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Abstract The relation between the Y distribution in the alloy and the growth

kinetics of the developing oxide scale was studied for the thermal oxidation of two

Ni–20Co–19Cr–24Al–0.2Y (at.%) alloys at 1,373 K: (i) a coarse-grain cast alloy

with large Ni5Y intermetallic precipitates, and (ii) a fine-grain freestanding coating

with small Ni5Y precipitates. Using a combination of experiments and model cal-

culations, it is shown that the average growth kinetics of a NiCoCrAlY alloy are

dependent on the size and distribution of Y-rich oxide inclusions (pegs) in the

a-Al2O3 oxide layer. Alumina scales containing a high density of small Y-oxide

inclusions grow faster than a-Al2O3 scales containing only a few, large Y-oxide

inclusions. Upon oxidation of the freestanding coating, the Y-oxide inclusions in the

scale attain their maximum size after the Y in the coating is completely consumed.

After this point, a decrease in the average oxidation kinetics occurs.
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Introduction

High-temperature-coating systems, used in gas turbine engines, usually consist of a

ceramic thermal barrier coating (TBC) on top, an intermediate metallic-bond

coating (BC) and a superalloy substrate [1–5]. For the TBC usually yttria-stabilized

zirconia (YSZ) is used. As bond coating either a Pt-modified Ni aluminide or

a MCrAlY alloy (M = Ni and/or Co) is applied. During service, a thermally
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grown oxide layer (TGO), develops between the TBC and the BC. The TGO is pre-

dominantly comprised of a-Al2O3 and provides protection of the underlying

substrate against high-temperature corrosion. However, upon cooling of the

component from high temperature, thermal-mismatch strains can develop within

the TGO [5]. The elastic energy associated with these strains is the main driving

force for failure of the coating system [5]. This strain energy increases with

increasing TGO thickness. This explains that the failure of a high-temperature

system can often be correlated with a critical TGO thickness at failure [6–8]. Thus,

knowledge about the rate at which the TGO grows during service is necessary to

predict the life span of the entire coating system.

The growth rate of a TGO scale is usually described with a simple parabolic rate

law, since, the rate-limiting process in the growth of the oxide layer is generally

the solid-state diffusion of anions and/or cations through the developing oxide layer

[9, 10]. For the oxide scales developing on the Pt-modified Ni-aluminide bond

coatings, parabolic growth kinetics usually apply [8, 11]. However, for the oxide

scales developing on a MCrAlY bond coating, the growth kinetics cannot be

described with a single parabolic rate constant, in particular when long oxidation

periods are considered [12].

The fact that the oxide scales on MCrAlY alloys are not pure a-Al2O3, but also

contain Y-rich oxide inclusions [13–18] may explain this deviation from parabolic

growth kinetics. When the reactive element Y from the MCrAlY alloy becomes

incorporated as Y-rich oxide inclusions in the a-Al2O3 scale, localized enhanced

growth of the alumina around the Y inclusions occurs, resulting in the formation of

protrusions (pegs) at the oxide/metal (O/M) interface. The size and density of these

protrusions along the O/M interface depends on the distribution and the reservoir of

the Y in the alloy [16, 17, 19]. This implies that when interpreting the oxidation

kinetics of a MCrAlY alloy, the initial amount and distribution of the Y in the alloy

have to be considered.

In this work, the relation between the Y distribution in the alloy and the growth

kinetics of the developing oxide scale was investigated for the oxidation of a

NiCoCrAlY alloy. To this end, the microstructures and growth kinetics of the oxide

scales developing on two Ni–20Co–19Cr–24Al–0.2Y (at.%) alloys with different Y

distribution were determined at 1,373 K. The experimental results are discussed

with aid of a recently developed oxide-layer growth model that takes into account

the effect of reactive-element-oxide inclusions on the growth rate of protective

oxide scales [20].

Experimental Procedures

A cast Ni–20Co–19Cr–24Al–0.2Y (at.%) alloy and a free-standing Ni–20Co–19Cr–

24Al–0.2Y coating, as deposited by electron-beam, physical-vapor deposition

(EB-PVD), were prepared as described in Refs. [21, 18]. Disc-shaped specimens

with a diameter of 15 mm and thicknesses of 2 mm for the cast alloy and 1 mm for

the EB-PVD coating were cut using spark erosion. Next, both alloy surfaces were

ground using a Buehler SiC paper with grit 1200 as the final step. Prior to oxidation,

2 Oxid Met (2008) 69:1–12

123



all specimens were thoroughly cleaned with isopropanol and dried by blowing with

compressed nitrogen.

Isothermal-oxidation experiments were preformed for 1, 25 and 100 h at a

temperature of 1,373 K and a partial oxygen pressure of 105 Pa (1 atm.). The

experiments were executed in a horizontal alumina tube furnace (Lenton PTF 16/75/

610; inner diameter 75 mm) with pure oxygen passing through the furnace at a

controlled flow rate of 1 l/min. Specimens were inserted into the furnace as rapidly

as possible to minimize oxidation upon heating. After oxidation, specimens were

transported quickly out of the furnace and allowed to cool in ambient air.

The cyclic-oxidation experiments were conducted in a furnace containing four

ceramic tubes at the National Aerospace Laboratory (NLR, Marknesse, The

Netherlands). For each alloy, three specimens were subjected to the following

thermal cycles in laboratory air: 9 minutes heating, 45 min hot dwell at 1,373 K,

and 10 min cooling (after 10 min the temperature was below 373 K). For each

alloy, one of the three specimens was withdrawn from the test after 380 cycles. The

other two specimens were tested up to 1,000 cycles, after which the test was

stopped. Prior to cycling and after a certain number of cycles, the mass of each alloy

(i.e. net mass change) was measured using a microbalance (accuracy * 10 lg).

The resulting mass-change data were averaged for each alloy and subsequently

normalized with respect to specimen area.

After oxidation and examination of the oxide-surface morphology, oxide/alloy

cross-sections were prepared using the procedure described in Ref. [22]. To reveal

the oxide-layer microstructure in more detail, selected areas (with a size of about

0.5 9 0.5 mm) of the cross-sections were fine-polished by ion milling using a JEOL

SM 09010 cross-section ion polisher [23]. To this end, a 5 kV Ar ion beam was

employed.

Scanning-electron microscopy (SEM) was employed to determine the morphol-

ogy and thickness of the oxide scales, the size of the Y-rich oxides in the scale, as

well as the microstructure changes in the underlying alloys as a function of

oxidation time (see section ‘‘Modeling and Data Analysis’’). Energy-dispersive

X-ray spectroscopy (EDXS) in combination with electron-backscatter-diffraction

(EBSD) analysis was used to determine the phase constitution at selected points in

the oxide scale. For this purpose, a JEOL JSM 6500F microscope was used,

equipped with an Autrata [24] detector for observation of backscatter-electron

(BSE) images, a Noran Pioneer 30 mm2 Si(Li) detector for EDXS analysis, and a

HKL Nordlys detector for the recording of electron-backscatter patterns (EBSP).

The magnification of the microscope was calibrated such that the error in the length

scale was less than 1%. The processing of the X-ray spectra and the EBSP was

performed with a ThermoNoran Vantage system (version 2.3) and the HKL

Technology Channel 5 (version 5.9) software, respectively.

Microstructural Observations

Prior to oxidation, both alloys have a multiphase microstructure, consisting of

precipitates of the Al-rich b-NiAl phase in a matrix of the Al poor c-Ni phase

Oxid Met (2008) 69:1–12 3

123



(Fig. 1). The main difference between the microstructures of the two alloys is the

size of the b precipitates (Fig. 1). The cast alloy contains much larger b precipitates

than the EB-PVD coating. Besides a difference in b precipitate size, the alloys also

exhibited a different distribution of Y. The reason for this is that the solubility of Y

in NiCoCrAlY alloys is very low [15]. Electron-microprobe measurements indicate

the solubility of Y in the two alloys was less than 0.02 at.% [21] (the detection limit

of our electron-probe micro analyzer). Due to its low solubility, the Y was mostly

confined within Ni5Y precipitates along phase and/or grain boundaries in the alloy

(as identified by X-ray diffraction [21]). The size of these Ni5Y precipitates depends

on the phase and/or grain-boundary density in the alloy. Thus, the Ni5Y precipitates

are much larger for the coarse-grain (low density of these boundaries) cast alloy

than for the fine-grain (high density of these boundaries) EB-PVD coating.

Upon isothermal and cyclic oxidation, a double-layered oxide scale developed on

both alloys, consisting of a thin, porous layer near the oxide surface and a thick,

columnar-grain layer near the oxide/metal interface (Fig. 2). The thickness of the

outer oxide layer was independent of the oxidation times studied, indicating that the

oxide products in this layer were formed during initial oxidation (i.e. transient

oxidation [25–27]). The transient oxide products were not identified, since this was

not a focus of this study. The inner oxide layer in both cases consisted of a-Al2O3

(as identified by EBSD) and Y-rich oxide inclusions (Fig. 2). According to EDXS

and EBSD analysis, two types of Y-rich oxides were formed (see inserts in Fig. 2):

(i) a cubic oxide almost exclusively made up of Y and O, and (ii) a cubic oxide

containing similar amounts of Y and Al next to O. Based on these results, it is

concluded that the former is made up of Y2O3, while the latter is cubic YAlO3 (i.e.

with ideal perovskite structure). In some cases, a single oxide inclusion was

composed of a core of Y2O3 surrounded by a sheath of YAlO3 (see Fig. 2d). This

result indicates that the YAlO3 formed due to a solid-state reaction between Y2O3

and a-Al2O3.

Fig. 1 Backscatter-electron images of the microstructures of the (a) cast and (b) EB-PVD Ni–20Co–
19Cr–24Al–0.2Y alloy prior to oxidation. Notice the difference in magnification
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The incorporation of the Y-rich oxide inclusions in the scale leads locally to

enhanced growth of the oxide scale and consequently to a roughening of the oxide/

metal interface. Clearly, the O/M interface is relatively smooth at those locations

where Y-rich oxides are absent in the scale (Fig. 2a), and relatively rough at those

positions where Y-rich oxide inclusions are present in the scale (Fig. 2b–d). The

formation of these so-called protrusions (or pegs) at the O/M interface is a

commonly observed phenomenon for the oxidation of MCrAlY alloys [17, 28] and

coatings [13–16]. Close inspection of the location of the Y-rich oxide inclusions

revealed that for both alloys almost all inclusions were formed above alloy grain or

phase boundaries (Fig. 2), in agreement with previous reports [13, 17, 28, 29]. In

some samples, internal oxidation of Y in advance of the O/M interface was

observed, but the total amount of internally oxidized Y was very small compared

with the amount of Y oxides within the scale.

Finally, the incorporation of Y as oxide inclusions in the scale leads to a

depletion of the Y from the coating. As is clearly shown in Fig. 3, oxidation leads to

a formation of an almost uniform zone free of Ni5Y precipitates in the alloy region

adjacent to the O/M interface.

Modeling and Data Analysis

A model was developed for describing the effect of Y-rich oxide inclusions on the

oxidation kinetics of MCrAlY coating alloys. A schematic illustration of this model,

Fig. 2 Backscatter-electron images of the oxide/alloy cross-sections of the (a, b) cast, and (c, d)
EB-PVD Ni–20Co–19Cr–24Al–0.2Y alloy after oxidation at 1,373 K. (a, c) 25 h isothermal oxidation,
(b) 750 h cyclic oxidation, and (d) 285 h cyclic oxidation. The inserts show the compositions and
electron backscatter patterns of the two indicated Y-rich oxide inclusions
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for which the details are provided in Ref. [20], is given in Fig. 4. The model was

based on the following considerations:

(i) Following a short transient oxidation stage, the oxide scale forming between

the protrusions consists solely of a-Al2O3. This alumina scale grows according

to parabolic oxidation kinetics and is further referred to as the minimum oxide-

scale thickness dmin
ox :

(ii) Above each alloy phase or grain boundary one protrusion (or peg) is formed.

The thickness of the scale above the alloy grain boundaries is denoted as the

Fig. 3 Backscatter-electron
images of the microstructure of
the (a) cast and (b) EB-PVD Ni–
20Co–19Cr–24Al–0.2Y alloy
after 25 h of isothermal
oxidation at 1,373 K. The bright
spots correspond to the Ni5Y
precipitates

Fig. 4 Schematic illustration of
the model used to determine the
effect of the Y oxide inclusions
on the growth kinetics of the
NiCoCrAlY alloys
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maximum oxide-scale thickness dmax
ox : The value of dmax

ox is taken equal to the

value of dmin
ox plus the amount of Y2O3 (UY2O3

) within a single protrusion.

Thus, the Y2O3 inclusions do not affect the growth rate of the alumina scale.

(iii) The amount of Y2O3 within a protrusion is taken equal to the maximum

amount of Y that can be supplied by dissolution and diffusion of Y from Ni5Y

precipitates along alloy grain or phase boundaries to the oxide/metal interface

during a given oxidation period.

(iv) The average oxide-scale thickness hdoxi is considered to be a linear

combination of scale thicknesses in between and on top of the alloy grain

or phase boundaries (i.e. the values of dmin
ox and dmax

ox ).

The model was applied to the oxidation of the cast and the EB-PVD Ni–20Co–

19Cr–24Al–0.2Y alloys at 1,373 K. To calculate the oxidation kinetics of the two

alloys, the following data are required: the molar volume of the alloy, the molar

volume of Y2O3, the parabolic rate constant of a-Al2O3, the boundary diffusion

coefficient of Y in the alloy, the Y content in the alloy, the solubility of Y in the

alloy, the size of the b precipitates and the size of the Ni5Y precipitates in the alloy.

The values for these data for the oxidation of the two NiCoCrAlY alloys at 1,373 K

are given in Table 1.

In order to verify the model calculations, for both alloys, the minimum, average

and maximum oxide-scale thickness, the amount of yttria within a protrusion and

the depth of the Ni5Y-precipitate-free zone were also determined from experiment.

For the determination of the Ni5Y-precipitate-free zone, the amount of Y2O3 within

a protrusion and the minimum- and maximum-scale thickness, as can be seen in

Fig. 4, were determined from backscatter-electron images for at least 25 positions

along the O/M interface. For the determination of the average oxide-layer thickness,

five BSE images were converted into grayscale images for each alloy. Then the

Table 1 Data used for the calculations. The data apply to the oxidation of a Ni–20Co–19Cr–24Al–0.2Y

(at.%) alloy at 1,373 K

Symbol Value Unit Remarks

Molar volume alloy 7.0 cm3/mol Taken from Ref. [30]

Molar volume Y2O3 44.9 cm3/mol Taken from Ref. [31]

Molar volume Al2O3 25.6 cm3/mol Taken from Ref. [31]

Y content in alloy 0.2 at.% Measured with EPMA

Y solubility in alloy 0.01 at.% Half of the EPMA detection

limit

Y boundary diffusion coefficient 5 9 10-8 cm2/s Fit parameter

Parabolic rate constant a-Al2O3 4.2 9 10-13 g/cm4s Taken from Ref. [32]

Specimen thickness 0.4 (EB-PVD) 2.0 (cast) mm Measured after surface

preparation

Size of b precipitates in alloy 1.5 (EB-PVD) 40 (cast) lm Measured from BSE images

(Fig. 3)

Size of Ni5Y precipitates 1 (EB-PVD) 3 (cast) lm Measured from BSE images

(Fig. 3)
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average oxide-layer thickness was taken equal to the number of pixels belonging to

the oxide scale divided by the total number of pixels in the image and multiplied by

the height of the image.

Results and Discussion

The experimental and calculated evolution of the minimum, maximum and average

oxide-layer thickness for both alloys as function of oxidation time is shown in

Fig. 5. Good agreement exists between the experiments and the model calculations.

On the surfaces of both alloys, a continuous, columnar-grain a-Al2O3 layer

formed between the protrusions (Fig. 2). The generally accepted mechanism for the

growth of such an alumina layer is the inward diffusion of oxygen along oxide grain

boundaries [33, 34]. If diffusion through the scale is rate-limiting, the experimental

growth kinetics can usually be described with a parabolic growth law [9, 10]. Thus,

provided that the oxide scales developed between the protrusions do not have

different microstructures, for both alloys the growth kinetics should be parabolic

and the parabolic rate constant describing the evolution of the minimum oxide-layer

thickness should be similar. Indeed, the experimental results for the minimum

oxide-layer thickness are well described with the same parabolic rate constant if the

transient oxidation period is taken into account (Fig. 5).

Fig. 5 Experimentally
determined and calculated
minimum, maximum and
average oxide-layer thickness as
function of oxidation time for
the oxidation of the (a) cast, and
(b) EB-PVD NiCoCrAlY
coating at 1,373 K. The data
points up to 100 h of oxidation
were determined from
isothermal-oxidation
experiments, the data points at
285 h and 750 h of oxidation
were determined from thermal-
cycling tests
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In the size evolution of the protrusions, considerable differences were observed

for the two alloys. Clearly, the maximum oxide-layer thickness is much smaller for

the EB-PVD coating (Fig. 5b). This is attributed to the fact that the EB-PVD coating

contains a high density of grain and phase boundaries at which small Ni5Y

precipitates are present (Figs. 1b and 3b). Subsequent oxidation leads to the

formation of a high density of Y-oxide inclusions in the scale, but only with a small

penetration of the oxide scale into the alloy (Figs. 2c and d). For the cast alloy, on

the other hand, the Ni5Y precipitates are much larger, and therefore the penetration

of the oxide scale into the alloy is much deeper (Figs. 2b and 5a). However, due to

the large size of the b precipitates, the distance between two protrusions in the cast

alloy is much larger than that of the EB-PVD coating (Fig. 2b).

Like the minimum oxide-layer thickness, the maximum oxide-layer thickness

also shows a parabolic evolution with oxidation time (Fig. 5). The reason for this is

that the supply of Y from the alloy towards the oxide scale (i.e. the dissolution of Y

from the Ni5Y precipitates) is controlled by diffusion and thus proportional to the

square root of oxidation time (Fig. 6a). For the EB-PVD coating, a transition in the

growth kinetics of the protrusions can be observed (Fig. 5b). Clearly, after about

100 h of oxidation, the size of the protrusion increases much slower than before this

point. This transition from fast to slow kinetics is attributed to the total depletion of

Ni5Y precipitates from the EB-PVD coating (Fig. 6a). The complete disappearance

of the Ni5Y precipitates from the coating is associated with a maximum in the size

of the Y oxide inclusions in the scale (Fig. 6b). For the cast alloy, no total depletion

Fig. 6 Experimentally
determined and calculated (a)
depth of the Ni5Y precipitate-
free zone as function of
oxidation time, and (b) amount
of Y2O3 within a single peg as a
function of oxidation time, for
the oxidation of the cast and
EB-PVD NiCoCrAlY alloys at
1,373 K. The data points up to
100 h of oxidation were
determined from isothermal-
oxidation experiments, the data
points at 285 h and 750 h of
oxidation were determined from
a thermal-cycling test
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of Y occurred and thus no transition in the growth kinetics of the protrusions was

observed. This is attributed to the use of a thicker specimen for the cast alloy (2 mm

as compared to 1 mm for the EB-PVD coating) and a slower rate at which the Ni5Y-

precipitate-free zone thickens (Fig. 6a). The latter is an effect of the larger size of

the Ni5Y precipitates in the cast alloy (Fig. 1).

The average oxide-layer growth kinetics are a combination of the oxidation

kinetics between and on top of the alloy grain/phase boundaries (see section

‘‘Modeling and Data Analysis’’). Thus, the average oxide-scale growth rate is

determined by the values for the minimum and maximum oxide-layer thickness, as

well as the distance between two alloy grain/phase boundaries. Experimental and

calculated average oxide-layer growth kinetics in terms of specimen mass gain for

the cast alloy and the EB-PVD coating are shown in Fig. 7. Clearly, on average the

EB-PVD coating oxidizes faster than the cast alloy when oxidized under the same

conditions (i.e. temperature and oxygen partial pressure). This difference in scale

growth rate is solely determined by the difference in Y distribution in the two alloys,

since both alloys form a continuous a-Al2O3 layer with similar amounts of transient

oxidation op top of the alloy phases (Fig. 2). Thus, on a NiCoCrAlY alloy, an oxide

scale containing a high density of small Y oxide inclusions grows faster than an

oxide scale containing only a few, large Y oxide inclusions.

For the oxidation of MCrAlY alloys, our present results have the following

implications. First, the average growth kinetics of the scale developing on a

MCrAlY alloy will always be faster than that of a pure alumina scale, as long as

Y-rich-oxide inclusions become incorporated in the scale. Only after the Y in the

coating has been completely consumed, the oxidation rate of a MCrAlY alloy can be

described solely by the parabolic rate constant of a-Al2O3. Next, the oxidation

kinetics of a MCrAlY coating depend on the microstructure of the coating, i.e. Y

distribution, and the specimen thickness, i.e. Y reservoir. This is in agreement with

previous observations [16, 17]. Finally, if the Y in the coating becomes totally

depleted (a phenomenon which will always occur when thin coatings are applied), a

transition in the oxidation kinetics will occur. This may explain why the

experimental growth kinetics of a MCrAlY coating [12] cannot be described with

a single parabolic rate constant.

Fig. 7 Experimentally
determined and calculated
weight change as function of
oxidation time for the oxidation
of cast and the EB-PVD
NiCoCrAlY alloy at 1,373 K.
The calculated data represent the
isothermal oxidation kinetics,
the experimental data are results
from a thermal-cycle test up to
the point where oxide spallation
was first observed
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Conclusions

The relation between the Y distribution in the alloy and the growth kinetics of the

developing oxide scale was studied for the thermal oxidation of two Ni–20Co–

19Cr–24Al–0.2Y (at.%) alloys at 1,373 K: (i) a coarse grain cast alloy with large

Ni5Y intermetallic precipitates, and (ii) a fine-grain freestanding coating with small

Ni5Y precipitates. Upon isothermal and cyclic oxidation, on both alloys a double-

layered oxide developed, consisting of a transient outer layer and an a-Al2O3 inner

layer containing Y2O3 and YAlO3 inclusions (pegs). On top of the coarse-grain cast

alloy, only a few, very large pegs formed, whereas on top of the fine-grain

freestanding coating a high density of small pegs developed.

It was shown that the average growth kinetics of an oxide scale with Y-rich oxide

inclusions is faster than the growth kinetics of an oxide scale consisting of pure

a-Al2O3. The evolution of the growth kinetics depends on the size and distribution

of Y oxide inclusions in the a-Al2O3 layer. The NiCoCrAlY alloy oxidizes faster if

the developing alumina scale contains a high density of small Y oxide inclusions.

For a thin coating, the Y oxide inclusions in the scale attain their maximum size

after the Y in the coating is completely consumed. After this point, a decrease in the

average oxidation kinetics occurs. This implies that the oxidation rate of a MCrAlY

alloy is affected by the specimen thickness.
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