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Abstract We prove that any fat, subanalytic compact subset of R
N possesses

a nearly optimal (polynomial) admissible mesh. It is related to particular
results that have recently appeared in the literature for very special (globally
semianalytic) sets like N-dimensional polynomial or analytic graph domains or
polynomial and analytic polyhedrons. (Here a good source of references is the
recent paper (Piazzon and Vianello, East J Approx 16(4):389–398, 2010).) We
also show that an infinitely differentiable map f from a compact set Q in R

N

onto a Markov compact set K in C
l (l ≤ N) transforms a (weakly) admissible

mesh in Q onto a (weakly) admissible mesh in K, which extends a result of
Piazzon and Vianello (East J Approx 16(4):389–398, 2010) for analytic maps
in case Q is a subset of R

N . Versions for Ck maps with sufficiently large k are
also given.
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Let K be a compact subset of the N-dimensional complex space C
N . Let Pd =

Pd(C
N) be the set of all polynomials on C

N of degree at most d and let P =
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⋃∞
d=1 Pd. A family (A(d))∞d=1 of finite subsets A(d) of K is said to be a weakly

admissible mesh if the cardinality of A(d) grows polynomially when d → ∞,
i.e. #A(d) = O(dα), for some α > 0, and there exists a polynomially growing
sequence {C(d)} of positive constants such that for each d ∈ N and for all P ∈
Pd one has

‖P‖K ≤ C(A(d))‖P‖A(d). (1)

Here ‖h‖S stands for the uniform norm sup |h|(S). If moreover sup
d

C(A(d)) <

∞, then (A(d)) is said to be an admissible mesh. Suppose that K is P-
determining, i.e. for each P ∈ P, P = 0 on K forces P(z) ≡ 0. Then by the mul-
tivariate Langrange interpolation formula (see e.g. [13, 15]) there is a weakly
admissible mesh (A(d)) on K, where A(d) is a set {t1, . . . , tmd} of Fekete-
Leja type extremal points of K of order md := dim Pd = (N+d

N

) = O(dN). If K
is a Markov compact subset of C

N , i.e. a compact set that admits a Markov
inequality

‖∇ P‖K ≤ Mdr‖P‖K for all P ∈ Pd (2)

with positive constants M and r depending only on K, then following [3] one
can construct an admissible mesh (A(d)) on K with #A(d) = O(d2rN) (and
with O(drN) cardinality, if K ⊂ R

N ∼= R
N + i0 ⊂ C

N). Observe that r ≥ 1 if
K ⊂ C

N and r ≥ 2 for any compact set K ⊂ R
N (cf also Example 7) and for

computational reasons one would like to construct meshes with more modest
cardinalities. On the other hand, for any d ∈ N, A(d) must be Pd - determining,
whence #A(d) ≥ md. This leads to the notion of optimal polynomial meshes:
an admissible mesh (A(d)) is said to be optimal, if #A(d) = O(dN) as d → ∞.
If #A(d) = O((d ln d)N), it is called nearly optimal. The main purpose of this
note is to show that nearly optimal meshes can be constructed on fat, compact
subanalytic subsets of R

N that are known to admit Markov inequality (2) (see
[8]). Let us first recall some basic notions of subanalytic geometry that was
developed mainly by Łojasiewicz, Gabrielov and Hironaka.

A subset E of R
N is said to be semianalytic if for each point x ∈ R

N one can
find a neighbourhood U of x and a finite number of real analytic functions fij

and gij defined in U , such that

E ∩ U =
⋃

i

⋂

j

{ fij > 0, gij = 0}.

The projection of a semianalytic set need not be semianalytic (cf [2, 7]).
The class of sets obtained by enlarging that of semianalytic sets to include
images under the projections has been called the class of subanalytic sets.
More precisely, a subset E of R

N is said to be subanalytic if for each point
x ∈ R

N there exists an open neighbourhood U of x such that E ∩ U is the
projection of a bounded semianalytic set A in R

N+M, where M ≥ 0. If N ≥ 3,
the class of subanalytic sets is essentially larger than that of semianalytic sets,
the classes being identical if N ≤ 2. The union of a locally finite family and the
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intersection of a finite family of semianalytic (resp. subanalytic) sets is semi-
analytic (resp. subanalytic). The closure, interior, boundary and complement
of a semianalytic (resp. subanalytic) set is still semianalytic (resp. subanalytic),
the last property in the case of subanalytic sets being a (non-trivial) theorem
of Gabrielov. For an excellent survey on subanalytic geometry, the reader is
referred to [2]. In particular, one can find there an elegant proof of a crucial
for this theory Hironaka Rectilinearization Theorem which (in a scalar space
version) reads as follows.

Theorem 1 Let E be a subanalytic subset of R
N. Let K be a compact subset

of R
N. Then there are f initely many real analytic mappings ϕ j : R

N → R
N

such that:

(1) There is a compact subset K j of R
N, for each j, such that

⋃
j ϕ j(K j) is a

neighbourhood of K in R
N.

(2) ϕ−1
j (E) is a union of quadrants in R

N.

With the aid of the above theorem one can prove (see [8]) the following

Theorem 2 Let E be a bounded, subanalytic subset of R
N of pure dimension

N. Then there are f initely many real analytic maps f j : R
N → R

N such that for
each j,

f j(JN) ⊂ E and
⋃

j

f j(IN) = E,

where JN := {x ∈ R
N : |xi| < 1, i = 1, . . . , N}, and IN := {x ∈ R

N : |xi| ≤
1, i = 1, . . . , N}.

Subanalytic geometry methods have appeared very useful in polynomial
approximation, since they provide tools for investigating regularity of the
pluricomplex Green’s function (see e.g. [8, 9, 12, 13]). As an example, we refer
the reader to an important application of Hironaka’s theorem (in version of
Theorem 2) which is the following

Corollary 3 [8] If K is a fat (i.e. K ⊂ int K) compact subanalytic subset of R
N,

then it admits Markov’s inequality (2).

Actually, in [8], it has been shown essentially more, namely that the set K
of the above corollary is UPC, i.e. it is uniformly polynomially cuspidal and
consequently, its pluricomplex Green function is Hölder continuous in C

N .
We shall need a multidimensional version of the well-known Bernstein-

Walsh theorem which is due to Siciak [15].
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Theorem 4 Let K be a compact subset of the space C
N. Assume that K is

polynomially convex, i.e. K = K̂ := {z ∈ C
N : |p(z)| ≤ ‖p‖K for all p ∈ P}. If

f is a holomorphic function in an open neighbourhood of K then

lim sup
n→∞

n
√

distK( f, Pn) < 1.

One can also easily prove the following

Lemma 5 (cf [13]) If K is a Markov compact set in C
N then for every polyno-

mial P ∈ Pd (d = 1, 2 . . . ),

|P(z)| ≤ eN‖P‖K if dist(z, K) ≤ 1

Mdr
, (3)

where M and r are the constants of inequality (2).

Now we can state the main result of this paper.

Theorem 6 Let K be a fat, compact subanalytic subset of R
N. Then one can

construct an admissible mesh (A(d)) on K such that #A(d) = O((d ln d)N) as
d → ∞.

Proof Let

f j = ( f j,1, . . . , f j,N) : R
N → R

N ( j = 1, . . . , m)

be real analytic functions of Theorem 2 for E = K. Let P ∈ Pd. Choose a
point w ∈ K such that |P(w)| = ‖P‖K. Then there is j ∈ {1, . . . , m} such that
w ∈ f j(I). Now choose x ∈ I such that w = f j(x). Since any compact set in
R

N is polynomially convex, by Theorem 4 there exist polynomials Pn,k ∈ Pn,
n = 1, 2, . . . , and constants L > 0 and a ∈ (0, 1) independent of n such that

‖ f j,k − Pn,k‖ ≤ Lan =: εn (4)

for k = 1, . . . , N. Set Pn = (Pn,1, . . . , Pn,N). Let wn = Pn(x). Then ‖w −
wn‖ = ‖ f j(x) − Pn(x)‖ ≤ √

Nεn. Let (A(d))∞d=1 be an optimal admissible mesh
in the cube I. (It is well-known that such meshes exist; e.g. one can take the
Cartesian product of a one dimensional mesh Y(d) on [−1,1] with #Y(d) =
O(d), constructed in [4], chap. 3, sec.7, Lemma 3.) By the mean value theorem,
Lemma 5 and Markov’s inequality (2), we have

|P(w) − P(wn)| ≤ ‖∇ P‖[w,wn]‖w − wn‖ ≤ NeN Mdr‖P‖Kεn,

provided
√

Nεn ≤ 1
Mdr . Hence, setting ϕ(d, n) := NeN Mdrεn gives

‖P‖K = |P(w)| ≤ |P(w) − P(wn)| + |P(wn)|
≤ ϕ(d, n)‖P‖K + C‖P‖Pn(A(dn)) (5)
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with C = C(A(d)) ≥ 1, as
√

Nεn ≤ 1/Mdr. By a similar way, we shall now
estimate ‖P‖Pn(A(dn)). Let z ∈ Pn(A(dn)) be such that |P(z)| = ‖P‖Pn(A(dn)).
Choose y ∈ A(dn) so that Pn(y) = z. We have

|P(z)| ≤ |P(Pn(y)) − P( f j(y))| + |P( f j(y))|
≤ ϕ(d, n)‖P‖K + C‖P‖ f j(A(dn)).

Hence by (5),

‖P‖K ≤ ϕ(d, n)‖P‖K + Cϕ(d, n)‖P‖K + C2‖P‖A′(dn),

where A′(dn) :=
m⋃

j=1
f j(A(dn)), provided

√
Nεn ≤ 1/Mdr. Now, it is easily

seen that there is a sequence n(d) = O(ln d) of positive integers such that
ϕ(d, n(d)) ≤ C

4 and
√

Nεn ≤ 1/Mdr. Then

‖P‖K ≤ 2C2‖P‖A′(dn(d)).

One also verifies that #A′(dn(d)) = O((d ln d)N). ��

In general, Theorem 6 gives better estimates of the cardinality of accessible
meshes in subanalytic sets than those yielded by [3, Theorem 5]. This is seen
by the following

Example 7 Consider the set

K = {
x = (x1, x2) ∈ R

2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ g(x1)
}
,

where g is an analytic function in an open neighbourhood of [0,1] such that
0 < g(x1) ≤ xp

1 for some p ∈ N. Then K is a semianalytic set, whence by
Corollary 3 it is Markov. Its Markov exponent r has to be greater than M p

ln p
for p sufficiently large, which can be easily seen by considering the polynomials
P(x1, x2) = x2(1 − x1)

p. (Actually, if g(x1) = xp
1 , then by Goetgheluck [5] r =

2p.) Thus Markov’s exponent of K could be as large as we want. By Theorem
6 one can construct an admissible mesh (A(d)) in K with #A(d) = O((d ln d)2),
as d → ∞, while by [3, Theorem 5] we know only that there exists an
admissible mesh (A(d)) in K with #A(d) = O(d2r).

The idea of applying Markov’s inequality and the mean value theorem to
constructing admissible meshes goes back to Cheney and it has been described
in his monograph [4] in the case of univariate polynomial approximation. In the
proof of the above theorem we also exploit the possibility of rapid (geometric)
approximation of analytic maps by polynomials. Such a method has also been
used by the authors of the recent interesting paper [10], where they prove the
following

Theorem 8 Let K be a Markov compact subset of C
N and let Q be a P-

determining compact set in C
N such that K = f (Q), where f is an analytic map

in an open neighbourhood of the polynomial hull Q̂ of Q. Let (A(d)) be a
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(weakly) admissible mesh for Q. Then there exists a sequence j(d) = O(ln d) of
natural numbers such that (A′(d)) := (( f (A(dj(d)))) is a (weakly) admissible
mesh for K with C(A′(d)) � C(A(dj(d))) and #A′(d) ≤ #A(dj(d)).

Observe that in the above theorem we are able to let f have values in the
space C

l with l ≤ N. Let us also note that we cannot directly apply Theorem
8 in the proof of Theorem 6, since we do not know whether the sets f j(I) are
Markov. We only know, by [1], that this is the case if det[ f ′

j(x)] �= 0 at every
point x ∈ I.

Remark 9 In a recent paper [6], Kroó constructs admissible meshes in graph
domains in R

N that are sets of the type

Kg := {(x1, . . . , xN) ∈ R
N : fk(x1, . . . , xk−1) ≤ xk ≤ gk(x1, . . . , xk−1),

(x1, . . . , xk−1) ∈ Ik−1, 1 ≤ k ≤ N},
where Ik = [0, 1]k, 1 ≤ k ≤ N, f1 ≡ 0, g1 ≡ 1 and 0 ≤ fk(x) ≤ gk(x) ≤ 1, x ∈
Ik−1, 2 ≤ k ≤ N. (Such domains are also called “normal domains” in textbooks
on multiple integrals.) He shows (Proposition 1) that in case the functions
fk and gk are algebraic polynomials the domain Kg possesses an optimal
polynomial mesh. Actually, it immediately follows from the fact that any graph
set Kg is simply the image of the cube [0, 1]N by the map

F(t1, . . . , tN) := (t1, (1 − t2) f2(t1) + t2g2(t1), . . . ,

(1 − tN) fN(t1, . . . , tN−1) + tNgN(t1, . . . , tN−1)).

Indeed, if (A(d)) is an optimal mesh in IN and F = (F1, . . . , FN) : R
N → R

N

is a polynomial map of degree s = max1≤k≤N deg Fk, then for any polynomial P
in R

N of degree d one has

‖P‖F(IN) = ‖P ◦ F‖IN ≤ C‖P ◦ F‖A(sd) ≤ C‖P‖F(A(sd))

with #F(A(sd)) ≤ #A(sd) ≤ MsNdN. The same holds true if K is a finite union
of the images F j(IN) of the unit cube IN by polynomial maps F j : R

N → R
N ,

in particular if K is a polytope.
If the functions fk and gk are traces on Ik−1 of real analytic functions

then the corresponding graph domain Kg is clearly a (global) semiana-
lytic set. Then by Theorem 6 one can construct in Kg an admissible mesh
(A(d)) with #A(d) = O((d ln d)N) which is better than the estimate #A(d) =
O(dN lnN(N−1) d) yielded in such a case by [6, Theorem 1]. Let us add that in the
analytic case the cardinality result #A′(d) = O((d ln d)N) for Kg also follows
from Corollary 3 and Theorem 7.

Other typical sets fulfilling the assumptions of Theorem 6 are analytic
polyhedrons, i.e. compact subsets K of a domain � in R

N of the type

K := {x ∈ � : |h j(x)| ≤ 1, j = 1, . . . , m},
where h j are real analytic functions in �.
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Now we are going to show that in case Q is a subset of R
N Theorem 8 is also

valid for C∞ maps and even for Ck maps with sufficiently large k depending
on Markov’s exponent r of inequality (2) and the growth of the sequence
{C(A(d))}.

Theorem 10 Let Q be a compact set in R
N and let f = ( f1, . . . , fl) be a map

def ined on Q, with values in C
l (l ≤ N), whose components f j are traces of

C∞-functions on R
N. Suppose that the set K = f (Q) is Markov. Let (A(d)) be

a (weakly) admissible mesh in Q. Then there is a positive integer m such that
( f (A(md2))) is a (weakly) admissible mesh in K.

Proof By the multivariate Jackson theorem (applied to a cube I ⊃ Q in
R

N), one can find polynomials P j,n ∈ Pn such that the sequence ε j,n := ‖ f j −
P j,n‖Q is rapidly decreasing, i.e. for each k > 0, nkε j,n → 0 as n → ∞ for
j = 1, . . . , l (see [13, 16]). Let Pn = (P1,n, . . . , Pl,n) and εn = max

j
ε j,n. We have

‖ f − Pn‖Q ≤ √
lεn. Take a polynomial W ∈ Pd(C

l) and choose w ∈ K = f (Q)

so that |W(w)| = ‖W‖K. Then, by a similar argument to that of the proof of
Theorem 6 (cf also the proof of Theorem 7 in [10]) we arrive at the estimate

‖W‖K ≤ ψ(d, n)‖W‖K + C(A(dn))ψ(d, n)‖W‖K

+ C(A(dn))‖W‖ f (A(dn))

with ψ(d, n) := Mleldrεn, provided
√

lεn ≤ 1/Mdr. Observe that for each k > 0
we have

ψ(d, n) = Const.nkεn
dr

nk
≤ Const. sup

n
(nkεn)

dr

nk
= C(k)

dr

nk
.

Consider now two cases.

1◦ C := sup
d

C(A(d)) < ∞, that is the mesh (A(d)) is admissible. We may

assume that C ≥ 1. Then, setting k = [r] + 1, where [r] denotes the entire
part of r, one can find a positive integer m such that Cψ(d, md) ≤ 1

4 and
εmd ≤ 1/Mdr. Consequently,

‖W‖K ≤ 2C‖W‖ f (A(md2),

and if #A(d) = O(dα) for some α > 0, we get # f (A(md2) = O(d2α). Thus
( f (A(md2))) is an admissible mesh in K.

2◦ Suppose C(A(d)) = O(dβ) for some β > 0. Then again, setting k = [β +
r] + 1, we can find a positive integer m′ such that C(A(m′d2))ψ(d, m′d) ≤
1
4 and εmd ≤ 1/Mdr. This yields the inequality

‖W‖K ≤ 2C(A(m′d2))‖W‖ f (a(m′d2)).
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Moreover, if #A(d) = O(dγ ) for some γ > 0, then # f (A(m′d2)) = O(d2γ ).
This means that the mesh ( f (A(m′d2))) is weakly admissible. ��

Remark 11 By a version of the multivariate Jackson theorem in [16], if a map
f = ( f1, . . . , fl) defined on Q extends to a Ck+1 map from R

N to C
l, then for

each j ∈ {1, . . . , l},

sup
n

nkεn ≤ C(k)
∑

|α|≤k+1

‖Dα f j‖I ≤ D(k, f ),

where I is a compact cube in R
N containing the set Q. Then, if the mesh (A(d))

is admissible, Theorem 10 holds if f is a C[r]+2 map, and if C(A(d)) = O(dβ)

(β > 0), then Theorem 10 is valid for any C[β+r]+2 map f .

Remark 12 By a non-trivial result of [11], bounded, fat and definable sets in
some polynomially bounded o-minimal structures generated by special classes
of C∞ functions in R

N are uniformly polynomially cuspidal, whence by [8] they
are Markov. This is e.g. the case of the Rolin-Speissegger-Wilkie structure (cf
[14]) generated by the Denjoy-Carleman classes of quasianalytic functions with
partial derivatives tempered by a strongly logarithmically convex sequence
{Mp}. In [11], Pierzchała has proved a version of Theorem 2 for such a
structure. Thus it should be possible to extend Theorem 6 to the case of
definable sets in the Rolin-Speissegger-Wilkie o-minimal structure.

Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the
original author(s) and the source are credited.
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