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Abstract
The manufacturing of integrated optical waveguide components can be complex if the 
design space is highly multivariate or constraints introduced by the process itself are not 
well-known. Numerical simulation helps to create a basic understanding of the process and 
the resulting components with their features but is costly with respect to time and hard-
ware resources. The estimation approach in this work introduces a precise, numerically 
robust and controllable method without any black boxes to estimate the input parameters of 
the manufacturing ion-exchange process. Therefore, small number of simulation samples 
is used to determine basic dependencies of desired waveguide component features on the 
input parameters. A pseudo probability measure is then used to estimate the combination 
of process parameters that is most likely to result in the required features. The feature data 
is detached from the sample size of the simulation data with a multidimensional curve fit in 
order to debloat the estimation model. The implications of the estimation are wide-ranged 
and not restricted to the physics of the ion-exchange process, i.e. easy to be abstracted to 
other models. The estimation enables parameter subspace optimization or clustering of 
solution. Model benchmarks show a very high estimation rate for all types of considered 
applications.
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1 Introduction

For manufacturing integrated waveguide components by diffusion, a metallic mask is 
grown on a substrate material. The immersion in an ionic salt melt results in a charac-
teristic change of silver ion concentration in the areas of the mask opening and thus in an 
altered refractive index (Ramaswamy and Srivastava 1988; Tervonen et al. 2011). With a 
given set of process parameters, the ion-exchange process can be accurately modeled by 
Fick’s law. Although semi-analytic modeling approaches help with the forward simulation 
(Roth et  al. 2018a, 2019), three-dimensional simulations remain both resource and time 
intensive. However, practical applications mostly require the estimation of the process 
parameters prior to the manufacturing based on specifically desired features of the resulting 
components. Conventional approaches for the determination of the desired features mostly 
imply forward simulation approaches. In order to ensure that certain requirements are met, 
a fundamental understanding of the manufacturing process is necessary, some of which can 
be gained by means of simulation (Roth et al. 2018b, 2019) or by experience, but costly 
with respect to time and/or hardware resources. There are, of course, alternatives to ‘brute 
force’ design space sweeping that rely on general optimization techniques, metaheuristic 
algorithms or neural networks (Zhang et al. 2014). But there are also problems that arise 
from these approaches. Also, many of these approaches are black boxes because more 
often than not the direct impact of the parameters of the algorithms on depending variables 
is obscure or of little significance. Thus, controlling individual aspects of the algorithms 
can prove to be difficult. This is especially true for techniques that only consider a subspace 
of the design space or the according co-domain. Furthermore, there are many differences 
with respect to data treatment. The modeling data can be extensive or might need to be 
filtered. Also data clusters might be of relevance. The estimation approach presented in 
this work implies a pseudo probability measure and solely relies on basic mathematic pro-
cedures. The three main steps of the approach presented in this work are data characteri-
zation, numerical compression and estimation, each of which can be adjusted to the spe-
cific needs of the problem. This means that all calculation procedures and also their impact 
on any depending variable can be directly evaluated with respect to robustness, error and 
performance. This makes the estimation process open, controllable and debuggable at any 
given step.

2  Manufacturing process

Integrated optical waveguide components in electro-optical printed circuit boards (EOCB) 
can be manufactured by thermal ion-exchange processes. Therefor, a metallic mask is 
grown on the substrate material. The shape of the mask can be designed arbitrarily—its 
accuracy is consequently only limited by the tolerances of the manufacturing process. 
Figure 1 shows the schematic structure of the manufacturing process. By the application 
of a diluted salt melt at a specific temperature, Ag+ ions diffuse into the substrate replac-
ing Na+ ions in the borosilicate glass substrate. The manufacturing process of integrated 
components can thus be divided into four basic steps accordingly: (1) Metallic coating, 
(2) Mask structuring, (3) Application of the diluted salt melt and (4) Mask removal and 
surface treatment. These steps lead to a specific profile of silver ion concentration in the 
area of the mask opening. The silver ions are also present in the area under the mask 
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structure, which is referred to as side diffusion. For thermal ion-exchange processes, this 
effect increases with temperature. By specifically choosing the process parameters such as 
width of the mask or an arbitrary mask structure respectively, diffusion times, temperature, 
which implies the diffusion coefficient D of Ag+ ions, and the initial ion concentration in 
the salt melt, the ion-exchange process and the resulting profile respectively can be accu-
rately described by Fick’s law

where t is the diffusion time, D is the self-diffusion coefficient of Ag+ ions in the glass sub-
strate and c is the Ag+ concentration in the substrate. The resulting Ag+ concentration in 
the substrate can be calculated by solving Eq. (1). Evaluating a two- or three-dimensional 
geometry can only be done numerically. Here, both an efficient algorithm based on the 
Finite-Element-Method (FEM) as well as semi-analytical modeling tools were used (Roth 
et al. 2018a). As mentioned above, the geometric shape of the mask structure can generally 
be designed arbitrarily. However, the exact mask structure for the realization of a specific 
value for the mask opening depends on the type of lithographic manufacturing technique.

3  Feature extraction

From a practical point of view, it is most desirable to define specific feature or feature val-
ues of the components and to set up the manufacturing process accordingly. However, the 
nature of a highly multivariate design space often restricts a comprehensive understand-
ing of global feature dependencies on the process parameters. While the forward simula-
tion does provide a limited understanding of the relation between feature values and input 
parameters, the required brute force sweep of the design space is certainly limited by large 
computation times or finite physical memory. This also holds for the nature of the thermal 
diffusion process because its design space is too large to find the right parameter com-
bination by sweeping through a sufficient and representative number of input parameter 
combinations. This leads to the need of a more efficient model to predict or estimate the 
input parameters of the manufacturing process based on the desired feature values of a 

(1)
�c

�t
= ∇(D∇c),

Metallic Mask

Silicate glass (Na2O)

Diluted salt melt (AgNO3)

Fig. 1  Schematic design of the manufacturing process. The diluted salt melt (AgNO3 ) is applied to the 
borosilicate glass substrate (Na2 O) at the area of the mask opening. A characteristic change of silver ion 
concentration occurs in this area which leads to a corresponding change of the refractive index. Silver ions 
are also present in the area under the mask structure, which is referred to as side diffusion
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component to avoid time-consuming simulation work and preferably without having to 
make educated guesses for initial values or solution subspaces. Figure 2 depicts the mul-
tivariate design space. A chosen set of process parameters yields the according concen-
tration profile from which relevant features can be derived. This leads to a fundamental 
problem because especially the non-linear saturation effects of the diffusion process cre-
ate ambiguities in the feature characterization process. In other words, the mapping from 
design space onto the co-domain, i.e. the concentration profile, is not bijective and multiple 
combinations of process parameters can and do result in one or even multiple matching 
features for the very same input parameter combination. The features used for the purpose 
of parameter extraction are shown in Fig. 3. The profile is therefore characterized by its 
maximum concentration cmax , the diffusion depth at cmax as well as by its height and width. 
Furthermore, the process parameters of the diffusion process are the initial concentration 
c0 of silver ions in the salt melt, diffusion times tin , tout and the mask width w as listed in 
Table 1. The range of these input parameters represents the design space sweep, which is 
used to characterize the features. In order to cover all types of potential applications for the 

c(x, y)
concentration

profile

�

#

∗

�

Design Space FeaturesProfile

Fig. 2  With a chosen set of process parameters, the multivariate design space is mapped onto the co-
domain, which is the concentration profile. The characterization of the profile itself yields the relevant fea-
ture values of the components
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Fig. 3  Exemplary concentration profile and the defined features for the purpose of parameter estimation, 
which are maximum concentration cmax , diffusion depth at cmax as well as height and width of the profile
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resulting components, the range of the input parameters has to be extensive. The different 
combinations allow single- and multimode waveguides with low and high index changes 
respectively. The choice of this wide input parameter range can thus be understood as worst 
case scenario and leaves plenty of room for improvements if the requirements of the appli-
cations limits the input parameter range a priori, e.g. in the case of single-mode wave-
guides. Consequently, limiting the input parameter range will improve the accuracy of the 
estimation, mainly since the error of the parameter compression can be reduced. Extending 
the input parameter range might reduce the accuracy of the estimation. The basis for the 
estimation in this work is the determination of the dependencies between waveguide com-
ponent features and process parameters, which can be done with a small, limited number of 
simulations. These 1560 sampling points for two-dimensional waveguide geometries were 
used to create a data set for feature characterization and can be simulated in a matter of 
hours. In general, the dependencies of feature values and input parameters are ambiguous 
and therefore a single feature is not sufficient for the estimation of all input parameters. 
The feature extraction results in a four-dimensional matrix per feature. In the first step, two 
process parameters are selected as primary—in this case the diffusion times tin and tout , 
which were chosen because their combination is the most ambiguous (Roth et al. 2020), 
which means that, for example, any maximum concentration cmax can be reached by just 
varying the two diffusion times. The results then differ, however, in other features, e.g. with 
respect to diffusion depth. The feature characterization has been carried out at a constant 
temperature of T = 250 ◦ C, which leaves four process parameters. While the general model 
is not limited to a specific choice of temperature, it would add an additional dimension to 
the estimation process. With the remaining four process parameters we can determine four 
matrices

as four-dimensional feature matrices, which hold the feature values for each combination of 
input parameters. The symbols (⋆, #, ∗, ⋄) indicate the respective feature.

4  Parameter compression

The creation of the feature matrices F is based on simulation samples. This is problematic 
since the size of the matrices and consequently the numerical complexity of the estimation 
model is linked to the extent of design space sampling used for the generation of the fea-
ture matrices. A solution can be a ‘parameter compression’. Therefor, the feature matrices 
are curve fitted over the two primary process parameters tin and tout . In this case, this can be 
done efficiently with a ‘poly22’ fit, where the base functions for the fit are polynomial 

(2)F
⋆,#,∗,⋄

Table 1  Input parameters with range and output parameters (features)

Input parameters Range Features

Mask width w 3. . . 15µm Maximum concentration
Diffusion time tin 1 . . . 24h Diffusion depth
Diffusion time tout 1 . . . 14h Profile width
Ag+ concentration c0 0.01 . . . 10mol/m3 Profile height
Temperature T 250◦C
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function of second degree. The complete approximation function is a broken rational func-
tion consisting of a polynomial base function in both the nominator and the denominator. 
Taking a closer look at the dimensionality, the feature matrix for every individual feature is 
a function of the according simulation sample vectors p

i
 . For an exemplary ⋆-feature, the 

dimensions yield

This means that the lengths of the simulation sample vectors p
i
 are m, n, o and p for the 

according parameters w, tin, toutand c0 . The poly22 fit of the feature matrix over the pri-
mary process parameters tin and tout yields six coefficient matrices per feature matrix with 
the dimensions m × p , which corresponds to the sample vector lengths of the diffusion 
times.

This results in a total number of n × o coefficient matrices of the dimension m × p for each 
of the six individual coefficients and per feature. The amount of six coefficient matrices is 
a result of the poly22 fit that is used. As a result of this first step, i.e. after the first fitting/
interpolation, the model now is detached from the sample size of the two primary process 
parameters. To fully detach the model from the length of the simulation sample vectors, the 
coefficient matrices can be fitted a second time over the secondary process parameters w 
and c0.

The length of the coefficient vector d depends on the type of fit used for this second step. 
Here, a higher order interpolation with 25 coefficients is used. While it is possible to also 
use simpler polynomial fits for some features, the resulting impact on fitting errors has 
not yet been investigated extensively. The interpolation scheme yields 25 coefficients for 
each of the six coefficients of the polynomial fit per feature. Thus, each feature can be 
represented by a total of 150 coefficients, which can potentially be reduced even further 
by choosing a simpler fitting scheme. Nonetheless, this number is completely independent 
of the initial sample size of the forward simulation. Because of this detachment, the fitting 
results are now referred to as ‘double-fitted’ or ‘compressed’ model.

5  Parameter estimation

The estimation of the process parameters is done by evaluating the compressed model 
reversely. The four-dimensional feature dependencies, i.e. the feature matrices, are 
generated with the approximation functions of the two fitting steps and the accord-
ing coefficients of the compressed, double-fitted model. At this point, a testing set of 

(3)F
⋆
(p

i
) = F

(m×n×o×p)

⋆
(p

i
).

(4)

C
(m×p)

⋆00

C
⋆01

C
⋆01

C
⋆11

C
⋆02

C
⋆20

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

Coefficient matrices with dimesion m × p

(5)C
(m×p)

⋆xx
⟹ d

⋆xx



Parameter estimation of an ion‑exchange process based on a pseudo…

1 3

Page 7 of 13 347

known or desired feature values must be provided. For each feature and all combina-
tions of secondary process parameters a deviation �f  is calculated as a function of the 
primary process parameters which describes a difference between generated feature 
value and testing set.

Similar to the generation of the model, this deviation �f  needs to be calculated for each 
feature, thus, the feature index. Essentially, it describes the numerical mismatch between 
the probing value in fprobe and the values in the according feature matrix. If the mismatch 
between probing value and feature value is small for a combination of process parameters, 
the deviation is also small and vice versa. The constant in Eq. (6) serves the numerical pur-
pose to avoid a deviation of value 0 if feature value and probing values do match exactly. 
This deviation is used to compute a pseudo probability measure Pf  , which depends on the 
two primary process parameters tin and tout . Since the values of Pf  are not actual probabili-
ties in a strictly mathematical definition of the term, the item is to be understood as a meas-
ure of likelihood, hence, pseudo probability.

Hence, the more the modeled feature value and the value of the testing set diverge the 
higher the deviation �f  becomes resulting in a smaller probability for this particular combi-
nation of process parameters. The estimation is exemplarily illustrated in Fig. 4. Each fea-
ture, with its deviation �f  , leads to an individual probability distribution. When the prob-
ability values for each feature and all m × p combinations of secondary process parameters 
are calculated, they are normalized and superposed. By this superposition of feature prob-
abilities, the most probable combination of primary process parameters and hence of all 
process parameters is found. It should be noted that the definition of the deviation �f  and 
thus also Pf  as a function of the primary process parameters is done arbitrarily to match 
the order of the model compression. An alternate separation of the input parameters, i.e. a 
permutation of their order does not have any influence on the probability values of the esti-
mation results, since only the sequence of calculation is interchanged.

Figure 5 shows the distribution of the pseudo probability measure for a testing set of 
feature values for all stages of the estimation process—simulation data (uncompressed), 
single fit (semi-compressed) and double fit (fully compressed). The combination of pro-
cess parameters that has been identified correctly by all steps of the estimation process 
is w = 3 μ m, tin = 1.8 × 103 s, tout = 3.24 × 103 s, c0 = 0.01 mol/m3 . Figure 5a shows the 
probability distribution for the uncompressed simulation data. Expectedly, the contrast of 
probability between the correct set of process parameters and all other, in this context irrel-
evant sets is at a maximum. After the first compression step, which is the first curve fit of 
the feature matrices, the distribution is spread in the plane of the primary process param-
eters tin and tout . This makes sense, because the feature matrices are fitted over the primary 
process parameters. The error introduced by the first fit, thus, mainly causes variance for 
these parameters. Figure 5b illustrates the according probability distribution. The contrast 
of probability is still sufficient to correctly identify the correct set of input parameters. 
Lastly, Fig.  5c shows the probability distribution for the double-fitted, fully compressed 
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model. Similar to the single fit there are compression artifacts caused by the error of the fit, 
which conveniently only occur at the immediate neighbour values of the maximum prob-
ability simplifying correct parameter identification.

∗
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#

Feature probability superposition

Maximum probability
of superposition

pprimary1

p
p
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m
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2

Fig. 4  Exemplary illustration of the superposition of the individual probability distributions of each fea-
ture (⋆, #, ∗, ⋄) , which represent the maximum concentration cmax , the diffusion depth of cmax as well as 
the height and width of the concentration profile. This superposition is done for all m × p combinations of 
secondary process parameters to identify the maximum probability of all process parameters including the 
primary process parameters p1 and p2 . The individual feature probability distributions are not the actual 
ones but characteristically similar—for the sake of a clean visualization
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6  Benchmarking

For the practical application of the estimation model, its accuracy has to be determined 
on a comprehensive scale. Therefor, the model was benchmarked with a large number of 
random probing samples. The probing samples where derived from the simulation data 
and the results of the estimation model were then compared directly to the input param-
eters that were used for the generation of the probing samples. Table 2 shows the results 
of the global benchmarking of the superposition of all features. Unsurprisingly, all of the 
input parameters are correctly estimated when the simulation data is used as basis for the 
estimation process. However, since the simulation data only consists of the original sample 
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Fig. 5  Pseudo probability measure pp depending on all primary and secondary process parameter. Prob-
ability distributions of pp for all stages of the estimation process are illustrated—simulation data (uncom-
pressed), single fit (semi-compressed) and double fit (fully compressed). Numerical compression arti-
facts caused by the curve fit are highlighted exemplarily. The combination of process parameters that 
has been identified correctly by all three steps of the estimation process is w = 3 μ m, tin = 1.8 × 103  s, 
tout = 3.24 × 103 s, c0 = 0.01  mol/m3



 J.-P. Roth et al.

1 3

347 Page 10 of 13

points used for feature characterization, i.e. is not interpolated by the parameter compres-
sion process, only these can be the output of the estimation model. This is partially true for 
the semi-compressed data set since the primary process parameters are interpolated and 
changes completely with the fully compressed data set in which the results for the input 
parameters can attain any value within the total range of the original sampling points. One 
thing to be pointed out in particular is the relatively low matching rate of only 44.23 and 
6.35% for the semi- and fully compressed model if a numerically exact match of values 
is specified. This changes, if a physically irrelevant error bound is added to the matching 
algorithm. The detection rates increase to 75.19 and 90.06%. If the boundary values of the 
original sampling grid are not taken into account, the matching rate increases further, yet 
only insignificantly in case of the fully compressed data set.

Table 3 shows a more detailed overview of the matching rates with respect to the indi-
vidual input parameters. The global benchmarking results of Table 2 ultimately consist of 
the superposition of the individual matching rates listed in Table 3.

Obviously, the characteristics observed in Table 2 reflect the general behaviour of the 
individual matching rates here. The weak points with respect to complete, correct param-
eter estimation are diffusion time tin and the initial concentration c0 . This can be explained 
by considering the dependency of the two input parameters on the chosen features. Both 
input parameters only have a weak dependence on most of the features. This is due to the 
fact that large parts of the input range of tin and c0 do not impact feature like cmax or the 

Table 2  Global benchmarking 
results

Match [%]

Data set Exact With error bounds W/O boundaries

Simulation data 100 100 100
Single fit 44.23 75.19 95.83
Double fit 6.35 90.06 92.42

Table 3  Parameter benchmarking results

Match [%]

Input parameter Data set Exact With error bounds W/O boundaries

b Simulation data 100 100 100
Single fit 88.40 100 100
Double fit 71.92 99.94 100

t
in

Simulation data 100 100 100
Single fit 31.41 95.51 100
Double fit 25.90 92.63 94.32

t
out

Simulation data 100 100 100
Single fit 57.31 100 100
Double fit 49.23 100 100

c
0

Simulation data 100 100 100
Single fit 44.23 75.19 95.83
Double fit 46.22 95.83 97.35
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profile width, for example, because of non-linear saturation effects of the diffusion process. 
Certainly, this can be fundamentally different if another process temperature is chosen. An 
approach to optimize the matching rate for these two input parameters is the definition of 
another feature, possibly as substitute or as addition. Most important should be a strong 
feature dependence on the according input parameters to ensure an optimal matching rate.

Figure  6 gives an impression of the probability distribution of the estimated input 
parameter combinations of the fully compressed model. This is shown for all input param-
eter combinations in Fig. 6a and also only for correctly estimated combinations thereof in 
Fig. 6c. From the direct comparison it becomes evident that the average maximum prob-
ability calculated by the estimation is significantly higher for correctly estimated combina-
tions. Furthermore the according difference in probability to the second most likely com-
bination of input parameters (contrast) is shown in Fig.  6b for all input parameters and 
also, again, only for correctly estimated combinations thereof in Fig. 6d. The same basic 
characteristic can be observed as with the previous comparison. The mean of the distribu-
tions increases, i.e. the average contrast value is higher for correctly estimated combina-
tions of input parameters. When considering all input parameters, 35% of all combinations 
can be characterized by a contrast of under 1% whereas only 24% of the correctly estimated 
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Fig. 6  Normalized histogram of maximum probability values for the fully compressed model for all input 
parameters (a) and only for matching combinations (c). According difference in probability (contrast) to 
the second most likely combination of input parameters for all input parameters (b) and matching only for 
matching combinations (d)
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combinations share this property. Generally, the low absolute contrast values show that 
multiple similarly probable combinations can occur, yet the matching rates are satisfy-
ingly high. If evaluated properly, this is a great way of identifying clusters of possible solu-
tions that might be worth investigating. Lastly, both probability and contrast can be further 
increased if the individual feature probabilities described in Table 3 are maximized.

7  Conclusion

The estimation of the process parameters of the thermal ion-exchange process yields excel-
lent results with respect to the unambiguous estimation of primary and secondary process 
parameters for all estimation steps. The relations between characterized features of the con-
centration profile and the primary process parameters greatly benefit the simplification of 
the estimation process. Furthermore, the implications of these results open up additional 
approaches in practical component design. If certain process parameters are fixed due to 
specific hardware or other external specifications, the subspace of remaining parameters 
can be estimated in order to find an optimal solution. Also, the visualization of the prob-
ability measure reveals clusters of possible solution that might be worth investigating fur-
ther. Despite the non-optimized fitting for the parameter compression technique and the 
wide input parameter range, the estimation yields an excellent matching rate of over 90% 
and can be improved even further with the addition or substitution of a more suitable type 
of feature or the restriction to certain subspaces if the application allows it. The excellent 
performance of this approach is directly related to strong feature dependencies on the input 
parameters of the ion-exchange process. Certainly, the general idea of the approach is not 
limited to the thermal ion-exchange process and can easily be abstracted to other physics 
and models. Its utilization can prove to be useful where depending variables or desired 
characteristics are not easily to be determined because of a technologically complex 
manufacturing process or a resource intensive numerical simulation, which implies many 
applications involving component design. However, the estimation relies on strong feature 
dependencies on the input parameters. Oscillations, saturation effects or other specific non-
linearities in the feature dependencies could limit the effectiveness of the estimation. Thus, 
the application to other physics and models is to be determined individually.
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