Skip to main content

Advertisement

Log in

Impact of PV module configuration on energy yield under realistic conditions

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Photovoltaic cell and module manufactures optimise their products according to power measurements performed at a set of standard-test conditions. A key parameter for the financing of a solar project is yield under field or realistic conditions. Field testing modules is time consuming and costly. Hence, we develop a methodology for simulating PV module yield based on the optical, thermal and electrical properties of the components, and the module configuration regarding the cell spacing, interconnection and module layers. With our procedure, we model the performance of standard, half cell and encapsulant free modules in different locations. We present results using our cell to module yield framework for 16 different locations in Australia based on one-minute ground measured solar irradiance and ambient temperature values. We find low-light irradiance losses are directly correlated to the number of cloudy days at a given site. The majority of fielded losses are due to temperature effects, which can be predicted by the average temperature at 3 p.m. We note that wind speed is not accounted for and it will be incorporated in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • https://www.pvlighthouse.com.au/

  • Abbott, M.D., McIntosh, K.R., Sudbury, B.: Optical loss analysis of pv modules. In: EU PVSEC Proceedings (2016)

  • Bureau of Metrology Australian Government. Product Code: IDCJAC0010

  • Bureau of Metrology Australian Government. Product Code: IDCJAC0022, dataset until 12/2015

  • Bureau of Metrology Australian Government. Product Code: IDCJCM0019

  • Bureau of Metrology Australian Government. Product Code: IDCJCM0029

  • Bazilian, M., Onyeji, I., Liebreich, M., MacGill, I., Chase, J., Shah, J., Gielen, D., Arent, D., Landfear, D., Zhengrong, S.: Re-considering the economics of photovoltaic power. Renew. Energ. 53, 329–338 (2013)

    Article  Google Scholar 

  • Dupuis, J., Saint-Sernin, E., Nichiporuk, O., Lefillastre, P., Bussery, D., Einhaus, R.: Nice module technology-from the concept to mass production: a 10 years review. In: 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), pp. 003183–003186. IEEE (2012)

  • Duttagupta, S., Ma, F., Hoex, B., Mueller, T., Aberle, AG.: Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling. Energ. Procedia 15, 78–83 (2012)

    Article  Google Scholar 

  • e tonsolar.com. Excelton iii, 6 mono-crystalline, 3bb, solar cell, http://www.e-tonsolar.com/upload/excelton

  • Ernst, M., Holst, H., Winter, M., Altermatt, P.P.: Suncalculator: a program to calculate the angular and spectral distribution of direct and diffuse solar radiation. Sol. Energ. Mater. Sol. Cells 157, 913–922 (2016)

    Article  Google Scholar 

  • Gueymard, C.: Smarts2, a simple model of the atmospheric transfer of sunshine. Florida Solar Energy Center, Rep. Technical report, FSEC-PF-270-95 (1995)

  • Guo, S., Singh, J.P., Peters, I.M., Aberle, A.G., Walsh, T.M.: A quantitative analysis of photovoltaic modules using halved cells. Int. J. Photoenerg. 2013, 739374 (2013). doi:10.1155/2013/739374

    Article  Google Scholar 

  • Haedrich, I., Eitner, U., Wiese, M., Wirth, H.: Unified methodology for determining ctm ratios: systematic prediction of module power. Sol. Energ. Mater. Sol. Cells 131, 14–23 (2014)

    Article  Google Scholar 

  • Haedrich, I., Padilla, M.: Finger and ribbon optics for increasing module power. In: 31st European PV Solar Energy Conference and Exhibition, 14–18 September 2015, Hamburg, Germany (2015)

  • Ian, C.T., Sauer, K.J., Desharnais, R.A.: Revisiting the model parameters of an existing system using the photovoltaic system analysis toolbox (pvsat). In: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp. 1–6. IEEE (2015)

  • Josefsson, W., Landelius, T.: Effect of clouds on uv irradiance: as estimated from cloud amount, cloud type, precipitation, global radiation and sunshine duration. J. Geophys. Res. 105(D4), 4927–4935 (2000)

    Article  ADS  Google Scholar 

  • Jung, T., Song, H., Ahn, H., Kang, G.: A mathematical model for cell-to-module conversion considering mismatching solar cells and the resistance of the interconnection ribbon. Sol. Energ. 103, 253–262 (2014)

    Article  ADS  Google Scholar 

  • Lilienthal, P., Gilman, P., Lambert, T.: HOMER Micropower Optimization Model. Department of Energy, Washington (2005)

    Google Scholar 

  • Matthieu Ebert. Fraunhofer ise develops smartcalc.ctm. Press Release, 12 2016

  • McIntosh, K.R., Baker-Finch S.C.: Opal 2: rapid optical simulation of silicon solar cells. In: 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), pp. 000265–000271

  • McIntosh, K.R., Johnson, L.P.: Recombination at textured silicon surfaces passivated with silicon dioxide. J. Appl. Phys. 105(12), 124520 (2009)

    Article  ADS  Google Scholar 

  • McIntosh, K.R., Swanson, R.M., Cotter, J.E.: A simple ray tracer to compute the optical concentration of photovoltaic modules. Prog. Photovolt. 14(2), 167–177 (2006)

    Article  Google Scholar 

  • Mermoud, A.: Pvsyst: software for the study and simulation of photovoltaic systems. University of Geneva, www. pvsyst. com, ISE (2012)

  • Mittag, M., Haedrich, I., Neff, T., Hoffmann, S., Eitner, U., Wirth, H. TPEDGE: qualification of a gas-filled, encapsulation-free glass-glass photovoltaic module. In: European Photovoltaic Solar Energy Conference, Hamburg, Germany (2015)

  • Notton, G., Cristofari, C., Mattei, M., Poggi, P.: Modelling of a double-glass photovoltaic module using finite differences. Appl. Therm. Eng. 25(17), 2854–2877 (2005)

    Article  Google Scholar 

  • Pervaiz, S., Khan, H.A.: Low irradiance loss quantification in c-Si panels for photovoltaic systems. J. Renew. Sustain. Energ. 7, 013129 (2015). doi:10.1063/1.4906917

    Article  Google Scholar 

  • Skoplaki, E., Palyvos, J.A.: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol. Energ. 83(5), 614–624 (2009)

    Article  ADS  Google Scholar 

  • Verlinden, P., Yingbin, Z., Zhiqiang, F.: Cost analysis of current pv production and strategy for future silicon pv modules. In: 28th European Photovoltaic Conference and Exhibition, Paris (2013)

  • Winter, M., Vogt, M.R., Holst, H., Altermatt, P.P.: Combining structures on different length scales in ray tracing: analysis of optical losses in solar cell modules. Opt. Quantum Electron. 47(6), 1373–1379 (2015)

    Article  Google Scholar 

  • Witteck, R., Hinken, D., Schulte-Huxel, H., Vogt, M.R., x00Fc, M.J., ller, S. Blankemeyer, K.M., x00F, N., Bothe, K., Brendel, R., : Optimized interconnection of passivated emitter and rear cells by experimentally verified modeling. IEEE J. Photovolt. 6(2), 432–439 (2016).

  • Woehl, R., Hörteis, M., Glunz, S.W.: Analysis of the optical properties of screen-printed and aerosol-printed and plated fingers of silicon solar cells. Adv. OptoElectron. 2008, 759340 (2008). doi:10.1155/2008/759340

    Article  Google Scholar 

  • Yablonovitch, E., Cody, G.D.: Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Dev. 29(2), 300–305 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Australian Renewable Energy Agency funding of this work through Grant Nos. 3-F006, and 2014/RND008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Thomson.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices 2016.

Guest edited by Yuh-Renn Wu, Weida Hu, Slawomir Sujecki, Silvano Donati, Matthias Auf der Maur and Mohamed Swillam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomson, A., Ernst, M., Haedrich, I. et al. Impact of PV module configuration on energy yield under realistic conditions. Opt Quant Electron 49, 82 (2017). https://doi.org/10.1007/s11082-017-0903-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0903-0

Keywords

Navigation