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Abstract We give an explicit nonrecursive complete matching for the Hasse diagram
of the strong Bruhat order of any interval in any Coxeter group. This yields a new
derivation of the Möbius function, recovering a classical result due to Verma.
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1 Introduction

The Bruhat partial order on the elements of a Coxeter group is a fundamental
tool in algebraic combinatorics, representation theory and the geometry of Schubert
varieties. In this work, we give a derivation of the Möbius function for this partial
order based on an explicit nonrecursive matching of the Hasse diagram. The Möbius
function is used to invert formulas defined by sums over Bruhat intervals, and gives
the Euler characteristic in poset topology. Many proofs of the Möbius function have
appeared in the literature; see [4, 7, 11, 12, 15, 16].

Our construction is closest to Verma’s original argument, although it is phrased
in terms of combinatorial objects called masks that are related to Kazhdan–Lusztig
combinatorics. In [16], Verma constructs a complete matching of the Hasse diagram
of the Bruhat interval [x, w] in “half” the cases: when there exists a Coxeter generator
si such that xsi > x and wsi < w. In the other cases, he applies an inductive argument
to prove the Möbius function formula, but this argument does not extend to give a
complete matching of the Bruhat interval. The complete matching that we give below
can be seen to agree with Verma’s in the case that there exists si satisfying xsi > x
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and wsi < w. This case is also an example of a special matching that has been used
to compute R-polynomials in Kazhdan–Lusztig theory; see [2, Proposition 5.6.1]. In
addition, [14] have used a complete matching of the intervals in finite Coxeter groups
in order to apply discrete Morse theory to totally nonnegative flag varieties. We show
that our construction also agrees with this matching for the case of finite Coxeter
groups.

Our matching unifies these constructions, and has the advantage of being given
explicitly and nonrecursively. It also extends to intervals in infinite Coxeter groups.

2 Construction

Let W be a Coxeter group with generating set S and relations of the form
(sis j)

m(i, j) = 1. An expression is any product of generators from S and the length l(w)

is the minimum length of any expression for the element w. Such a minimum length
expression is called reduced. Given w ∈ W, we represent reduced expressions for w

in sans serif font, say w = w1w2 · · · wp where each wi ∈ S. For any x, w ∈ W, we say
that x ≤ w in Bruhat order if a reduced expression for x appears as a subword (that
is not necessarily consecutive) of some reduced expression for w. There are several
other characterizations of this partial order on the elements of W; see [2, 10] for
details. If si appears as the last (first, respectively) factor in some reduced expression
for w, then we say that si is a right (left, respectively) descent for w; otherwise, si is an
right (left, respectively) ascent for w. If si is a descent for an element w with reduced
expression w = w1w2 · · · wp then the Exchange Condition implies that there exists an
index i for which wsi = w1 · · · wi−1ŵiwi+1 · · · wp, where the hat indicates omission.

The following lemma gives a useful property of Bruhat order.

Lemma 2.1 (Lifting Lemma) [2, Proposition 2.2.7] Suppose x < w, si is a right descent
for w, and si is a right ascent for x. Then, xsi ≤ w and wsi ≥ x.

In this work, we will represent Bruhat relations using a combinatorial model
inspired by Deodhar [8] and Billey–Warrington [5] for the purpose of studying
Kazhdan–Lusztig polynomials. Fix a reduced expression w = w1w2 · · · wp. Define a
mask σ associated to the reduced expression w to be any binary vector (σ1, . . . , σp)

of length p = l(w). Every mask corresponds to a subexpression of w defined by
wσ = wσ1

1 · · · wσp
p where

wσ j

j =
{

w j if σ j = 1
1 if σ j = 0.

Each wσ is a product of generators so it determines an element of W. For 1 ≤ j ≤ p,
we also consider initial sequences of a mask denoted σ [ j] = (σ1, . . . , σ j), and
the corresponding initial subexpression wσ [ j ] = wσ1

1 · · · wσ j

j . In particular, we have
wσ [p] = wσ . We also use this notation to denote initial sequences of expressions, so
w[ j] = w1 · · · w j.

We say that a position j (for 2 ≤ j ≤ p) of the fixed reduced expression w is a
defect with respect to the mask σ if

wσ [ j−1]w j < wσ [ j−1].
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Note that the defect status of position j does not depend on the value of σ j. We say
that a defect position is a 0-defect if it has mask-value 0, and call it a 1-defect if it
has mask-value 1. If a mask has no defect positions at all, then we say it is a constant
mask on the reduced expression w for the element wσ . This terminology arises from
the fact that these masks correspond precisely to the unique constant term in the
Kazhdan–Lusztig polynomial Px,w(q) in the combinatorial model mentioned above.
Other authors [13, 14] have used the term “positive distinguished subexpression” to
define an equivalent notion.

The following result is due to Deodhar [8, Proposition 2.3(iii)], and has also
appeared in work of [13] related to totally nonnegative flag varieties, as well as [1] in
the context of sorting algorithms on Coxeter groups. As the lemma is central to our
work, we include a proof here for completeness.

Lemma 2.2 (Deodhar) Let w = w1 · · · wp be a reduced expression for an element
w ∈ W and let x ≤ w. Then there is a unique constant mask σ on w for x.

Proof We describe a greedy algorithm to construct such a mask. Let rp+1(x) = x and
i = p. We inductively assign

σi :=
{

0 if wi is a right ascent for ri+1(x)

1 if wi is a right descent for ri+1(x)

and ri(x) :=
{

ri+1(x) if wi is a right ascent for ri+1(x)

ri+1(x) · wi if wi is a right descent for ri+1(x)

for each i from p down to 1.
Note that the constraint that σ have no defects forces the choice of mask-value

at each step. Hence, there can be at most one mask σ on w for x. In particular, the
algorithm produces a constant mask on w for x if and only if r1(x) is the identity.

We claim that r1(x) is always the identity. Note that we have a constant mask
consisting of all 1 entries for x = w. Hence, if x < w and we run the algorithm for
both elements simultaneously, we initially have rp+1(x) = x ≤ w = rp+1(w). Observe
that for each i ≤ p, whenever we have ri+1(x) ≤ ri+1(w) then ri(x) ≤ ri(w). This
follows by definition when ri(w) = ri+1(w), and by an application of the Lifting
Lemma 2.1 in the case that ri+1(w) covers ri(w) using the fact that ri(x) always has
wi as a right ascent by construction. Since r1(w) = 1, this implies by induction that
r1(x) = 1 so the algorithm produces a constant mask for all x < w. ��

Example 2.3 If W = A4, w = s2s3s4s1s2s3 and x = s1s2s1 then σ is

s2 s3 s4 s1 s2 s3

1 0 0 1 1 0

as a result of

r7(x) = s1s2s1 = r6(x), r5(x) = s2s1, r4(x) = s2 = r3(x) = r2(x), r1(x) = 1.
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Remark 2.4 Suppose σ and τ are constant masks on a fixed reduced expression w.
Then it can be shown that the mask ν = σ ∨ τ defined by

νi :=
{

1 if σi = 1 or τi = 1,
0 otherwise.

is a constant mask. Although Bruhat order is not a lattice, the operation ∨ can be
used to define an associated join-semilattice that respects Bruhat order, once we fix
a reduced expression w.

In fact, [1] has shown that this partial order on [1, w] is a lattice that lies maximally
between the weak and strong Bruhat orders on W.

Continue to fix the reduced expression w = w1 · · · wp for w ∈ W and suppose
y ≤ x ≤ w. We describe a notion of relative mask that captures this pair of Bruhat
relations. Let τ be the unique constant mask on w for x. Then, wτ is a reduced
expression for x and we may let ν be the unique constant mask on wτ for y. We
combine these into a relative mask σ = (σ1, . . . , σp) by

σ j =
{

X if τ j = 0
ν j if τ j = 1.

In this situation, we call τ the X-mask associated to (w, σ ), also denoted �(σ). We
denote (wτ )ν by wσ . We say that position j is a defect in the relative mask σ if
wσ [ j−1]w j < wσ [ j−1]. Note that only positions in σ with mask-value X can be defects,
by definition. We will indicate these defect positions by Xd in our illustrations of
relative masks.

Example 2.5 The relative masks encoding the Bruhat interval [s2, s2s1s3s2] in type A
are given by

s2 s1 s3 s2 s2 s1 s3 s2 subexpression for
x ∈ [s2, s2s1s3s2]

σ = 0 0 0 1 τ = 1 1 1 1 s2s1s3s2

σ = 1 0 0 Xd τ = 1 1 1 0 s2s1s3

σ = 0 0 X 1 τ = 1 1 0 1 s2s1s2

σ = 0 X 0 1 τ = 1 0 1 1 s2s3s2

σ = X 0 0 1 τ = 0 1 1 1 s1s3s2

σ = 1 0 X Xd τ = 1 1 0 0 s2s1

σ = 1 X 0 Xd τ = 1 0 1 0 s2s3

σ = X 0 X 1 τ = 0 1 0 1 s1s2

σ = X X 0 1 τ = 0 0 1 1 s3s2

σ = X X X 1 τ = 0 0 0 1 s2

Here, wσ = s2 for all of these masks.

Our goal is to give a matching on the Hasse diagram of the Bruhat interval [y, w]
using the relative masks for y on a fixed reduced expression for w as an encoding.
The following definition will allow us to define a procedure that is reversible.
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Definition 2.6 Let w = w1 · · · wp be a reduced expression for an element w ∈ W and
let σ be a relative mask on w with X-mask τ . We call position j a shifted descent of
(w, σ ) if wτ [ j−1] ≥ wσ [ j ] in Bruhat order.

Example 2.7 Consider

s2 s1 s3 s2 s2 s1 s3 s2 subexpression for
x ∈ [s2, s2s1s3s2]

σ = 0 X 0 1 τ = 1 0 1 1 s2s3s2

σ = X 0 0 1 τ = 0 1 1 1 s1s3s2

The first mask has position 4 as a shifted descent because s2s3 ≥ s2. The second mask
does not have position 4 as a shifted descent because s1s3 � s2.

We are now in a position to define our matching. The rough idea that motivates
the following definition is to remove the rightmost X from a relative mask σ in a way
that preserves wσ and is reversible.

Definition 2.8 Let σ be a relative mask on w with X-mask τ . Find the rightmost
position j in (w, σ ) where one of the following conditions holds, and apply the given
transformation to obtain a new relative mask denoted ϕ(σ):

(1) If σ j = X and σ j is not a defect then change σ j to 0.
(2) If σ j = 0 then change σ j to X. Note that by definition, σ j cannot be a defect in

this case.
(3) If σ j = X and σ j is a defect then wτ [ j−1] ≥ wσ [ j−1] > wσ [ j−1]w j. Hence, we may

assign the unique constant mask for wσ [ j−1]w j on wτ [ j−1] to the entries of wτ [ j−1]
and set σ j to 1.

(4) If σ j = 1 and σ j is a shifted descent then wτ [ j−1] ≥ wσ [ j ] so we may assign the
unique constant mask for wσ [ j ] on wτ [ j−1] to the entries of wτ [ j−1] and set σ j to
X. Note that by definition, σ j becomes a defect in this case.

Example 2.9 The matching given by ϕ on [s2, s2s1s3s2] is:

s2s1s3s2 ∼= [0001]

������������

s2s1s3 ∼= [100Xd] s2s3s2 ∼= [0X01]

������������
s2s1s2 ∼= [00X1]

�����������
s1s3s2 ∼= [X001]

������������

s2s3 ∼= [1X0Xd] s2s1 ∼= [10X Xd] s1s2 ∼= [X0X1] s3s2 ∼= [X X01]

�����������

s2 ∼= [X X X1]

We now give our main results.
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Lemma 2.10 The function ϕ given in Definition 2.8 always produces a valid relative
mask.

Proof Let σ be a relative mask on w. Applying ϕ to σ interchanges exactly one X
entry in position j with an entry that is either 0 or 1, and also possibly rearranges
the 0 and 1 entries lying to the left of j. By definition, we never create a 0-defect nor
1-defect at j, and applying any of the rules at position j preserves the element wσ [ j ],
so the defect status of positions k > j does not change. Hence, to show that ϕ(σ) is
valid it suffices to show that ϕ(σ) has a constant X-mask. Let τ denote the X-mask
of σ .

Suppose ϕ acts at position j by changing σ j from X to 1 or 0. Then the X-mask τ ′
of ϕ(σ) is the result of changing the rightmost 0 to a 1 in the X-mask τ of σ . Since τ

is a constant mask, we have that τ ′ is constant by [2, Proposition 5.3.9].
Now consider the case where ϕ acts at position j by changing σ j from 1 or 0 to X,

and suppose for the sake of contradiction that the X-mask τ ′ of ϕ(σ) is not constant.
By Definition 2.8, we have σi = 1 for all i > j, for otherwise we would have applied
ϕ to position i. Since τ ′ is not constant, there exists a leftmost position k > j that
becomes a 1-defect in τ ′. Hence, we have the schematic shown below.

1 · · · j · · · (k − 1) k

σ = ∗ X · · · ∗ ∗ 1 · · · 1 1 1

τ ′ = 1 X · · · 1 X 1 · · · 1 1 1d

Here, the positions marked by ∗ are the non-X positions of σ , so these positions have
mask-value 1 in τ ′.

If σ j = 0, then wσ [k−1] ≤ wτ ′[k−1] and wk is a descent for wτ ′[k−1] while wk is an
ascent for wσ [k−1]. Hence, by the Lifting Lemma 2.1 we have wσ [k] ≤ wτ ′[k−1] ≤
wτ [k−1] so k is a shifted descent in σ , contradicting the rightmost choice of move
in Definition 2.8.

Next, suppose σ j = 1, as shown in the schematic below.

1 · · · j · · · (k − 1) k

σ = ∗ X · · · ∗ 1 1 · · · 1 1 1

ϕ(σ) = ∗ X · · · ∗ Xd 1 · · · 1 1 1

τ ′ = 1 X · · · 1 X 1 · · · 1 1 1d

Then, since ϕ operates on σ at position j, we have that j is a shifted descent.
Therefore, position j in the mask ϕ(σ) is Xd and wϕ(σ)[ j ] = wσ [ j ].

Hence, we have wϕ(σ)[k−1] ≤ wτ ′[k−1] because we have exhibited one as a submask
of the other without 1-defects. Moreover, wk is a descent for wτ ′[k−1] and an ascent
for wϕ(σ)[k−1], so by the Lifting Lemma 2.1, we have wϕ(σ)[k−1]wk ≤ wτ ′[k−1]. Hence,

wσ [k] = wσ [k−1]wk = wϕ(σ)[k−1]wk ≤ wτ ′[k−1] ≤ wτ [k−1]

so k was a shifted descent in σ to begin with, contradicting the rightmost choice of
move in Definition 2.8.

Since all cases where τ ′ is not constant lead to a contradiction, we have completed
the proof that ϕ(σ) is a valid relative mask. ��
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Lemma 2.11 The function ϕ given in Definition 2.8 is an involution on the set of
relative masks on w.

Proof To see that ϕ is an involution, we observe that rule (2) inverts rule (1)
in Definition 2.8, and it is straightforward to verify that rule (4) inverts rule (3).
Moreover, applying any of the rules at position j preserves the element wσ [ j ], so
the mask-value and defect status of positions k > j does not change.

Since the rules in Definition 2.8 depend only on mask-value, defect status and
shifted descent status, the only way in which applying a move at position j can create
a new move at position k > j is if k becomes a shifted descent in ϕ(σ). Moreover, this
can only occur as a result of applying rules (1) or (3) to σ .

For the sake of contradiction suppose this occurs and among all counterexamples,
consider one such that l(w) is minimal. Then, ϕ(σ) operates at position j and ϕ(ϕ(σ ))

operates at position k > j. Let τ be the X-mask of σ and τ ′ be the X-mask of ϕ2(σ ).
Thus, we have the following schematic.

1 · · · j · · · i · · · k − 1 k

σ = ∗ · · · X(d) · · · 1 · · · 1 1

ϕ(σ) = ∗ · · · ∗ · · · 1 · · · 1 1

ϕ2(σ ) = ∗ · · · 1 · · · 1 · · · 1 Xd

We begin by justifying the main points of this schematic. Note that we do not assume
the defect status of σ j is known. If σ j is a defect then ϕ(σ) j = 1, and if it is not then
ϕ(σ) j = 0. In any case, observe that ϕ2(σ ) j must be 1, for otherwise the mask ϕ2(σ )

shows that position k is already a shifted descent in σ . Also, observe that all the
entries between j and k have mask-value 1 in σ and ϕ(σ), for otherwise we contradict
that j is the rightmost move in σ . By assuming that w is minimal length, we have that
there are no other X entries in any of the masks because if there exists an X entry in
one of the masks, it exists in all three of the masks, by virtue of the fact that we only
adjust the X-masks at positions j and k as shown. Hence, any X-positions could be
removed from all three masks simultaneously.

Next, we consider all possible cases of mask-values for σ and ϕ2(σ ) on w1.

Case (σ1 = 0 and ϕ2(σ )1 = 0) or (σ1 = 1 and ϕ2(σ )1 = 1). Here, we have

1 · · · j j + 1 · · · k − 1 k

σ = 0 · · · X(d) 1 · · · 1 1

ϕ2(σ ) = 0 · · · 1 1 · · · 1 Xd

or

1 · · · j j + 1 · · · k − 1 k

σ = 1 · · · X(d) 1 · · · 1 1

ϕ2(σ ) = 1 · · · 1 1 · · · 1 Xd
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Let ν denote the restriction of σ to w2 · · · wk. Then the restriction of ϕ2(σ ) to
w2 · · · wk shows that k becomes a shifted descent in ϕ(ν). Therefore, we obtain a
counterexample on w2 · · · wk, contradicting our minimal length choice of w.

Case σ1 = 0 and ϕ2(σ )1 = 1. In this case, w1 is a left descent for wσ .

1 · · · j j + 1 · · · k − 1 k

σ = 0 · · · X(d) 1 · · · 1 1

ϕ2(σ ) = 1 · · · 1 1 · · · 1 Xd

By the Exchange Condition, there exists some position i such that w1wσ = wν where
ν is obtained from σ by changing a single mask-value 1 entry at wi to have mask-value
0. Observe that if i > j then w1wσ [i−1] = wσ [i] so changing σ1 to 1 would witness that
i was a shifted descent in σ , a contradiction.

The mask ν may be not be a constant mask on wτ , but there exists a unique
constant mask γ for the element wν on wτ2

2 · · · wτk
k and γ still has mask-value 1 on

w j+1 · · · wk by the algorithm from Lemma 2.2. By abuse of notation, let γ denote the
corresponding relative mask on w2 · · · wk.

If there exists a shifted descent in position m of γ where j < m ≤ k, then
m must have been a shifted descent in σ , a contradiction. To see this, observe
that wσ [m] = w1wγ [m] because wσ = w1wγ and these reduced expressions agree in
positions m, . . . , k. Therefore, if wγ [m] ≤ wτ [m−1] then w1wσ [m] ≤ wτ [m−1] and by the
Lifting Lemma, we have wσ [m] ≤ wτ [m−1].

Then, the restriction of ϕ2(σ ) to w2 · · · wk shows that k becomes a shifted descent
in ϕ(γ ). Therefore, we obtain a counterexample on w2 · · · wk, contradicting our
minimal length choice of w.

Case σ1 = 1 and ϕ2(σ )1 = 0. In this case, w1 is a left descent for wϕ2(σ ).

1 · · · j j + 1 · · · k − 1 k

σ = 1 · · · X(d) 1 · · · 1 1

ϕ2(σ ) = 0 · · · 1 1 · · · 1 Xd

By the Exchange Condition, there exists some position i such that w1wϕ2(σ ) = wν

where ν is obtained from ϕ2(σ ) by changing a single mask-value 1 entry to have
mask-value 0. The mask ν may be not be a constant mask on w2 · · · wk−1, but there
exists a constant mask γ on w2 · · · wk−1 for the element wν by Lemma 2.2. Let ρ

denote σ restricted to w2 · · · wk. Then, γ shows that k becomes a shifted descent in
ϕ(ρ). Therefore, we obtain a counterexample on w2 · · · wk, contradicting our minimal
length choice of w.

This in all cases, we have shown that applying a move at position j cannot create
a new move at some position k > j. Hence, ϕ is an involution. ��

Theorem 2.12 The function ϕ given in Definition 2.8 is a complete matching of the
Hasse diagram of Bruhat order on [y, w] whenever y < w.
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Proof Encode [y, w] as a set of relative masks for y on a fixed reduced expression
w for w, so each x ∈ [y, w] is given by w�(σ) where �(σ) is the X-mask of a
relative mask σ . By Lemmas 2.10 and 2.11, the function ϕ given in Definition 2.8
is an involution that interchanges exactly one X entry in each relative mask for an
entry that is either 0 or 1. Since the X-masks of both elements are constant masks,
l(w) − l(x) is given by the number of X entries in the relative mask, so this operation
represents a cover relation in Bruhat order. Hence, we have that ϕ is a matching on
the Hasse diagram of [y, w]. Unmatched relative masks must contain no 0 entries nor
X entries at all, so consist of all 1 entries, and this occurs only if w = y. Hence, the
matching is complete when y < w, and the result follows. ��

Corollary 2.13 The Möbius function of the Bruhat interval [y, w] is μ(x, w) =
(−1)l(w)−l(x).

Proof Following Verma [16], it suffices to show that there exists a complete matching
of the Hasse diagram of the Bruhat interval [y, w] whenever y < w. This matching
can then be interpreted as a sign-reversing involution on

∑

y≤x≤w

(−1)l(w)−l(x)

proving that the sum is equal to the Kronecker function δy,w. This follows from
Theorem 2.12. ��

In work related to totally nonnegative flag varieties, [14] have given another
complete matching on Bruhat intervals [y, w] of a finite Coxeter group W. This
matching M is defined recursively, starting from an EL-labeling of the interval and
a chosen reduced expression w for w. To describe this matching, we begin with a
reduced expression w0 for the longest element w0 of W having w−1 = wpwp−1 · · · w1

as a left factor. Then we obtain a total ordering on the reflections of W using the
inversion sequence constructed from the reduced expression w0 by

wp > wpwp−1wp > · · · > wpwp−1 · · · wp−i+1wp−iwp−i+1 · · · wp−1wp > · · · . (2.1)

We label all of the Bruhat cover relations x′ � x in [y, w] by the unique right
reflection t such that x′ = xt. Then, Dyer [9] has shown that this is an EL-labeling.
Rietsch and Williams construct a matching M from this EL-labeling using a result of
Chari [6].

Remark 2.14 For finite Coxeter groups, we show that the matching M is the same as
the matching given in Theorem 2.12, working by downward induction on the ranks
of the partial order [y, w]. We begin at the top rank r containing w.

Let x be an unmatched element on the current rank r. Consider the relative mask
σ associated to x. Since x is a maximal unmatched element, when we apply ϕ to
σ , we operate by placing an X in the rightmost position i such that the element
wτ associated to the resulting X-mask τ = �(ϕ(σ)) still contains y in Bruhat order.
Moreover, observe that none of the entries to the right of i are shifted descents, nor
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do they have mask values X or 0, for otherwise σ would already have been matched.
Hence, wτ is the element

x · (

wpwp−1 · · · wi+1wiwi+1 · · · wp−1wp
)

,

and any element x · (

wpwp−1 · · · w j+1w jw j+1 · · · wp−1wp
)

for j > i does not contain y
in Bruhat order, for otherwise j would be a shifted descent in σ .

In comparison, [14, Corollary 7.8] states that the matched edge x′ � x in M has
the largest EL-label in the sense of Eq. 2.1 among all of the edges descending from
x in [y, w]. But this is equivalent to the rightmost condition that we used to choose
i. Hence, we see that wτ is equal to the element x′ that is matched to x in M. This
proves that the matchings agree on all elements down to rank r, and we can proceed
to apply the argument to the unmatched elements on rank r − 1. Continuing in this
fashion, we find that the matchings agree on [y, w].

The description given in Theorem 2.12 has the advantage of being nonrecursive
and also permits some observations that are perhaps less clear in the other language.
For example, we see that the matched edges of M are always labeled by one of the
reflections that represent inversions in w, so the matching does not depend on how
w is completed to a reduced expression for w0.

3 Further Questions

Bruhat order extends to parabolic quotients of Coxeter groups as described in
[2, Section 2.5]. Deodhar has given a parabolic version of the Möbius function
formula in Deodhar [7, Theorem 1.2], and it would be interesting to extend the mask
matching given above to recover his result.

Also, the order complex associated to a Bruhat interval [x, w] is a topological
space known to be homeomorphic to the (l(w) − l(x) − 2)-sphere. It would be inter-
esting to recover the poset topology of the Bruhat intervals from the combinatorial
matching we have given above.

As a preliminary step in this direction, we have observed that our matching is
acyclic, in the sense used in discrete Morse theory. When W is a finite Coxeter group,
this could also be inferred from [14] by Remark 2.14.

Definition 3.1 Consider the Hasse diagram of Bruhat order as a directed graph with
an edge w → x if w covers x. Given a matching, reverse the direction of each edge in
the Hasse diagram corresponding to a matched edge. We say the matching is acyclic
if there are no directed cycles in the resulting directed graph.

Theorem 3.2 The function ϕ given in Definition 2.8 is an acyclic matching of the Hasse
diagram of Bruhat order on [y, w] whenever y < w.

Proof Let w be a reduced expression for w and consider the relative masks on w for
y. Every directed cycle has at least two pairs of up-down edges. Observe that each
edge pointing up corresponds to a matched edge, so is obtained by removing the
rightmost X entry. Each edge pointing down corresponds to a non-matched edge,
and this is a Bruhat cover on the elements encoded by the X-masks.
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Recall that �(σ) denotes the X-mask of a relative mask σ on w. Suppose we have
a pair of up-down edges in a directed cycle

x := w�(σ) → z := w�(γ ) → x′ := w�(σ ′).

Here, z covers x and x′ with x �= x′, and γ = ϕ(σ). We claim that the rightmost
X-entry in σ ′ occurs strictly left of the rightmost X-entry in σ , which implies that
there are no directed cycles.

Let i denote the position in w where ϕ acts on σ . Since i is the rightmost move and
ϕ does not alter the mask-values to the right of i, we must have γ j = 1 for all j > i,
and none of the positions γ j are shifted descents for j > i.

Consider the rightmost X-entry in σ ′ and suppose for the sake of contradiction
that it occurs in position j ≥ i. Then, the relative masks γ and σ ′ agree on all positions
strictly right of j according to the algorithm given in Lemma 2.2 since we always
encode the same element y. At position j, we have �(γ )[ j] = 1, and �(σ ′)[ j] = 0.
Hence,

wγ [ j ] = wσ ′[ j ] ≤ w�(σ ′)[ j−1] = w�(γ )[ j−1]. (3.1)

To see the last equality, we use a Lifting Lemma argument. We have w�(σ ′)[ j−1] =
w�(σ ′)[ j ] ≤ w�(γ )[ j ], and w j is a right descent for w�(γ )[ j ], but w j is a right ascent for
w�(σ ′)[ j−1]. So, w�(σ ′)[ j−1] ≤ w�(γ )[ j ]w j = w�(γ )[ j−1]. However, w�(σ ′)[ j−1] and w�(γ )[ j−1]
have the same length so they must be equal.

Equation 3.1 proves that j is a shifted descent in γ . It also shows that if j = i, then
x = x′. In any case, we reach a contradiction. Hence, the rightmost X-entry in σ ′
occurs strictly left of the rightmost X-entry in σ , so the matching is acyclic. ��

This is consistent with the main result of [3].
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