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Abstract
In this work, we investigate the possibility of approximating saturable nonlinearity, which 
is commonly used in complex Ginzburg–Landau equation (CGLE) for modelling resonant 
interaction of an electromagnetic field with nonlinear media, with cubic-quintic (CQ) non-
linearity. To validate the suggested approximations, we use variational method to estimate 
2D analytical solutions of the CGLE with both saturable and CQ nonlinearity. The paper 
compares three ways to determine parameters of the CQ approximation and discusses the 
obtained results in terms of accuracy.

Keywords  Cubic quintic Ginzburg Landau equation · Resonant interaction · Variational 
method

1  Introduction

The class of CGLEs represents a good model for describing a wide variety of phenomena 
in dissipative systems, such as superconductivity (Ginzburg et  al. 1950), nonequilibrium 
phenomena (Aranson and Kramer 2002), phase transitions (Nato Advanced Study Institute 
1975), binary fluid convection (Kolodner 1992), laser generated spatiotemporal dissipative 
structures, soliton propagation in optical fiber systems (Kodama and Hasegawa 1992), bio-
logical systems (Morales et al. 2015), etc.

The CQ CGLE, in particular, is often utilized to describe competitive effects of linear 
and nonlinear gain and loss. One of the reasons of high popularity of the CQ CGLE is 
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the fact that there are many well developed methods for solving it both analytically and 
numerically. In the domain of fiber lasers, the model commonly used is the “master equa-
tion” derived by Haus (Haus et al. 1991, 1992), which, in fact, represents the stationary 
CGLE with cubic nonlinearity. The coefficients that appear in the Haus model were related 
to the physical parameters in a rather phenomenological way (Haus et al. 1994). The cubic 
CGLE has been investigated in sufficient details in the one-dimensional case. Analytical 
solutions of dissipative structures in cubic CGLE have been obtained, but all of them are 
unstable except the class of solutions with arbitrary amplitude in an “exotic” medium with 
zero linear loss/gain (Akhmediev et al. 1996).

To achieve the stabilization of the dissipative structures (solitons) in the CGLE model, 
higher-order nonlinear (quintic) terms have been introduced. The obtained equation is 
referred to as the quintic or CQ CGLE equation. The one-dimensional CQ CGLE, in the 
case of special relations between its parameters, has analytical solutions in the form of sta-
ble solitons with a fixed or arbitrary amplitude (Akhmediev and Afanasjev 1995; Akhme-
diev et al. 1997, 1998). In the general case, the one dimensional and multidimensional CQ 
CGLE do not have known exact solutions and have been studied numerically, as well as 
using different analytical approximations, including the variational method (Skarka and 
Aleksić 2006; Skarka et al. 2014, 2016; Aleksic et al. 2007, 2012a, b, 2014, 2015).

After the introduction of the cubic “master equation” (Haus et  al. 1991, 1992), there 
have been derived many refinements in the form of CQ CGLE, as a model of resonant 
interaction of electromagnetic field with nonlinear media. These refinements have been 
done assuming small intensities, which allows the expansion of the Bloch equations in the 
series of intensities.

In this work, we further discuss the possibility of using CQ CGLE for modelling reso-
nant interaction of an electromagnetic field. We compare three CQ approximations, includ-
ing the widely used series expansion, and the CGLE with saturable nonlinearity. More 
precisely, the comparison is performed in terms of the parameters of stationary two-dimen-
sional fundamental solutions, obtained using variational approach.

2 � Model

We consider the response of a medium where active (amplifier) and passive atoms (satura-
ble absorber), with almost identical transition frequencies, are embedded in the background 
matrix (for example, in a waveguide). Due to quick relaxation of the upper energy levels 
(three or four), we can reduce the model to an effective two-level scheme. When the con-
centration of the resonance centers is small, the polarization can be considered as an addi-
tive quantity:

consisting of the polarization of active (P(�)) , passive (P(�)) atoms, and non-resonant polar-
ization of the background matrix (P(m)).

From the Maxwell–Bloch equations, when the electromagnetic pulse duration is much 
greater than the relaxation time of the upper working level, we obtain the dimensionless 
CGLE for the electrical field:

(1)P = P
(�) + P

(�) + P
(m)
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where

and 𝛾̄ = 𝛾𝛿𝛾 , 𝛼̄ = 𝛼𝛿𝛼 . The constants �� , �� are dimensionless detunings between the gain 
(amplification) and loss (absorption), with the respect to the spectral line center and the 
frequency of empty cavity mode. The coefficients � and � represent the linear amplification 
of active atoms and the absorption of passive atoms, (normalized to the absorption coef-
ficient of the background medium), respectively (Fedorov et al. 2000). The linear part of 
the polarization determines the linear losses, temporal dispersion of the media, and spectral 
filtering ( �1 ). Under conditions of resonant interactions, when �� → 0 and �� → 0 , term 
N(I) in Eq. (2) can be neglected.

The function G(I) has a maximum

for

if the parameters satisfy the following relation:

Outside this region the function G monotonically either decreases, when 𝛾 > 𝛼b , or 
increases, when 𝛾 < 𝛼∕b . To establish the energy balance and the possibility of the exist-
ence of localized structures, the function G(I) should be positive in a finite interval of 
intensity, i.e. G(Im) > 0 , and G(I = 0) < 0 , in order to have a stable background. These two 
conditions in the parameter space become:

Under the previous conditions, function G(I) has two zeros:

as shown by the middle curve in Fig. 1a. The lower curve (𝛼∕b < 𝛾 < 𝛾min) does not have 
positive regions, thus the function G provides only loss. The fact that in the upper curve 
(𝛾max < 𝛾 < 𝛼b) we have G(0) > 0 means the linear gain is bigger than the linear loss, 

(2)i
�E

�z
+ �

�2E

�t2
+ �E + N(|E|2)E = iG(|E|2)E + i�1

�2E

�t2
+ i��E

(3)N(|E|2) = −
𝛾̄|E|2

(1 + |E|2)
+

𝛼̄b|E|2

(1 + b|E|2)
,

(4)G(|E|2) = − 1 + � − � −
�|E|2

(1 + |E|2)
+

�b|E|2

(1 + b|E|2)
,

(5)Gm = −1 − � + � +
�b

b − 1

(
1 −

√
�

�b

)2

(6)I = Im =

(
1 −

√
�

�b

)(
b

√
�

�b
− 1

)−1

,

(7)
𝛼

b
< 𝛾 < 𝛼b.

(8)1

b

�√
b − 1 +

√
𝛼

�2

= 𝛾min < 𝛾 < 𝛾max = 1 + 𝛼, 𝛼 >
1

b − 1
.

(9)I0± =
b� − b − 1 − � ±

√
(b� − b − 1 − �)2 + 4b(� − � − 1)

2b
,
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which causes an unstable background. The aforementioned properties of the lower and 
upper curve prevent formation of stable localized structures.

In order to simplify analytical estimation of Eq. (2), we consider three approximations 
of G, by using a second-order polynomial:

which satisfy the condition Ga(0) = G(0) i.e.

The first approximation ( G1 ) is a series expansion, the second ( G2 ) reaches maximum value 
at Im , and the third ( G3 ) has the value of zero at I0+ , and G(Im) at Im . Thus: 

1.	 Approximation G1 : the series expansion of Eq. (4) 

2.	 Approximation G2 : dG2(Im)∕dIm = 0 and G2(Im) = G(Im)

3.	 Approximation G3 : G3(I0+) = G(I0+) = 0 and G3(Im) = G(Im)

Figure  1b shows the saturable nonlinearity (G) and its three approximations ( G1 , G2 , G3 ) 
as functions of intensity I, for parameters � = 1 and � = 1.8 . Clearly, the most widely used 
approximation G1 deviates the most from G, while G2 and G3 better resemble G. In the next 
section we analyze each approximation in more details.

The coefficients � , �a and �a account for linear loss, cubic gain, and quintic loss, respec-
tively. If the loss saturates faster than the gain (b > 1) , then coefficients �a and �a are positive.

(10)Ga(I) = −� + �aI − �aI
2, a = 1, 2, 3

(11)� = 1 + � − � .

(12)�1 = b� − � , �1 = b
2� − �

(13)�2 =
2�b

b − 1

(
1 −

√
�

�b

)(
b

√
�

�b
− 1

)
, �2 =

�b

b − 1

(
b

√
�

�b
− 1

)2

(14)�3 =
G(Im)I0+

Im(I0+ − Im)
+

(I0+ + Im)

ImI0+
�, �3 =

G(Im)

Im(I0+ − Im)
+

�

ImI0+

Fig. 1   a G as a function of intensity I for different regions of parameter � . b G(I) and its three approxima-
tions for � = 1 and � = 1.8
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3 � Variational approach

In order to validate the approximations, we use the variational method to solve the two-
dimensional CGLE:

with saturable nonlinearity and its CQ approximations, in the form of localized fundamen-
tal solitons. We adopt the trial function in the form of a Gaussian:

where the real variational parameters are the amplitude A = A(z) , width R = R(z) , wave-
front curvature C(z), and phase � = �(z).

Skipping technical details, along the lines of Skarka and Aleksić (2006), for the satura-
ble nonlinearity of Eq. (4) we obtain the following system of the first-order evolution equa-
tions for the parameters of ansatz in Eq. (16):

From the fixed points of Eqs.(17)–(19):

we obtain the steady-state solutions, which are determined by the following system of 
equations:

(15)i
�E

�z
+ �E = iG(|E|2)E + i��E

(16)E = A exp

[
−

r2

2R2
+ iCr

2 + i�

]

(17)

dA

dz
= − 4Ac − �A −

2A�

R2

+ �
Li2

(
−A2

)
+ 2 log

(
A2 + 1

)

A
− �

Li2
(
−A2b

)
+ 2 log

(
A2b + 1

)

Ab
,

(18)

dR

dz
= 4cR − 4�c2R3 +

�

R

+ R

(
�
Li2

(
−A2b

)
+ log

(
A2b + 1

)

A2b
− �

Li2
(
−A2

)
+ log

(
A2 + 1

)

A2

)
,

(19)
dC

dz
= − 4C2 −

4C�

R2
+

1

R4
,

(20)
d�

dz
= 4C� −

2

R2
.

(21)
dA

dz
=

dR

dz
=

dC

dz
= 0

(22)R =
−�C + �C�

√
1 + �2

C2
,
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where �e = �∕
√
1 + �2 and Li2(x) is the polylogarithm function.

In the case of CQ approximations Eq. (10), the stationary values of the trial function 
parameters are given by the following system of equations ( a = 1, 2, 3):

Figure 2 represents the solutions of Eqs. (24) and (27), i.e. dependence of the amplitude 
of the stationary solution as a function of parameter � , for two values of the parameters 
�e = 0;0.5 , and � = 1 , shown in Fig. 2a and � = 3 in Fig. 2b. The solution of Eq. (24) is 
denoted as G while the solutions of Eq.  (27) are denoted by G1 , G2 and G3 . The series 
expansion G1 , which is widely used in many research papers, represents a good approxi-
mation only for small values of the intensity. Approximation G2 shows better accuracy for 
slightly larger values of the intensity, while G3 gives values fairly close to the saturable 
nonlinearity over the whole intensity domain.

From Eqs. (22) , (25) and (26) we can see that in the case when the wave front cur-
vature (C and Ca ) approaches zero, the radius (R and Ra ) approaches infinity. Therefore, 
the nonzero value of the wave front curvature is the essential condition in order to have 
a finite radius, i.e. the existence of localized solutions. The zero values of C and Ca are 
marked with circles in Fig. 2.

(23)C = �

(
Li2

(
−A2

)
+ log

(
A2 + 1

))

4A2
(
�2 + 1

) − �

(
Li2

(
−A2b

)
+ log

(
A2b + 1

))

4A2b
(
�2 + 1

) ,

(24)�
log

(
A2b + 1

)

A2b
− �

log
(
A2 + 1

)

A2
+ 4

�e

1 − �2
e

|C| + � = 0,

(25)Ra =
−�Ca + �Ca�

√
1 + �2

C2
a

,

(26)Ca =
A2
a

(
9�a − 8A2

a
�a

)

144
(
�2 + 1

) ,

(27)� +
A4
a
�a

3
−

A2
a
�a

2
+

A2
a
�e
||9�a − 8A2

a
�a
||

36
= 0.

Fig. 2   The amplitude of the stationary solution as a function of the � for saturable nonlinearity (denoted by 
G) and three CQ approximations ( G

1
,G

2
 and G

3
 ). Parameter � = 1—left and � = 3—right
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4 � Conclusion

A common model for resonant interaction of electromagnetic waves with nonlinear media 
is the CGLE with saturable nonlinearity. Due to limitations in the analytical analysis of that 
kind of a model, we approximate the saturable nonlinearity with CQ nonlinearity, whose 
analytical and numerical aspects have been extensively stuided.

Using the variational method, we analyze three different second-order polynomial 
approximations of the saturable nonlinearity. The obtained results show the differences of 
the steady-state solutions between different approximations and the saturable nonlinearity, 
and depending on the application, suggest the most accurate approach. The most adequate 
approximation is the second-order polynomial, which has the same value at the linear limit 
and the common distant zero with saturable nonlinearity.

In the parameter space of the resonant medium, the region of possible approximations 
is determined. The parameters of the polynomial approximation are related to the physical 
parameters of the resonant medium.
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