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Abstract
The van Roosbroeck system models current flows in (non-)degenerate semiconductor 
devices. Focusing on the stationary model, we compare the excess chemical potential dis-
cretization scheme, a flux approximation which is based on a modification of the drift term 
in the current densities, with another state-of-the-art Scharfetter–Gummel scheme, namely 
the diffusion-enhanced scheme. Physically, the diffusion-enhanced scheme can be inter-
preted as a flux approximation which modifies the thermal voltage. As a reference solution 
we consider an implicitly defined integral flux, using Blakemore statistics. The integral 
flux refers to the exact solution of a local two point boundary value problem for the contin-
uous current density and can be interpreted as a generalized Scharfetter–Gummel scheme. 
All numerical discretization schemes can be used within a Voronoi finite volume method 
to simulate charge transport in (non-)degenerate semiconductor devices. The investigation 
includes the analysis of Taylor expansions, a derivation of error estimates and a visualiza-
tion of errors in local flux approximations to extend previous discussions. Additionally, 
drift-diffusion simulations of a p–i–n device are performed.
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1  Introduction

The standard drift-diffusion model for semi-classical charge transport of free electrons and 
holes due to a self-consistent electric field in a semiconductor device is the van Roosbroeck 
system. We consider Voronoi finite volume schemes for the discretization of the semiconduc-
tor device equations. We are interested in the numerically more challenging degenerate case 
and pay particular attention to the choice of flux approximations. One of the most classical 
numerical flux scheme is arguably the Scharfetter–Gummel scheme (Scharfetter and Gummel 
1969), which yields a numerical stable and thermodynamically consistent numerical flux, but 
cannot be used for general charge carrier statistics. A generalization of the Scharfetter–Gum-
mel scheme is available (Eymard et al. 2006), but computationally expensive. Hence, several 
thermodynamically consistent numerical flux schemes, which modify this generalization to 
lower the computational costs, are proposed in the literature (Farrell et  al. 2017b, a, 2018; 
Patriarca et  al. 2018). We focus on the excess chemical potential scheme (Yu and Dutton 
1988) which appears to be used in parts of the device simulation community (Silvaco Interna-
tional 2016; Synopsys, Inc 2010). However, unfortunately, there seem to be no direct compari-
sons of this scheme with other recent modified Scharfetter–Gummel schemes. This paper aims 
to fill this gap by comparing it to the diffusion enhanced scheme (Bessemoulin-Chatard 2012), 
which was already compared to other modified Scharfetter–Gummel schemes and seems to 
be the most promising modified Scharfetter–Gummel flux (Farrell et al. 2017b). The integral 
flux by Eymard et al. is used as a reference flux. It supplements previously made temperature-
dependent observations (Kantner 2020).

2 � Van Roosbroeck model

The stationary variant of the van Roosbroeck system is given by 

 where q denotes the elementary charge, �s the dielectric permittivity, NA and ND describe 
the density of singly ionized acceptor and donor atoms, and R the recombination. The set 
of unknowns is expressed by the electrostatic potential � and the quasi Fermi potentials 
for electrons �n and holes �p . The current densities in the continuity Eqs. (1b) and (1c) are 
given by

where the electron and hole densities n and p are defined by (Sze and Ng 2006) 

(1a)−∇ ⋅

(
�s∇�

)
= q

(
(p − NA) − (n − ND)

)
,

(1b)∇ ⋅ �n = qR(n, p),

(1c)∇ ⋅ �p = −qR(n, p),

(2)�n = −q�nn∇�n, �p = −q�pp∇�p,

(3a)n = NcF(�n), �n =
q(� − �n) − Ec

kBT
,
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 The strictly monotonously increasing statistics function F  will be discussed later. The 
conduction and valence band density of states are given by Nc and Nv , the mobilities by 
�n and �p and the Boltzmann constant by kB . The conduction and valence band-edge ener-
gies are denoted by Ec and Ev and T refers to the temperature. With help of the generalized 
Einstein relation it is possible to model the diffusion coefficients Dn and Dp via the the non-
linear diffusion enhancement

by (introducing the thermal voltage UT = kBT∕q)

With this relation, we can rewrite the electric fluxes (2) into a drift-diffusion form

In general, inorganic semiconductor devices can be modeled by choosing the Fermi-Dirac 
integral of order one-half (Sze and Ng 2006) for the statistics function F  . Non-degenerate 
semiconductors are modeled with the Boltzmann approximation F(�) = exp(�) . In this 
case, the diffusion enhancement (4) is equal to one. In this work, we focus on degenerate 
semiconductors, i.e. nonlinear diffusive problems. To compare our flux approximations, we 
choose the Blakemore statistics function F(�) = (exp(−�) + �)−1 with � = 0.27 which is a 
valid approximation of the Fermi-Dirac integral of order one-half in the low density limit 
𝜂 < 1.3 with a relative error of ≤ 0.03 (Blakemore 1952, 1982). Additionally, an expen-
sive but accurate numerical flux is known for the Blakemore case (Koprucki and Gärtner 
2013). The different statistics with the corresponding diffusion enhancements are depicted 
in Fig. 1. For brevity, we consider only the current density for electrons from now on and 
will partially omit the index n.

(3b)p = NvF(�p), �p =
q(�p − �) + Ev

kBT
.

(4)g(�) = �(F−1)�(�)

Dn = �nUTg

(
n

Nc

)
, Dp = �pUTg

(
p

Nv

)
.

(5)�n = −q�nn∇� + qDn∇n, �p = −q�pp∇� − qDp∇p.

Fig. 1   Left: Semi-logarithmic plot of different statistics functions F  for −5 ≤ � ≤ 5 . Right: Corresponding 
logarithmic plot of the diffusion enhancement g in (4). This function can be seen as a measure of how far 
away we are from the Boltzmann regime
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3 � Scharfetter–Gummel type fluxes

The open, bounded domain � , on which the model (1) is defined, is partitioned into N 
control volumes �K such that � =

⋃N

K=1
�K , where each �K is associated with a colloca-

tion point �K ∈ �K . We are interested in a numerical flux j along the edge connecting the 
collocation points of two neighboring control volumes �K and �L which is assumed to be 
aligned with the normal direction with respect to the interface �K ∩ �L . In the following, a 
subindex K corresponds to an evaluation of a physical quantity at node �K and a subindex 
L to an evaluation at node �L , respectively. Integrating (1b) over �K , using the Gauss diver-
gence theorem and one point quadrature rules yields the discrete counterpart

where N(�K) denotes the set of all control volumes neighboring �K . The nonlinear flux 
function jn;KL = jn;KL(�K , �L,�K ,�L) approximates the projected flux � ⋅ �KL locally along 
the edge ��K ∩ ��L , where �KL is the corresponding normal vector along ��K ∩ ��L . For 
details concerning the finite volume method see Farrell et al. (2017a).

Furthermore, one property which holds on a continuous level to avoid unphysical state 
dissipation is the preservation of thermodynamic equilibrium (Farrell et al. 2017a). Math-
ematically, this means that vanishing fluxes shall imply constant quasi Fermi potentials. 
A numerical flux j = jKL is now said to be thermodynamically consistent, if it satisfies an 
analogous discrete relation, i.e.

where ��KL = �L − �K and ��KL = (�L − �K)∕UT . Thermodynamic consistency is also 
important, when coupling the van Roosbroeck system to heat transport models (Farrell 
et al. 2017b). We discuss now different thermodynamically consistent numerical fluxes that 
may be used within a Voronoi finite volume framework.

3.1 � Generalized Scharfetter–Gummel scheme

Under the assumption that the flux �n and the electric field −∇� are constant along each 
face of a Voronoi cell, the flux can be projected onto the shared edge between two neigh-
boring control volumes. Then, an integral equation can be derived (Eymard et al. 2006), 
which shall be satisfied by the unknown local numerical flux j

where � is defined in (3). The integration limits are given by �K = �n
(
�K ,�K

)
 and 

�L = �n
(
�L,�L

)
 and hKL denotes the Euclidean distance between two neighboring nodes 

�K and �L . The existence of a solution to (6) was proven by Gärtner (2015), even though 
the integral equation is in general not explicitly solvable. We refer to the solution of (6) as 
generalized Scharfetter–Gummel flux. Note that for non-degenerate semiconductor devices 
the generalized scheme reduces to the classical Scharfetter–Gummel scheme (Scharfetter 
and Gummel 1969)

∑

�L∈N(�
K
)

|��K ∩ ��L|jn;KL = q|�K|R(nK , pK),

j = 0 implies ��KL = ��KL,

(6)

�L

∫
�K

(
j∕j0

F(�)
+ ��KL

)−1

d� = 1, j0 = q�nNc

UT

hKL
,
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for a non-dimensionalized edge current jsg = j∕j0 with B as the Bernoulli function which is 
defined by B(x) ∶= x∕(ex − 1) , B(0) = 1 . Additionally, it was shown by Koprucki and Gärt-
ner (2013) that for degenerate semiconductors based on Blakemore statistics the integral 
Eq. (6) can be reduced to a fixed point equation, namely

The implicit Eq. (8) can be solved within a few Newton steps, but the efficiency of this 
flux is highly dependent on the choice of initial value. Hence, computationally less expen-
sive flux discretization schemes are needed as an alternative. Still, we will use this scheme 
as a reference flux for the case of degenerated semiconductors, modeled by Blakemore 
statistics.

3.2 � Diffusion enhanced scheme

Recently, another modified Scharfetter–Gummel discretization scheme was introduced (Besse-
moulin-Chatard 2012). There, a logarithmic average for the nonlinear diffusion enhancement 
g in (4) is considered,

resulting in the local flux approximation

We stress that, in case of a denominator in (9) near zero, i.e. �K ≈ �L , regularization strate-
gies need to be developed to handle the removable singularity.

3.3 � “Sedan” scheme

The earliest reference we could find for the excess chemical potential scheme is the source 
code of the SEDAN III simulator (Yu and Dutton 1988), therefore in the following, we will 
likewise refer to this scheme as the Sedan scheme. There are benchmarks computed by the 
device simulator SEDAN III itself available in literature, but to the best of our knowledge 
there are barely any comparisons of this flux discretization scheme with other schemes known. 
A numerical analysis focused comparison of this flux approximation is given by Cancès et al. 
(2021). The scheme is motivated by rearranging the drift part in (5) to include the excess 
chemical potential, �ex = logF(�) − � , yielding

with

(7)jsg = B
(
��KL

)
e�L − B

(
−��KL

)
e�K ,

(8)jg = B
(
��KL + �jg

)
e�L − B

(
−
[
��KL + �jg

])
e�K .

(9)gKL =
�L − �K

logF(�L) − logF(�K)
,

(10)jd = gKL

[
B

(
��KL

gKL

)
F
(
�L
)
− B

(
−
��KL

gKL

)
F
(
�K

)]
.

(11)js = B
(
QKL

)
F(�L) − B

(
−QKL

)
F(�K)

(12)QKL = ��KL + �ex
L
− �ex

K
= ��KL − (�L − �K) + log

F(�L)

F(�K)
.
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4 � Comparison of flux discretizations

This paper aims to extend a previous discussion (Farrell et al. 2017b) by examining similar 
aspects for the excess chemical potential flux approximation introduced in Sect. 3.3.

4.1 � Taylor expansions

Taylor expansions of the following form dependent on ��KL and ��KL

can be derived for the flux approximations introduced in Sect. 3 for a sufficiently smooth 
statistics F  , when expanding in 𝜂̄KL = (𝜂L + 𝜂K)∕2 , see Abdel (2020) and Farrell et  al. 
(2017b). Here, the fluxes jg, js and jd correspond to one of the flux discretization schemes 
introduced in Sect. 3. For the prefactors �j , j ∈ {1, 2, 3} , we have

The absolute error in these prefactors �j between the Taylor expansions of the general-
ized Scharfetter–Gummel scheme and the two modified ones is depicted in Fig. 2. For the 
depicted figures we choose the statistics function F  as the Blakemore statistics.

For large negative arguments of the function F  the Boltzmann and the Blakemore statis-
tics nearly coincide, corresponding to the non-degenerate case. Hence, the modified Schar-
fetter–Gummel schemes converge towards the classical scheme (7) and we observe nearly 
vanishing errors in Fig. 2. For large positive arguments we observe that the errors in the 
prefactors corresponding to the diffusion enhanced scheme increase with the exponents of 
��KL , whereas the error corresponding to the excess chemical potential scheme nearly van-
ishes. Due to this observation it gives rise to think that in case of no electrical field the 
excess chemical potential flux performs better than the diffusion enhanced scheme. How-
ever, neither the diffusion enhanced nor the excess chemical potential scheme is third-order 
accurate. To measure the quality of the fluxes in a different manner, second-order error 
estimates for the local flux errors are considered next.

When neglecting third-order terms, the following error bounds between the modified 
and the generalized flux dependent on the diffusion enhancement can be derived (Abdel 
2020; Farrell et al. 2017b)

(13)
jk = −F(𝜂̄KL)𝛿𝜓KL + F(𝜂̄KL)𝛿𝜂KL

+ 𝛼1𝛿𝜓
2
KL
𝛿𝜂KL + 𝛼2𝛿𝜓KL𝛿𝜂

2
KL

+ 𝛼3𝛿𝜂
3
KL
, k ∈ {g, s, d}

𝛼j = 𝛼j

(
F(𝜂̄KL),F

�(𝜂̄KL),F
��(𝜂̄KL),F

���(𝜂̄KL)
)
.

Fig. 2   Errors between the third-order prefactors of Taylor series expansion of the exact Scharfetter–Gum-
mel scheme (6) and the two modified schemes for 𝜂̄

KL
∈ [−5, 5]
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The error bounds indicate a better performance of the diffusion enhanced scheme for large 
values of the diffusion enhancement g, i.e. for statistics strongly deviating from the Boltz-
mann regime.

4.2 � Error between local flux approximations

We study the logarithmic error between the modified flux schemes and the generalized 
scheme for two fixed averages 𝜂̄KL . The errors for the simulation of a degenerate semicon-
ductor can be seen in Fig. 3. The black dashed lines correspond to thermodynamic consist-
ency, as well as pure drift currents, i.e. �K = �L . In both cases, the modified schemes agree 
exactly with the generalized scheme.

Since F(𝜂̄KL)∕g(𝜂̄KL) = F
�(𝜂̄KL) , the derivative of the statistics function appears in the 

error estimates (14) and (15). The derivative of the Blakemore statistics decreases for 
large positive arguments. Hence, we observe in Fig.  3 that increasing the average 𝜂̄KL 
results in a comparatively smaller error. Both, the error estimates (14), (15) and Fig. 3 
indicate a larger area, where the diffusion enhanced and the generalized scheme agree 

(14)|js − j| ≤ 1

2

F(𝜂̄KL)

g(𝜂̄KL)

(
|𝛿𝜓KL𝛿𝜂KL| + 𝛿𝜂2

KL

)
,

(15)|jd − j| ≤ 1

2

F(𝜂̄KL)

g(𝜂̄KL)
|𝛿𝜓KL𝛿𝜂KL|.
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well for small values of ��KL and large values of the potential difference ��KL . Fur-
ther, the red dashed line in Fig. 3 indicates agreement of the excess chemical potential 
scheme and the exact solution of (6) for a purely diffusive flux � , i.e. a vanishing electri-
cal field ��KL = 0 . This can be proven analytically, see Abdel (2020). In this specific 
case, the excess chemical potential scheme is the best possible flux approximation.

5 � Numerical example

Finally, we study the impact of the different flux approximations on the simulation of 
degenerate semiconductor devices for a 6�m long GaAs p-i-n diode with a width of 
0.5�m and a depth of 1.0 ⋅ 10−4cm . A motivation for this example is given in Farrell 
et al. (2017b). Since the 3D device only varies along one axis, it suffices to simulate the 
device along one spatial dimension. On each 2�m long layer (p/n−doped or intrinsic) we 
choose N = 3 ⋅ 2nref−1 uniform nodes. The donor and acceptor doping densities are given 
by ND = 4.35 × 1017cm−3 and NA = 4.20 × 1018cm−3 . An open source solver, based on 
VoronoiFVM (Fuhrmann 2019–2020), was used which allows to use automatic dif-
ferentiation. The stationary van Roosbroeck system (1) with zero recombination sup-
plemented with Dirichlet-Neumann boundary conditions is considered. The resulting 
current voltage curves for a refinement level nref = 3 and the L∞ errors in the computed 
total currents based on the different flux approximations for the first nine refinement 
level are depicted in Fig. 4. It can be observed that eventually the errors in the computed 
total currents based on the flux schemes converge with order O(h2) . Furthermore, it sug-
gests that on coarse meshes, which are hard to avoid for expensive 3D simulations, the 
excess chemical potential flux performs better than the diffusion enhanced scheme, yet 
multidimensional device set-ups were not simulated.

Fig. 4   Left: The I–V curves computed with the different schemes for fixed mesh refinement. The reference 
solution was computed using the generalized Scharfetter–Gummel scheme on refinement level 10. Right: 
Convergence studies for the absolute errors of the total currents. The absolute errors correspond to the nine 
refinement level, where the rightmost point depicts the error on the coarsest mesh
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6 � Conclusion

Our goal was to assess the quality of the excess chemical potential flux (11) which has 
received surprisingly little attention in the literature. To this end, we compared it to another 
modified Scharfetter–Gummel scheme (10) by studying its error with respect to the more 
accurate but expensive integral flux (6). For this, we analyzed Taylor expansions of the flux 
discretization schemes, the errors in the local flux approximations and simulated a p-i-n 
benchmark. Further applications and the impact of this scheme on realistic multidimen-
sional device settings will be part of future research.
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