. 3.

7Table 6 Test for discontinuity in rate of low-NSSEC children by assessment

(1) (2) (3)
English Mathematics Science

RD estimate −0.00808 −0.0163 −0.0110
(0.0172) (0.0135) (0.0158)

Observations 4261 6070 3994

Table 7 Test for discontinuity in rate of mid-NSSEC children by assessment

(1) (2) (3)
English Mathematics Science

RD estimate −0.0268 0.0103 −0.00504
(0.0273) (0.0181) (0.0227)

Observations 3405 6033 4260

Table 8 Test for discontinuity in rate of high-NSSEC children by assessment

(1) (2) (3)
English Mathematics Science

RD estimate 0.0502 −0.0244 0.0138
(0.0381) (0.0254) (0.0273)

Observations 2212 4051 3653
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Table 9 Test for discontinuity in Key Stage 2 English score by assessment

(1) (2) (3)
English Mathematics Science

RD Estimate −0.156 0.248 −0.0547
(0.144) (0.165) (0.188)

Observations 4147 2744 3698

Table 10 Test for discontinuity in Key Stage 2 math score by assessment

(1) (2) (3)
English Mathematics Science

RD estimate −0.780*** −0.153 −0.193
(0.227) (0.170) (0.156)

Observations 2395 5481 3278

*p < 0.1; **p < 0.05; ***p < 0.01

Table 11 Test for discontinuity in Key Stage 2 science score by assessment

(1) (2) (3)
English Mathematics Science

RD estimate −0.138 0.108 0.0143
(0.152) (0.156) (0.110)

Observations 2498 3312 5540

Table 12 Specification for models presented in Table 4, column (1)

(1) (2) (3) (4)
Capped GCSE
point score

Attain C or higher in
GCSE English

Enrollment in A-
levels

E n r o l l m e n t i n
university degree

RD estimate 3.741 0.0280 0.0938 0.0389
Observations 5342 3405 2235 3276
conventional

S.E.
2.738 0.0250 0.0405 0.0328

Conventional p
value

0.172 0.262 0.0207 0.236

Robust 95% CI [−0.79; 11.96] [−0.01; 0.1] [0.02; 0.2] [−0.03; 0.13]
Robust p value 0.0858 0.137 0.0128 0.197
Order loc. poly. 1 1 1 1
Order bias 2 2 2 2
BW loc. poly. 3.078 1.868 1.715 3.173
BW bias 5.832 3.607 3.654 5.530
Kernel type Uniform Uniform Uniform Uniform
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Table 13 Specification for models presented in Table 4, column (2)

(1) (2) (3) (4)
Capped GCSE
point score

Attain C or higher in
GCSE math

Enrollment in A-
levels

E n r o l l m e n t i n
university degree

RD estimate 4.788 0.0170 0.0369 0.0610
Observations 3803 2751 4707 2368
conventional

S.E.
3.852 0.0388 0.0261 0.0375

Conventional p
value

0.214 0.661 0.158 0.104

Robust 95% CI [−5.21; 12.44] [−0.08; 0.08] [−0.01; 0.11] [−0.03; 0.14]
Robust p value 0.422 0.968 0.134 0.208
Order loc. poly. 1 1 1 1
Order bias 2 2 2 2
BW loc. poly. 2.511 1.698 4.611 2.904
BW bias 4.825 4.089 8.610 5.588
Kernel type Uniform Uniform Uniform Uniform

Table 14 Specification for models presented in Table 5, column (1) for low-NSSEC students

(1) (2) (3) (4)
Capped GCSE
point score

Attain C or higher in
GCSE English

Enrollment in A-
levels

E n r o l l m e n t i n
university degree

RD estimate 20.11 0.207 0.110 0.205
Observations 711 681 949 462
conventional

S.E.
8.405 0.0619 0.0538 0.0925

Conventional p
value

0.0167 0.000842 0.0414 0.0267

Robust 95% CI [3.03; 42] [0.11; 0.38] [0.01; 0.26] [0.02; 0.47]
Robust p value 0.0235 0.000405 0.0411 0.0311
Order loc. poly. 1 1 1 1
Order bias 2 2 2 2
BW loc. poly. 2.387 2.257 3.120 1.831
BW bias 3.917 4.813 5.661 3.243
Kernel type Uniform Uniform Uniform Uniform

Table 15 Specification for models presented in Table 5, column (2) for low-NSSEC students

(1) (2) (3) (4)
Capped GCSE
point score

Attain C or higher in
GCSE math

Enrollment in A-
levels

E n r o l l m e n t i n
university degree

RD estimate 28.21 0.0569 0.0819 0.00816
Observations 965 831 1073 786
conventional

S.E.
7.570 0.0657 0.0556 0.0656

Conventional p
value

0.000195 0.387 0.141 0.901

Robust 95% CI [13.31; 48.06] [−0.11; 0.18] [−0.03; 0.23] [−0.16; 0.14]
Robust p value 0.000536 0.655 0.144 0.857
Order loc. poly. 1 1 1 1
Order bias 2 2 2 2
BW loc. poly. 3.450 2.872 3.923 3.609
BW bias 6.947 6.311 7.162 6.951
Kernel type Uniform Uniform Uniform Uniform

290 Educ Asse Eval Acc (2017) 29:269–296



Table 16 Specification for models presented in Table 5, column (1) for mid-NSSEC students

(1) (2) (3) (4)
Capped GCSE
point score

Attain C or higher in
GCSE English

Enrollment in A-
levels

E n r o l l m e n t i n
university degree

RD estimate −1.189 −0.0202 0.111 0.0152
Observations 454 1059 632 579
conventional

S.E.
8.467 0.0347 0.0752 0.0832

Conventional p
value

0.888 0.561 0.141 0.855

Robust 95% CI [−24.81; 14.87] [−0.09; 0.07] [−0.05; 0.31] [−0.2; 0.2]
Robust p value 0.624 0.892 0.154 0.974
Order loc. poly. 1 1 1 1
Order bias 2 2 2 2
BW loc. poly. 1.437 3.069 1.850 2.007
BW bias 2.637 6.282 3.422 3.369
Kernel type Uniform Uniform Uniform Uniform

Table 17 Specification for models presented in Table 5, column (2) for mid-NSSEC students

(1) (2) (3) (4)
Capped GCSE
point score

Attain C or higher in
GCSE math

Enrollment in A-
levels

E n r o l l m e n t i n
university degree

RD estimate 5.438 0.0553 0.0605 0.144
Observations 910 729 842 600
conventional

S.E.
5.873 0.0706 0.0652 0.0707

Conventional p
value

0.354 0.434 0.354 0.0420

Robust 95% CI [−8.07; 19.35] [−0.12; 0.19] [−0.1; 0.2] [0.01; 0.33]
Robust p value 0.420 0.680 0.530 0.0427
Order loc. poly. 1 1 1 1
Order bias 2 2 2 2
BW loc. poly. 3.425 2.625 3.054 2.611
BW bias 6.034 5.327 5.833 4.888
Kernel type Uniform Uniform Uniform Uniform
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Table 18 Specification for models presented in Table 5, column (1) for high-NSSEC students

(1) (2) (3) (4)
Capped GCSE
point score

Attain C or higher in
GCSE English

Enrollment in A-
levels

E n r o l l m e n t i n
university degree

RD estimate −1.062 0.0459 −0.0680 −0.0301
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S.E.
4.200 0.0370 0.0448 0.0519
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Table 19 Specification for models presented in Table 5, column (2) for high-NSSEC students

(1) (2) (3) (4)
Capped GCSE
point score

Attain C or higher in
GCSE math

Enrollment in A-
levels

E n r o l l m e n t i n
university degree

RD estimate 9.494 0.108 0.0935 0.0394
Observations 1140 1142 1150 1342
conventional

S.E.
5.163 0.0539 0.0554 0.0477

Conventional p
value

0.0659 0.0453 0.0914 0.409

Robust 95% CI [−0.47; 22.52] [−0.03; 0.21] [−0.01; 0.24] [−0.08; 0.14]
Robust p value 0.0602 0.131 0.0833 0.585
Order loc. poly. 1 1 1 1
Order bias 2 2 2 2
BW loc. poly. 3.396 3.463 3.485 5.225
BW bias 7.046 6.500 6.673 9.630
Kernel type Uniform Uniform Uniform Uniform
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