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Abstract In this paper we present results of ellipsometric studies of thin organic poly-

3hexylthiophene–(P3HT) and poly-3octylthiophene (P3OT) films performed in tempera-

ture range 20–300 �C. The optical dispersion spectra of refractive and extinction indices of

presented organic films was determined in wavelength range 190–1700 nm for tempera-

tures within in a given range. Also thermo-ellipsometric investigations allowed to find

temperature dependence on film thickness. The determination of thermal changes of

thickness and refractive index allowed us to calculate thermo-optical coefficients (TOC)

for P3HT and P3OT layers for many wavelengths in measured spectral range. The obtained

values of thermo-optical coefficients of thin P3HT layers, determined from combined

ellipsometric and spectro-photometric investigations, are negative in visible part of spectral

range of the order of 10-4 [1/K] .
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1 Introduction

Conductive polymers such as polythiophenes have good thermal stability, chemical and

absorption of radiation from the ultraviolet range and the visible region (Handbook of

Luminescence 2003; Kalinowski 2005; Jaglarz et al. 2004). The distance between the

HOMO and LUMO levels for this group of polymers is about 2 eV. The ease of poly-

thiophenes use in optoelectronics, nonlinear optics, electronics results from their good

conductivity and transparency in UV-Vis wavelength region (Sicot et al. 2000). Also

polythiophenes are regarded as as donor in organic photovoltaic cells.

In our work we apply o polythiophenes as donor in organic photovoltaic cells. The

crucial and especially important in optoelectronic application is their good process ability,

environmental stability and electro-activity.

In our paper we present optical and thermooptical properties of polythiophenes whose

representatives is poly (3-hexylthiophene)-P3HT (Lee et al. 2010) and and poly-

3octylthiophene) P3OT (Lopez-Mata et al. 2005). The chemical structure of P3HT and

P3OT are shown in Fig. 1.

Both of the studied polytiophenes have similar HOMO (5 eV for P3HT and 5.25 eV for

P3OT) and LUMO levels (3 eV for P3HT and 3.35 eV for P3OT). Optical gap for P3HT is

2 eV and is bigger than for P3OT–1.8 eV.

Optical constants, namely the extinction coefficient (k) and refractive index (n), are very

important parameters for understanding the mechanism of interaction between incident

light and conjugated polymer films. These intrinsic properties can lead to the design of

optimized solar cells with better photovoltaic performance. Despite the importance of these

parameters, rather little information is available concerning the P3HTand P3OT optical

constants (Kymakis and Amaratunga 2004), since many researchers focus only on

absorption spectrum of P3HT, neglecting strong bulk and surface scattering losses. The

refractive index n(T) of an optical medium at a given temperature T is also an important

parameter for characterizing the material as derivative of n upon the temperature. To

facilitate analysis of experimental results the thermo-optical coefficient (TOC) (Kang et al.

Fig. 1 The chemical structure of
poly (3-hexylthiophene) (a) and
poly(3-octylthiophene) (b)

392 Page 2 of 8 J. Jaglarz et al.

123



2003) is defined. The TOC is derivative of refractive index upon the temperature dn/dT.

The temperature dependence of refractive indices of polymeric materials is described using

the. TOC values of organic materials are more than ten times larger than those of inorganic

glasses, applications of polymer optical materials to thermo-optical switches and passive

optical filters at variable temperatures attract much attention (Houbertz et al. 2003). The

knowledge of TOC may be essential in the analysis of dense molecular packing, con-

trolling structural isomerism and chemical modification of precursors and in the study of

polarizability changes in molecular chains in conductive polymer layers.

Thin organic conductive films optical constants can be described by using Kramers

Kroning relation in wide spectral region. The K–K relations are mathematical formulas

which connect the real and imaginary parts of refractive index complex function and have

become basic tools in the investigation of the optical properties of materials (Lucarini et al.

2005).

According to Prod’s Homme 1960 theory, the factors that influence on TOC value are

density and electronic polarizability which change with temperature

dn

dT
¼ f nð Þ ¼ ðn2 � 1Þ n2 þ 2ð Þ

6n
U� 3að Þ ð1Þ

where a is linear thermal expansion coefficient and U is the temperature coefficient of the

electronic polarizability, defined as: U ¼ P�1 � dP=dT-where P is mean polarizability.

If the electronic polarizability term is dominant, the refractive index increases with

temperature. On the other hand, TOC is negative when the thermal expansion coefficient is

dominant. However, in the case of optical polymers, dn/dT exclusively depends on thermal

expansion term because 3a is always much higher than U.

2 Experimental details

In work was used P3HT solution synthesized by Sigma Aldrich.1 The P3HT and P3OT

solid layers have been deposited by a spin cast method onto crystalline silicon substrates

using spin Coater Model SCV-15 (LOT-Oriel GmbH) with aligned rotational speed 2000

rotations per minute. For better accuracy, these P3HT/Si and P3OT/Si layered systems in

optical and thermo-optical measurements have been considered. The use of crystalline

silicon as a substrate due to the fact that its thermo-optical properties are well defined in a

wide range of temperature (Complete Easy Data Analysis Manual et al. 2008). Also

because the optical difference on layer –Si interface was large (at k ¼ 633 nm, nP3HT/

P3OT\ 1.9 for polytiophene films, while nSi = 3.81, for Si substrate) which increased the

measurement sensitivity.

We determined spectral dependence of refractive indices in wavelength range from 300

to 1700 nm in room temperature (295 K) films thickness using the K–K relations. For this

purpose the ellipsometric measurements have been performed by spectroscopic M-2000

ellipsometer (Woollam Co. Inc.).

The samples have been measured for four angles of incidence namely: 558, 608, 658,
708. To analyze the data, we have combined all angular spectra and we have fitted all data

simultaneously. The data have been analyzed using Complete EASE 5.2 software.

1 http://www.sigmaaldrich.com/catalog/product/aldrich/698997.
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For the determination of the P3HT and P3OT layer thickness, refractive index n and

extinction k coefficients the spectroscopic ellipsometry was used (Azzam and Bashara

1995). In this technique, changes of the light polarization due to its reflection at a surface

are measured. The experimentally recorded data are W and D, which are angles defining the

ratio of the amplitude Fresnel reflection coefficients rp and rs components parallel and

perpendicular to incidence plane of the light.

rp=rs ¼ expðiDÞ � tanW ð2Þ

The angle D is a phase shift between the both waves.

The spectroscopic ellipsometer M-2000 was equipped with a temperature chamber

holding optical.

As can be appreciated the strong absorption in the layers of P3HT and P3OT occurs in

the area of 400–600 nm, with a pronounced maximum. It is also an area of abnormal

dispersion of the studied layers. It can be seen when the temperature rise of the broad peak

is moving maxima dispersion dependence nðkÞ and kðkÞ towards shorter wavelengths. The

values of the refractive index of P3HT film is larger than for P3OT layer. This is due to

their greater polarizability associated with the polymer chains (Jaglarz et al. 2007) which

increases the optical constants. The spectral dispersion of n determined for polythiophene

films look similar for many polymer layers used in optoelectronic devices.

For high temperatures higher than 250 �C the optical constants increase. It seems that

this is related to the release of the hydrogen atoms of the layer and the consequent

increasing of molar mass of the layer (Fig. 2).

Fig. 2 Dispersion of optical indices: n (a-P3HT and b-P3OT films) and k (c-P3HT and d-P3OT layers)
determined for temperature T = 20, 150 and 300 �C
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For quality assessment of sample during annealing we control depolarization degree of

light reflected from studied layers. The temperature dependence of depolarization factor

determined for wavelength is shown in Fig. 3.

Depolarization gives an insight into the degree of the homogeneity of the layer and

predicts possible effects of its non-uniformity, including fluctuations of the thickness and

microstructure (Jaglarz et al. 2015).

As may be notice depolarization coefficient slightly increases to temperature 100 �C and

above this temperature it decreases fast. This is due to breaking of the polymer chains

which increases the amorphousness layers.

The temperature dependences of n and k values at k = 633 nm are given in Fig. 4a and

b.

As may be notice TOC for both polytiophene films are negative up to 210 �C for P3OT

and 225 �C for P3HT. Above those temperatures the refractive and extinction indices

increase with temperature. Such results mean that above transition temperatures Tg the

polarizability factor U occurring in formula (1) begins to dominate which is due to the

change of the layers structure (phase transformation). This is glass transition temperature

Tg of presented polymers is depending on the layer molecular weight (Ng et al. 2010).

They are also shown in column 2 of Table 1.

It seems that this is related to the release of the hydrogen atoms of the layer resulting in

the increase in the molar mass of the layer but fulfils the Glaxon Dale formula (Gladstone

and Dale 1958). It express the relation between the refractive index and density of a layer.

From the ellipsometric data, measured at various temperatures, the temperature

dependencies of the refractive indices were determined. The values of TOC obtained for

the polytiophene layers are shown in column 4 of Table 1. The TOC values we determined

in temperature range 25–150 �C where thermo-optical coefficients are monotonically and

linearly decreasing. Such behaviour is characteristic for the materials in which temperature

dependence of the optical indices is associated with thermal expansion (Kang et al. 2003).

Fig. 3 Depolarization degree of reflected light for wavelength k ¼ 633 nm versus temperature of the
samples
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For this range of temperature the thermo-optical coefficients, are negative and tem-

perature independent. It is typical for most polymers.2 There is no phase transition change

was observed in temperature region (20–200 �C). Therefore the refractive index depends

only on the material density according to Glaxon-Dale theory. As one may notice from

Table 1 the thermo-optical coefficient for P3HT molecules with lower molar mass is

smaller than for P3OT molecules which molar mass is higher mass because cross-linking

reduces considerably the thermal expansion (Pearson and Stolka 1981).

From ellipsometric study we also determined thickness dependence of presented

polythiophene films on temperature. It is shown in Fig. 5.

As may notice thickness of studied films grows up with temperature to values of Tg.

From temperature dependence of layer thickness the thermal expansion coefficients a have

been calculated in temperature range 25–150 �C. Values of a have been presented in

column 5 of Table 1.

Also in this work we calculated the thermal dependences of optical path lengths dS/dT

for both samples at wavelength k ¼ 633 nm. For this purpose we applied following for-

mula: dS/dT = dn/dT ? na. These values have been presented in column 6 of Table 1. As

may notice for both layer these values are positive. This result is particularly important for

photovoltaic cells design which would work in different temperatures.

Fig. 4 Temperature dependence n(T) and k(T) determined at wavelength k ¼ 633 nm for P3HT (a) and
P3OT (b) layers

Table 1 Thermal parameter of optical constants and geometrical expansion

Tg [�C] Energy gap [eV] TOC [10-4
* K-1] a [10-4

* K-1] dS/dT [10-4
* K-1]

P3HT 225 2.0 11, 112 8.90 29.08

P3OT 210 1.8 19 12.81 5.45

2 www.texloc.com/closet/cl_refractiveindex.html.

392 Page 6 of 8 J. Jaglarz et al.

123

http://www.texloc.com/closet/cl_refractiveindex.html.


3 Conclusion

The presented results of ellipsometric study of thin organic poly-3hexylthiophene -P3HT

and poly-3octylthiophene-P3OT films deposited on crystalline silicon substrate. The

ellipsometric measurements were performed in temperature range 20–300 �C. In this work

we determined spectral dispersion relation for studied films for various temperatures. For

presented polythiophene layers we calculated thermo-optical coefficient–TOC,and thermal

dependence of optical path at wavelength k ¼ 633 nm. Also the thermal expansion coef-

ficients for P3HT and P3OT films have been determined. The obtained values of thermo-

optical coefficients of studied layers, were negative of the order of 10-4 [1/K]. The Results

of thermo-optical investigations are comparable with some conductive polymer layers.
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Ng, A., Li, C.H., Fung, M.K., Djurišić, A.B., Zapien, J.A., Chan, W.K., Cheung, K.Y., Wong, W.Y.: J. Phys.

Chem. C 114, 15094–15101 (2010)
Pearson, J.M., Stolka, M.: Poly(N-vinylcarbazole). Gordon and Breach, Science Publishers, New York

(1981)
Prod’homme, L.: Phys. Chem. Glasses 4, 119–122 (1960)
Sicot, L., Fiorini, C., Lorin, A., Raimond, P., Sentein, C., Nunzi, J.M.: Sol. Energy Mater. Sol. Cells 63,

49–60 (2000)

392 Page 8 of 8 J. Jaglarz et al.

123


	Thermo-optical properties of conducted polythiophene polymer films used in electroluminescent devices
	Abstract
	Introduction
	Experimental details
	Conclusion
	Open Access
	References




