Skip to main content

Advertisement

Log in

An investigation and simulation of the graphene performance in dye-sensitized solar cell

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Recently, dye-sensitized solar cells (DSSCs) have become the center of attention due to low manufacturing cost. While dye-sensitized solar cells are cheap, they have relatively low efficiency. Therefore, their industrialization process hasn’t been completed yet. In this study, physical and electrical characteristics of graphene, as part of a semiconductor used in DSSCs is analyzed. A proper model to simulate the process in silvaco software is proposed and implemented. In the current DSSC, indium tin oxide, platinium and poly phenylene vinylene (PPV) are employed as the transparent conductive oxide, counter electrode and electrolyte, respectively. To improve the performance of solar cell, in the electrolyte part, the characteristics of the poly(3-hexylthiophene), was attributed to the PPV. The positioning of substances is done according to their energy gap and the studies are carried out in fixed temperature and standard thicknesses. It is quite evident that the TiO2–graphene composite has better efficiency compared to the TiO2–ZnO composite, due to the high mobility of graphene. Thus, the recombination of excited electrons and holes in the highest occupied molecular orbital band significantly decreases in the TiO2–graphene composite in comparison with the TiO2–ZnO composite. This results in an increment in the Fermi level and consequently the open circuit voltage, leading to the increased efficiency of the solar cell. An efficiency equal to 9.3% is achieved in case of graphene–TiO2, while in ZnO–TiO2 composite, only 6.5% is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Also denoted by fluorine-doped SnO2, F:SnO2, SnO2:F.

  2. The mixture of sulfuric acid and hydrogen peroxide.

References

  • Agrell, H.G., Boschloo, G., Hagfeldt, A.: Conductivity studies of nanostructured TiO2 films permeated with electrolyte. Phys. Chem. B 108(33), 12388–12396 (2004)

    Article  Google Scholar 

  • Bavir, M., Fattah, A., Nazari, A.A.: An investigation of electrochemical impedance of TiO2–ZnO composite and TiO2–graphene composite in dye-sensitized solar cells, as photoanode. In: 30th Power System Conference, Iran (2015)

  • Bisquert, J., Fabregat-Santiago, F.: Impedance spectroscopy: a general introduction and application to dye-sensitized solar cells. In: Dye-Sensitized Solar Cells, chap. 12 (2010)

  • Cai, N., Moon, S.J., Cevey-Ha, L., Moehl, T., Humphry-Baker, R., Wang, P., Grätzel, M.: An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Lett. 11(4), 1452–1456 (2011)

    Article  ADS  Google Scholar 

  • Chen, J.K., Wang, M.Y., Chen, Y.R., Chen, Y.S.: Exploring knowledge flows of network on patent of dye sensitized solar cell. In: PICMET, IEEE, pp. 927–940 (2012)

  • Collins, A.: Nanotechnology Cookbook: Practical, Reliable and Jargon-Free Experimental Procedures. Elsevier, Amsterdam (2012)

    Google Scholar 

  • Fabregat-Santiago, F., Bisquert, J., Palomares, E., Otero, L., Kuang, D., Zakeeruddin, S.M., Grätzel, M.: Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J. Phys. Chem. C 111, 6550–6560 (2007)

    Article  Google Scholar 

  • Fattah, A., Khatami, S.: A simple method for fabrication of graphene–silicon Schottky diode for photo-detection applications. Opt. Quantum Electron. 47, 613–620 (2015)

    Article  Google Scholar 

  • Feng, X., Shankar, K., Varghese, O.K., Paulose, M., Latempa, T.J., Grimes, C.A.: Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8, 3781–3786 (2008)

    Article  ADS  Google Scholar 

  • Ferrere, S., Zaban, A., Gregg, B.A.: Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J. Phys. Chem. B 101, 4490–4493 (1997)

    Article  Google Scholar 

  • Fujihara, K., Kumar, A., Jose, R., Ramakrishna, S., Uchida, S.: Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell. Nanotechnology 18, 365709 (2007)

    Article  Google Scholar 

  • Gao, X.D., Wang, C.L., Li, X.M., Gan, X.Y.: Ordered Semiconductor Photoanode Films for Dye-Sensitized Solar Cells Based on Zinc Oxide-Titanium Oxide Hybrid Nanostructures. INTECH Open Access Publisher, Rijeka (2011)

    Book  Google Scholar 

  • Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44, 6841–6851 (2005)

    Article  Google Scholar 

  • Hagfeldt, A., Graetzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49–68 (1995)

    Article  Google Scholar 

  • Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    Article  Google Scholar 

  • Hauch, A., Georg, A.: Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 46, 3457–3466 (2001)

    Article  Google Scholar 

  • Kay, A., Grätzel, M.: Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44, 99–117 (1996)

    Article  Google Scholar 

  • Lee, S., Jun, Y., Kim, K.J., Kim, D.: Modification of electrodes in nanocrystalline dye-sensitized TiO2 solar cells. Sol. Energy Mater. Sol. Cells 65, 193–200 (2001)

    Article  Google Scholar 

  • Li, K., Xiong, T., Chen, T., Yan, L., Dai, Y., Song, D., Lv, Y., Zeng, Z.: Preparation of graphene/TiO2 composites by nonionic surfactant strategy and their simulated sunlight and visible light photocatalytic activity towards representative aqueous POPs degradation. J. Hazard. Mater. 250, 19–28 (2013)

    Article  Google Scholar 

  • Luque, A., Hegedus, S.: Handbook of Photovoltaic Science and Engineering, 2nd edn. Wiley, New York (2010)

    Book  Google Scholar 

  • Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A.: A review on highly ordered, vertically oriented TiO 2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011–2075 (2006)

    Article  Google Scholar 

  • Murakoshi, K., Kogure, R., Wada, Y., Yanagida, S.: Solid state dye-sensitized TiO2 solar cell with polypyrrole as hole transport layer. Chem. Lett. 5, 471–472 (1997)

    Article  Google Scholar 

  • Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  • Nazeeruddin, M.K., Baranoff, E., Grätzel, M.: Dye-sensitized solar cells: a brief overview. Sol. Energy 85, 1172–1178 (2011)

    Article  ADS  Google Scholar 

  • Olsen, E., Hagen, G., Lindquist, S.E.: Dissolution of platinum in methoxy propionitrile containing LiI/I 2. Sol. Energy Mater. Sol. Cells 63, 267–273 (2000)

    Article  Google Scholar 

  • Oskam, G., Bergeron, B.V., Meyer, G.J., Searson, P.C.: Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. J. Phys. Chem. B 105, 6867–6873 (2001)

    Article  Google Scholar 

  • Ravirajan, P., Peiró, A.M., Nazeeruddin, M.K., Graetzel, M., Bradley, D.D., Durrant, J.R., Nelson, J.: Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. J. Phys. Chem. B 110, 7635–7639 (2006)

    Article  Google Scholar 

  • Saito, Y., Kitamura, T., Wada, Y., Yanagida, S.: Poly(3,4-ethylenedioxythiophene) as a hole conductor in solid state dye sensitized solar cells. Synth. Met. 131, 185–187 (2002)

    Article  Google Scholar 

  • Satoh, N., Nakashima, T., Yamamoto, K.: Metastability of anatase: size dependent and irreversible anatase-rutile phase transition in atomic-level precise titania. Sci. Rep. 3, 1959 (2013)

    Article  ADS  Google Scholar 

  • Smestad, G., Bignozzi, C., Argazzi, R.: Testing of dye sensitized TiO2 solar cells I: experimental photocurrent output and conversion efficiencies. Sol. Energy Mater. Sol. Cells 33, 253 (1994)

    Article  Google Scholar 

  • Sohn, S., Kim, H.M.: Transparent Conductive Oxide (TCO) Films for Organic Light Emissive Devices (OLEDs). In: Ko, S. (ed.) Organic Light Emitting Diode - Material, Process and Devices, pp. 233–273. In Tech (2011)

  • Somani, P.R., Radhakrishnan, S.: Solid state electrochemical reaction in photocells made using conducting polyaniline and sensitized with methylene blue. J. Solid State Electrochem. 7, 166–170 (2003)

    Article  Google Scholar 

  • Wang, P., Zakeeruddin, S.M., Moser, J.E., Humphry-Baker, R., Grätzel, M.: A solvent-free, SeCN-/(SeCN) 3-based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. J. Am. Chem. Soc. 126, 7164–7165 (2004)

    Article  Google Scholar 

  • Weerasinghe, H.C., Huang, F., Cheng, Y.B.: Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2, 174–189 (2013)

    Article  Google Scholar 

  • Yang, N., Zhai, J., Wang, D., Chen, Y., Jiang, L.: Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887–894 (2010)

    Article  Google Scholar 

  • Zheng, Z., Zhao, C., Lu, S., Chen, Y., Li, Y., Zhang, H., Wen, S.: Microwave and optical saturable absorption in graphene. Opt. Express 20, 23201–23214 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Fattah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavir, M., Fattah, A. An investigation and simulation of the graphene performance in dye-sensitized solar cell. Opt Quant Electron 48, 559 (2016). https://doi.org/10.1007/s11082-016-0821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0821-6

Keywords

Navigation