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Abstract This paper is devoted to the problem of the WKB method inaccuracy. By

comparing the WKB with a reference finite-element numerical method we show the

magnitude of the WKB solution error. Moreover, we show in the paper what kind of

simplifications made in the WKB analytical approximation led to its inaccuracy.
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1 Introduction

In recent years one observes a revival of interest in multimode fibers. There are several key

domains in which they are an interesting alternative to their single mode counterparts.

These are short-range applications like: optical data interconnects (Hoffmann et al. 2011;

Bigot et al. 2015), local area networks (Guillory et al. 2013) and specific radio-over-fiber

designs (Maksymiuk et al. 2014). Furthermore, the fiber manufacture process has become

so precise nowadays that it is technically possible to design a fiber exhibiting equal mode

delays of all propagating modes. However, due to the so called profile dispersion, this is

possible only in a very narrow wavelength range. In addition, several studies indicate (Qiu

et al. 2013; Molin et al. 2011) that in fibers of the latest generation (like OM4) it is the

chromatic dispersion that becomes the dominating source of intersymbol interference, as

opposed to modal dispersion, which was regarded as the dominating distortion source for

many years.
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Consequently, precise numerical studies are required in order to find optimal solutions

for multimode fibers future designs in terms of minimizing modal dispersion but also in

terms of fighting chromatic dispersion influence. Regardless of the particular goal, precise

numerical modeling of multimode fibers requires precise input data, i.e. mode delays.

Among different mathematical methods used for obtaining mode delays, the WKB

(Wentzel–Kramer–Brillouin) is one of the most popular. Although the method was pro-

posed a long time ago (Gloge and Marcatili 1973; Olshansky and Keck 1976) it is still cited

and referred to by many modern books and papers in its canonical form (Matthijsse et al.

2005; Kaminov et al. 2013). The reason for such a long-lasting popularity is primarily the

elegant simplicity of the closed form approximation to the WKB proposed by Gloge and

Marcatili (1973), the ease of analytical solutions of mode delays and straightforward

calculations of the optimal profile at particular wavelength. Unfortunately, although the

analytical simplifications used in WKB derivation of fiber group delays seem very minor,

we have found that they lead to an unacceptable inaccuracy of the method. In particular,

when resolving the problem of the maximal bandwidth of the fiber versus wavelength, the

inaccuracy of the WKB method may lead to an error of about 100–150 nm. The latter

means the real optimum wavelength optimizing the bandwidth is detuned by tens of nm to

that calculated with the use of WKB.

In this paper, we show that the key factor which leads to high inaccuracy of WKB is the

negligence of the refractive index profile (parameter) shape change with respect to the

wavelength. To prove this, we compare WKB method with the finite element method

(FEM) mode solver, where we artificially introduced the same simplifications as in the

WKB.

2 Theoretical background

The WKB method resolves to the well-known approximation proposed by Gloge and

Marcatili (1973). The graded index multimode fibers have refractive index profile given

by:
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where a is the fiber core radius, a is the profile shape parameter and D refers to the

refractive index contrast

D ¼ NA2

2n2core
¼

n2core � n2cladding

2n2core
: ð2Þ

The propagation constants of modes are given by the following equation:

bn ¼ ncorek
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where k stands for the wave number, l is the mode number and NðaÞ is the total number of

modes given by:

NðaÞ ¼ a
aþ 2

a2k2n2coreD: ð4Þ

The relationship for the lth mode time delay is given by the following expression (Gloge

and Marcatili 1973; Olshansky and Keck 1976):
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where c is a speed of light in vacuum and � is the so called profile dispersion parameter

described with the following equation:
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Fig. 2 Mode delays versus mode group number derived with the use of WKB and FEM methods—profile
dispersion neglected, wavelength 850 nm
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� ¼ �2ncore � k
NcoreD

dD
dk

: ð6Þ

The profile dispersion is in fact caused by the material dispersion and results in changes of

the refractive index profile with wavelength. By zeroing � in the Eq. (5) we may neglect

the profile dispersion in the WKB. In Eqs. (5) and (6) Ncore is the group index of the

material in the core center:

Ncore ¼ ncore � k
dncore

dk
: ð7Þ

The profile dispersion parameter gives information about the optimal a profile that leads to

the minimal pulse spread at a particular wavelength. By assuming that all the modes have

equal powers, optimal a is given by (Olshansky and Keck 1976):

ac ¼ 2þ �� D
ð4þ �Þð3þ �Þ

ð5þ 2�Þ : ð8Þ

In fact, in all the Eqs. (1)–(5) the refractive index n depends on the wavelength of light. For

the calculation of the wavelength dependent refractive index we apply the three term

Sellmeier equation (Matthijsse et al. 2005):

n2 � 1 ¼
X

3

i¼1

aik
2

k2 � k2i
: ð9Þ

By assuming that the fiber is pure silica glass (SiO2) doped only with Ge, we may use the

fallowing relations for the Sellmeier coefficients (Matthijsse et al. 2005):

aiðXGeÞ ¼ a0i þ XGedaGei ð10Þ

kiðXGeÞ ¼ k0i þ XGedkGei ð11Þ

In Eqs. (10) and (11) X stands for the mole fraction ofGewhich shapes the desired refractive

index profile. In the forthcoming calculations we used the Sellmeier coefficients a0i , da
Ge
i , k0i ,

dkGei from (Butov andGolant 2002). In this paper we compare results obtainedwith the use of

the WKB method with the finite-element method (FEM) used as a reference. The detailed

description of the latter methodwas provided by Lenahan in (1983). For the sake of this paper

we shall only call the equation (48) from (Lenahan 1983) describing mode delays:

s ¼
X

L

l¼1

n2ðrlÞ � k2
dn2ðrlÞ
dk2

� �

g2l
cne

; ð12Þ

where ne is the effective mode refractive index and g is the vector of the mode radial field

calculated numerically. The second term in the bracket is responsible for the profile dis-

persion, and neglecting it is like neglecting � in case of the WKB method.

3 Results and discussion

In the series of numerical calculations presented in this paper we assumed the fiber to be a

graded index pure silica glass fiber. The core refractive index was standard 50lm and
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numerical aperture NA ¼ 0:2. The dopant responsible for the profile of refraction shaping

was exclusively Germanium. We used Sellmeier coefficients presented in (Butov and

Golant 2002). The Germanium profile was derived to obtain the parameter 1.998 at 1 lm
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Fig. 3 Mode delays versus mode group number with respect to wavelength derived with the use of WKB,
FEM and simplified FEM neglecting changes of a profile parameter; plots from top to bottom correspond to
cases at 850, 1000 and 1300 nm wavelengths, respectively
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wavelength. The plot of the parameter versus the wavelength obtained with the use of the

Sellmeier equation is presented in Fig. 1 together with the the optimum parameter cal-

culated with the use of Eq. (8) the WKB method.

When we have compared the results obtained with the WKB and FEM with the profile

dispersion neglected, we observed fairly good agreement between those two methods (see

Fig. 2), except for the non-degenerate group delays for modes of higher order calculated

with the FEM method, which contrary to the WKB takes the cladding into account.

On the other hand, including profile dispersion in the calculations (in both WKB and

FEM) led to significant discrepancies between the mode delays calculated with these two

methods, as shown in Fig. 3 for 3 different wavelengths. In Fig. 3 we clearly see the

difference between the FEM (blue triangles) and the WKB (black squares). To understand

the impact of this difference, let us analyze the 3dB bandwidth versus wavelength for these

two methods—see Fig. 4 (in the calculations all mode groups had the same power). We

can clearly see that the maximal bandwidth is detuned by 150 nm.

The difference is caused by the fact that the WKB approximation proposed by Gloge

and Marcatili neglects the changes of the profile shape (a parameter) with wavelength, as it

assumes only the changes of the D with respect to wavelength. To prove our deduction, we

have simplified the FEM in order to take into account only the changes of the D and not the

a. It was achieved by properly numerically calculating the term:

kðdn2=dk2ÞðrlÞ ð13Þ

in such a way that the profile of refraction contrast D changed at a different wavelength but

the a remained the same. The results achieved by the simplified FEM are depicted in Fig. 3

with red dots. Now we can clearly see that the modified FEM and WKB stay in a good

agreement.

4 Conclusions

In this paper we have shown that, although the WKB (i.e. Gloge and Marcatili approxi-

mation of WKB) method is elegantly simplistic, it introduces significant inaccuracy in the

calculations of mode delays. The latter leads to a significant inaccuracy in deriving the
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wavelength dependent bandwidth characteristics (150 nm shift obtained in our calcula-

tions!) or any other calculations requiring precise values of mode delays. The error of the

method results from neglecting the changes of the refractive index profile shape (a profile)

with respect to wavelength, which was proven in this paper by means of numerical cal-

culations. Although the changes of the fibers profile are very minor versus wavelength,

they shall not be neglected. Obviously the simplification made by Glodge and Marcatili

was applied in order to obtain a simple closed form analytical solution of the WKB.

However, nowadays the advantage of using the simplified analytical solution is less

appealing, as we are in possession of powerful tools for deriving numerical calculations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
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