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Abstract Nonlinear least squares optimization problems in which the parame-
ters can be partitioned into two sets such that optimal estimates of parameters
in one set are easy to solve for given fixed values of the parameters in the other
set are common in practice. Particularly ubiquitous are data fitting problems in
which the model function is a linear combination of nonlinear functions, which
may be addressed with the variable projection algorithm due to Golub and
Pereyra. In this paper we review variable projection, with special emphasis
on its application to matrix data. The generalization of the algorithm to
separable problems in which the linear coefficients of the nonlinear functions
are subject to constraints is also discussed. Variable projection has been
instrumental for model-based data analysis in multi-way spectroscopy, time-
resolved microscopy and gas or liquid chromatography mass spectrometry, and
we give an overview of applications in these domains, illustrated by brief case
studies.
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1 Introduction

An unconstrained nonlinear optimization problem

min
x∈Rn

γ (x) (1)

is separable if the variables x ∈ R
n can be partitioned into x = (a, z) with a ∈

R
p, z ∈ R

q, p + q = n such that the sub-problem

min
a∈Rp

γ (a, z) (2)

is easy to solve for fixed z. In other words, separable optimization problems
are those in which it is possible to partition variables x into two sets a and z
such that the variables a can be determined as a function of the variables z,
written a(z), in a way that is not too difficult to compute (in a sense that will be
defined momentarily). A separable optimization problem can be formulated in
the reduced space of z alone, as

min
z∈Rq

γ (a(z), z) (3)

although every evaluation of the objective function requires computation
of a(z). What is meant by easy to solve or not too difficult to compute is
simply that solving the separated Problem (3) is in some sense preferable in
comparison to solving the unseparated Problem (1), e.g., in terms of execution
time, conditioning, or ease of use, since starting values for the parameters
a are not required. See, e.g., [36, 38] for further introduction to separable
optimization problems.

A common separable optimization problem is the task of fitting a linear
combination of ncomp nonlinear functions to observations under least squares
criteria, that is,

min
z∈Rq

∥
∥
∥
∥
∥
ψ −

ncomp
∑

i=1

ci(z)a[i]
∥
∥
∥
∥
∥

2

(4)

where ψ is an m−vector of observations, ci is a nonlinear function of z that
outputs an m−vector, a[i] ∈ a for i = 1, 2, . . . , ncomp, and ‖ . ‖ is, as throughout,
the 2-norm. This problem can be written in matrix notation as

min
z∈Rq

‖ ψ − C(z)a ‖2 (5)

where column i of C corresponds to ci(z).
Golub and Pereyra [10, 11] developed an algorithm for Problem (5) termed

variable projection, which eliminates the linear parameters a analytically from
the problem, and assumes, as we do throughout, that the objective function
is twice differentiable. Variable projection has been applied to the solution of
instances of Problem (5), termed separable nonlinear least squares problems,
in a wide variety of applications, as [12] review. Lukeman [24] traces the history
of developments of algorithms for Problem (5), and describes the connection
to solving systems of ncomp nonlinear equations written as C(z)a + ψ = 0.
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Golub and LeVeque [9] provide an extension of the algorithm to problems
in which the same nonlinear functions are used to describe each column of
matrix data � but the conditionally linear parameters a vary per-column, so
that the associated optimization problem is

min
z∈Rq

‖ � − C(z)ET ‖2 (6)

where � is m × n, with column j storing ψ j, and E is n × ncomp, with row j
storing a j = a j[1], a j[2], . . . , a j[ncomp]. Golub and LeVeque [9] and Gay and
Kaufman [6] refer to Problem (6) as a separable nonlinear least squares
problem with multiple right-hand sides. In the time-resolved spectroscopy and
microscopy literature (e.g., [3]), Problem (6) is termed the problem of global
analysis, referring to the assumption that the same nonlinear functions underlie
each column of matrix data.

The statistical model associated with Problems (5) and (6) can be written
(per-column j in the case of Problem (6)) as

ψ j = C j(z)a j + ε (7)

where each element of the noise vector ε represents an independent and iden-
tically distributed Gaussian random variable with expectation 0 and constant
variance (NI D(0, σ 2)). When matrix data is considered, the function C j may
be different for each j. Furthermore, � in Eq. 6 may be a ragged matrix [4],
meaning that the vectors ψi and ψ j with i �= j may each represent a different
number of observations, which possibly arise under different experimental
conditions. The connection between observations ψ j for j = 1, 2, . . . , n is via
the vector of nonlinear parameters z. A given function C j may depend on
some or all of the parameters in z. In applications it is common that the
observations take the form of vectors ψ j1 , ψ j2, . . . , ψ jK with j representing an
independent variable (like a wavelength, or a location) measured many times
under different conditions, indexed 1, 2, . . . , K. An assumption that is often
physically motivated is that the same vector of conditionally linear parameters
a underlies ψ j1 , ψ j2, . . . , ψ jK (as in Eq. 14). We will discuss these situations
in turn.

A single residual function representing the sum of squared errors that result
from using Eq. 7 to model a collection of vectors ψ j is formed and minimized
under the variants of variable projection discussed in Section 2.1. The method-
ology presented there has allowed the extension of variable projection to
d-way datasets, with d > 2, and offers many possibilities for the synthesis of
data arising in different experiments via a unified model having a single vector
z of associated nonlinear parameters.

Here we focus on the use of variable projection for solving instances of
Problems (6) and variations thereof. Section 9 describes variable projection
in some detail, including implementation strategies, estimation of linear ap-
proximation standard errors, and modifications that allow for the inclusion of
constraints on the linear parameters. Applications in modeling time-resolved
spectroscopy (Section 3), microscopy (Section 4) and mass spectrometry
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(Section 5) data are also discussed. Variable projection has been instrumental
for model-based data analysis in these areas. The applications to microscopy
and mass spectrometry data have been newly developed in the years since the
review of [12].

2 Variable projection

Given fixed z and C(z) of full rank, the problem

min
a∈Rp

‖ ψ − C(z)a ‖2 (8)

is solved analytically as a = C(z)+ψ , where C(z)+ is the Moore-Penrose
pseudoinverse C(z)+ = (C(z)TC(z))−1C(z)T . The assumption that C(z) has
full rank is used throughout, though note that [11] also describe a variable
projection algorithm for the case that the columns of C(z) are not linearly
independent. Using a = C(z)+ψ , the objective function to minimize with
respect to z for Problem (5) is

f (z) = 1

2
‖ ψ − C(z)a ‖2

= 1

2
‖ (I − C(z)C(z)+)ψ ‖2

= 1

2
‖ Q2 QT

2 ψ ‖2 . (9)

where the QR decomposition of C(z) = QR = [Q1 Q2]R is used for numeri-
cal stability, so that Q1 is m × ncomp, Q2 is m × (m − ncomp), Q is orthogonal,

and R =
[

R11

0

]

, with R11 being ncomp × ncomp and upper triangular [13]. f (z)

is the variable projection functional, so named because I − C(z)C(z)+ is
the projector on the orthogonal complement of the column space of C(z).
Some computational efficiency may be gained by dropping the factor Q2, and
formulating f (z) as f (z) = 1

2 ‖ QT
2 ψ ‖2 [6].

Standard algorithms for nonlinear least squares problems, namely Gauss-
Newton and Levenberg-Marquardt, can be used to approach ẑ that minimize

f (z). However, these algorithms require the Jacobian matrix J = ∂r(z)

∂z
of

the residual vector r(z) = Q2 QT
2 ψ , (or, dropping the Q2 factor, r(z) = QT

2 ψ).
Two classes of approaches to obtain J may be distinguished: methods that
use a finite difference approximation, and methods that rely on an analytical
expression. Many widely applied implementations of nonlinear least squares
allow J to be determined by either approach, as in, e.g., the modification of
Levenberg-Marquardt found in MINPACK [26] or the Gauss-Newton method
employed by the R function nls [37].

If a finite difference approach is used to build up an approximation of J,
r(z) is repeatedly evaluated for different parameter vectors ž obtained by
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perturbing z by an amount h. Using a forward difference approximation, the
ith parameter in z is incremented by h, yielding ž, and the ith column of
J is determined as J[, i] = r(ž)−r(z)

h , requiring length(z) evaluations of r(ž) to
calculate an update of J. The associated computational expense is often more
than offset by the advantage of not having to derive and compute an analytic
expression for J. For example, in the applications described in Sections 3 and 4,
the method of determining C(z) is often at least partially numerical, and there
is no closed-form expression available for even C(z). In these applications
obtaining a closed-form expression for the three-dimensional tensor ∂C(z)

∂z
needed for the determination of J via an analytical expression is difficult at
best, and a finite difference approximation is always used. Minimization of the
variable projection functional f (z) with Levenberg-Marquardt using a finite
difference approximation of J was described by [23].

If an analytical expression for ∂C(z)

∂z is available, then the method suggested
by [11] may be used to determine J per-column i as

J[, i] = −
[(

C(z)C(z)+
∂C(z)

∂z[i] C(z)+
)

+
(

C(z)C(z)+
∂C(z)

∂z[i] C(z)+
)T

]

ψ

(10)

where we follow the presentation in [12]. Kaufman [19] suggested that this
expression for J could be well-approximated by only using the first term,
letting

J[, i] = −
(

C(z)C(z)+
∂C(z)

∂z[i] C(z)+
)

ψ, (11)

thereby introducing only a negligible loss in accuracy and a significant savings
in the number of computations required. The Kaufman approximation is
discussed in detail in [1, 6, 30].

Once J or an approximation of J has been determined, the standard
algorithms for nonlinear least squares calculate the gradient � of f (ẑ) as

� f (z) = JTr(z) (12)

and also calculate an approximation for the Hessian �2 f (z). � f (z) and �2 f (z)

allow determination of a direction and step size to move the current estimates
ẑ in z-space so that f (ẑ) is reduced. From the new parameter estimates, the
process of determining J and making a new step in z-space is iterated until
stopping criteria are met. The particulars of the standard algorithms are found
in e.g., [2, 40].

Several results justify and motivate the minimization of f (z) as opposed
to the unreduced objective function with parameters x = (z, a). Golub and
Pereyra [11] give a proof that the stationary points of f (z) are the same
as for the unseparated problem when the rank of C(z) is constant over
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z-space. Therefore given ẑ that determines either a local or global optimum
in f (z), we determine â = C(ẑ)+ψ , and arrive at estimates x̂ = (â, ẑ) that
define a local or global optimum in the objective function of the unsepa-
rated problem. Asymptotic convergence analysis under the Gauss-Newton
algorithm by [38] shows that variable projection has superlinear convergence
whereas methods that alternate between solving the linear and nonlinear
problems separately are only linearly convergent. This is because, as [44] show,
the separated problem is better-conditioned than the unseparated problem.
Obtaining a better-conditioned problem is indeed a primary motivation for
minimizing the variable projection functional as opposed to the objective
function for the unseparated problem. Krogh [20] provides simple examples
in which optimization of an unseparated nonlinear least squares problem
results in divergence whereas optimization of the separated problem results
in convergence in a small number of iterations. Osborne [35] points to the
extraordinary effectiveness of variable projection in least squares problems
involving fitting the parameters of a linear combination of real or complex
exponential functions, which are ubiquitous in applications and notoriously
difficult [16]. Golub and Pereyra [12] suggest that this success is due to the
fact that the unseparated exponential fitting problem becomes increasingly
ill-conditioned as (and if) the optimal parameters are converged upon, whereas
the variable projection functional does not suffer from this problem.

2.1 Implementation

Problem (6) can be reformulated as an instance of Problem (5) by letting
vec(�) = (In ⊗ C(z))vec(ET), where ⊗ is used to denote the Kronecker
product. Then variable projection as presented in Section 2 can be applied.
However, as [9] realized, this does not take advantage of the special structure
of Problem (6), and requires storing and operating on the matrix (In ⊗ C(z)),
which is large for large n. Golub and LeVeque [9] thus suggested forming the
residual vector associated with Problem (6) as

r(z) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

QT
2 �[, 1]

QT
2 �[, 2]

...

QT
2 �[, n]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(13)

from which f (z) and J can be determined without ever storing or operating on
(In ⊗ C(z)).

Mullen and van Stokkum [28] expand on the idea of determining r(z) in a
partitioned manner for the description of (ragged) matrix data per-column j
using Eq. 7. In the applications they consider, C j(z) varies per-column j, and
the residual vector may be determined as in Eq. 13, but QT

2 must be calculated
for each matrix C j(z) in j = 1, 2, . . . , n. They also observe that in practice in the
physical sciences, observations often take the form of vectors ψ j1 , ψ j2, . . . , ψ jK
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with j representing an independent variable (like a wavelength, or a location)
measured many times under different conditions indexed 1, 2, . . . , K. Then the
assumption that the same vector of conditionally linear parameters a underlies
ψ j1 , ψ j2 , . . . , ψ jK , is possible to account for by letting

ψ j =

⎡

⎢
⎢
⎢
⎣

ψ j1
ψ j2
...

ψ jK

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

C j1(z)

C j2(z)
...

C jK (z)

⎤

⎥
⎥
⎥
⎦

a j = C j(z)a j (14)

where the second subscript on ψ and C is the dataset index. The residual vector
associated with using Eq. 14 to model the columns j = 1, 2, . . . , n of (ragged)
matrix data is also determined as in Eq. 13 with the modification that QT

2 is
re-calculated for each matrix C j(z).

2.2 Standard error estimation

The matrix of first derivatives of the model function with respect to both the
nonlinear parameters z and the conditional parameters a j is

Jm =
[

∂C j(z)a j

∂x

]

=
[

∂C j(z)

∂z
a j C j(z)

]

(15)

Under the assumption that the noise vector ε added to the model ψ j = C j(z)a j

is such that every element εi is NI D(0, σ 2), the covariance matrix associated
with both z and a is

cov

[

z
a j

]

= σ̂ 2
(

JT
m Jm

)−1
(16)

where σ̂ 2 = RSS(x̂)/df , RSS is the residual sum of squares and the degrees of
freedom df = (

∑n
j=1 length(ψ j)) − length(z) − (

∑n
j=1 length(a j))[40].

After writing the residual function as outlined in Section 2.1 and using a
standard non-linear least squares implementation to minimize the sum squares
of the residual vector with respect to z, cov(ẑ) is often returned along with ẑ,
whereas cov(a j) must be determined. Using

JT
m Jm =

⎡

⎢
⎢
⎣

(
∂C j(z)

∂z
a j

)T
∂C j(z)

∂z
a j

(
∂C j(z)

∂z
a j

)T

C j(z)

CT
j (z)

∂C j(z)

∂z
a j C j(z)TC j(z)

⎤

⎥
⎥
⎦

≡
[

A11 A12

A21 A22

]

(17)

we have, from the block matrix inversion theorem found in e.g., [40],
Appendix A,

(

JT
m Jm

)−1 =
[

X−1
11 X−1

11 X12

−X21 X−1
11 A−1

22 + X21 X−1
11 X12

]

(18)
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where X11 = A11 − A12 A−1
22 A21, X12 = A12 A−1

22 , and X21 = A−1
22 A21. Then

σ 2 X−1
11 = cov(ẑ) and we are interested in determining the bottom right block.

Since A−1
22 = (C j(z)TC j(z))−1, we have

X21 = A−1
22 A21 (19)

= (C j(z)TC j(z))−1CT
j (z)

∂C j(z)

∂z
a j (20)

= C j(z)+
∂C j(z)

∂z
a j ≡ G j (21)

and X12 = A12 A−1
22 ≡ GT

j , where Gj consists of columns C+
j

dC j

dzi
a j, for each

nonlinear parameter zi. Hence it is possible to write

cov(â j) = σ 2
(

C+
j C+T

j

)

+ G jcov(ẑ)GT
j . (22)

This expression allows determination of cov(â j) for all j = 1, 2, . . . , n with
modest memory resources even when n is large.

2.3 Modification for constraints on the conditionally linear parameters

It may be desirable to subject the linear parameters a and E in Problems (5)
and (6), respectively, to constraints. Consider the case that a is constrained to
non-negative values. Then Problem (8) is replaced with the non-negative least
squares (NNLS) problem

min
a∗∈Rp

‖ ψ − C(z)a∗ ‖2

subject to 0 ≤ a∗
i for i = 1, 2, . . . , ncomp (23)

Problem (23) must be solved in place of a = C+(z)ψ in the expression for f (z),
e.g., with the algorithm by [22], so that Eq. 2 becomes

f (z) = 1

2
‖ ψ − C(z)a∗ ‖2 (24)

Non-negativity constraints on a arise when ψ represents count data. Then the
noise statistics are often best represented using the Poisson distribution, but for
high-count data may be well-approximated by additive NI D(0, σ 2) noise, so
that parameter estimation may proceed by minimization of f (z). When using
a finite difference method to obtain J, a variable projection algorithm that adds
non-negativity constraints to the conditionally linear parameters a is obtained
by using the definition of f (z) given in Eq. 24 in place of that given in Eq. 2
as [27] discusses. When using an analytical expression for J, an approximate
expression based on the Jacobian in the absence of constraints may be used, as
[43] discuss.

In the case that the constraints applied to a do not ensure non-negativity,
but rather some other property, the NNLS problem used to determine a∗ must
be replaced with the appropriate constrained optimization problem. The only
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restriction on the constraints applied is practical; the separated problem with
constraints on a or E should remain easier to solve than the equivalent unsepa-
rated problem. Sima and Van Huffel [42] have described the imposition of reg-
ularization constraints on a by replacing the least squares problem a = C(z)+ψ

in the variable projection functional with a = (C(z)TC(z) + mλB)−1C(z)Tψ ,
where the term mλB is used to impose a certain degree of smoothness on a.

2.3.1 Modification for equality constraints between conditionally
linear parameters

Equality constraints that set a j[g] to zero for component g, or set a j[g] =
a j[h] for components g and h are often incorporated to make the estimation
problem better determined or account for a priori knowledge of the system
underlying the observations. Such constraints are common in time-resolved
spectroscopy applications where a j[g] represents the spectrum of component
g at wavelength j. In the case of equality constraints that set a j[g] to zero, we
remove column C j[, g](z) and element a j[g] from the model ψ j = C j(z)a j. This
results in a model with fewer free conditionally linear parameters. We refer to
such equality constraints as zero constraints.

For the case of equality constraints that set a j[g] to be equal to a j[h],
possibly with a linear scaling factor αi, we let column C j[, h](z) be equal to
C j[, g](z) ∗ αi + C j[, h](z), and then remove column C j[, g](z) from the model
ψ j = C j(z)a j. This also results in a better determined model. Note that αi may
be optimized as a nonlinear parameter.

3 Spectroscopy applications

Variable projection is often used to fit the free parameters of models for
measurements of light, which can often be described as a linear superposition
of several non-linear functions. The algorithm was first used to estimate the
parameters of a model associated with measurements of light by [39], who
parametrize the decay of the luminosity of supernovae in time.

Measurements of light resolved with respect to wavelength or wavenumber
and one or more independent variables, such as time, are referred to as multi-
way spectroscopy data. Variable projection was first applied to multiway spec-
troscopy data by [9], who analyze time-resolved spectroscopy measurements
describing the photocycle of bacteriorhodopsin. Nagle et al. [33] also consider
data on bacteriorhodopsin, and were influential in spreading the use of variable
projection in the biophysics community. Part of the impact of this work can be
explained by the authors’ elaboration of the use of the nonlinear parameters z
to represent a compartmental model for the kinetics, a theme which is further
elaborated in Section 3.1. Nagle [31, 32], van Stokkum [46], Nagle et al. [34]
further elaborate on the utility of variable projection for describing multiway
spectroscopy data with emphasis on compartmental models for kinetics. The
utility of compartmental models for describing time-resolved spectroscopy
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data representative of complex systems is stressed by [3, 15]. van Stokkum
and Lozier [49] describe an in-depth case study in using variable projection
to fit a separable nonlinear model for 5-way spectroscopy data (resolved with
respect to wavelength, time, temperature, pH and polarization) representing
the photocycle of bacteriorhodopsin. van Stokkum et al. [48], van Stokkum
[45] review separable nonlinear models for the description of time-resolved
spectroscopy data, the free parameters of which are optimized with variable
projection.

Golub and Pereyra [12] discuss at length the application of variable projec-
tion to optimizing the parameters of models for Nuclear Magnetic Resonance
(NMR) spectroscopy data, which often take the form of a linear superposition
of complex damped exponentials. The algorithm has been important in this
application domain since the influential work of [56]. Note that while the model
describes complex data, the parameter estimation problem involves a residual
vector and nonlinear parameters in the real domain, as described in detail in
e.g., [43] who also describe an extension to variable projection to account for
non-negativity constraints on the linear coefficients, motivated by problems in
modeling NMR spectra.

Multi-way spectroscopy data of all varieties can be stored as a ragged matrix
�, where each column represents a value of a spectroscopic property, and
each row represents a value of some other independent variable. To fix ideas,
consider data resolved with respect to time and wavelength, which arises
in time-resolved spectroscopy experiments. The data often represents ncomp

components, each with a distinct time profile C[, j] and spectrum E[, j]. By
the matrix analogue of the Beer-Lambert law for absorption, C[, j] and E[, j]
often combine linearly, giving rise to the equation

� = CET (25)

where the m × ncomp matrix C and the n × ncomp matrix E represent the
data in time and wavelength, respectively. It is also often the case that a
parametric description of either C or E, but not both matrices, is available,
so that parameter estimation requires solution of an instance of Problem (6)
or generalizations thereof.

3.1 Example: Time-resolved fluorescence emission measurements
of photosystem I

In order to give an idea of the possibilities that variable projection has opened
up in the domain of modeling time-resolved spectroscopy data, we consider a
case study in brief. Photosystem I (PS-I) is one of two photosystems in oxygenic
photosynthesis, a process by which plants and green algae convert photons into
chemical energy. The PS-I core is a distinct functional unit of PS-I. Gobets
et al. [7] describe a system consisting of PS-I cores in a buffer excited by a
short laser pulse of femtosecond duration. Measurements of the fluorescence
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Fig. 1 Two possible compartmental models for a system represented by three components. In the
left model, the initial excitation populates all three components, which decay in parallel. In the right
model, the initial excitation populates the leftmost compartment, the decay of which populates the
middle compartment, and so on, so that the compartments are said to be arranged sequentially

of the system at many wavelengths and times after excitation are then collected
with a synchroscan streak camera in combination with a spectrograph, a
technique which [47, 51] review. The observations considered here represent
48 wavelengths equidistant in the interval 626–785 nanometer (nm), and 914
timepoints in the range 0-200 picosecond (ps) after laser excitation, stored
as a 914 × 48 matrix of data �. The goal of data analysis is to describe the
kinetics in terms of a model that parametrizes the formation and decay of each
distinct state of the underlying system, while solving for the spectra E as linear
coefficients.

In some systems, the exciting pulse results in the formation of all possible
states simultaneously, as in the left panel of Fig. 1. In other systems, a single
state may be formed initially, the decay of which results in the formation of
a second state, and so on, for all possible states of the system, as in the right
panel of Fig. 1. Alternatively, the states may be related in some other, arbi-
trarily complicated, way. Physical-chemical principles and ab-initio quantum
mechanical calculations typically suggest a few models for the way the possible
states are related and how long they persist, and selection of the model best
supported by the data and the underlying theory requires estimation of the free
parameters of the possible kinetic models, C(z), while the spectra are treated as
the linear coefficients ET in � = C(z)ET . Since a fluorescence spectrum E[, g]
represents a count of the relative number of emission photons contributed to
the data by component g at some set of wavelengths, negative values of the
spectra E are not interpretable, and thus these parameters are determined
using the NNLS method discussed in Section 2.3. The reason that the spectra
are not often described in terms of parametric model E(z) is that their fine
structure is difficult to represent via a function with a small number of free
parameters.

A linear compartmental model [8, 40, 48] is used to describe the relationship
between states like those shown graphically in Figs. 1 and 2. The behavior of
the compartmental model is given as a matrix C(z) in which the concentration
of a single compartment in time is represented by a column C[, g], with

C(z) = eK(z)t ⊕ j(t) (26)

where z are free parameters, K is a transfer matrix that encodes the allowable
transitions between components, and uses microscopic decay rate parameters
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k2 k3 k4 k5

k1b1
k1b4

k7b6

1

53 42

k1b2 k1b3

k6b5 k7

k6

Fig. 2 A compartmental model for the kinetics of PS-I core complexes. The decay rates of the
components are parametrized by ki. Where there is more than one allowable transition out of a
compartment, parameters bi are used to scale the decay rate ki associated with the compartment.
Here values of b1, b2, b 3, b 4 are fixed such that b1 + b2 + b3 + b4 = 1 and such that the spectra
estimated for compartments 2 – 5 have approximately equal area, which is a physically motivated
constraint

k ∈ z and scaling parameters b ∈ z to describe the rate at which a state is
formed and decays, and t is the vector of times that the rows of C(z) represent.
The vector j(t) represents the proportion of the system in each compartment
at the initial time point, multiplied by the instrument response function (IRF)
i(t). The operator ⊕ stands for convolution, and in the case that the IRF
is described as a Gaussian distribution or other simple function, it may be
performed analytically. Here the IRF is described as a Gaussian with a location
parameter that is a function of the wavelength, so that the matrix C(z) must be
determined per-wavelength as described in Section 2.1.

The compartmental model shown in Fig. 2 was tested as a possible descrip-
tion for the kinetics of time-resolved spectroscopy data representing PS-I cores
by fitting the free parameters of the model with variable projection. Where
there is more than one allowable transition out of a compartment, parameters
bi are used to scale the decay rate ki associated with the compartment. Here
values of b1, b2, b3, b4 are fixed such that b1 + b2 + b3 + b4 = 1 and such that
the spectra estimated for compartments 2–5 have approximately equal area,
which is expected from physical first principles. The parameters b5 and b6

describing the equilibrium between compartments 2 and 3 and compartments
3 and 4 are only possible to estimate by adding zero constraints (as described
in Section 2.3.1) to some of the values in the matrix of spectra E. Here zero
constraints are applied to all wavelengths of the spectrum for compartment 1,
so that it is never emissive, to wavelengths of the spectrum of compartment
2 up to 690 nm, and to wavelengths of the spectrum of compartment 3 up to
697 nm.

The concentration profiles C(z) and spectra E that result from application
of this model are shown in Fig. 3. Standard error estimates are shown on
the spectra shown in Fig. 3 as vertical bars, and are small. In order to judge
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Fig. 3 The concentration
profiles C(z) (upper panel)
and spectra E (lower panel)
that result from using the
compartmental model shown
in Fig. 2 to describe the
kinetics of PS-I core
complexes. The legend shown
in the upper panel applies to
the spectra as well. The
concentration profile and
spectrum of compartment 1 is
not shown, since it is
non-emissive. Standard error
estimates are shown on the
spectra as vertical bars, and
are so small as to be barely
visible
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the quality of the fit, traces such as those in Fig. 4 can be inspected, and the
singular value decomposition of the residual matrix can be checked for evi-
dence of systematic structure. The fit of the model described here was deemed
satisfactory. The implementation of variable projection used is from the R
package TIMP [28], and a script to reproduce these results is included on the
webpage of the package [29].
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represents time in picoseconds. The model is shown in black. Free parameters were fit using
variable projection
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4 Microscopy applications

Applications of variable projection to modeling time-resolved microscopy data
have been developed since the review of applications of the algorithm by
[12], and are becoming increasingly important as the technique of Fluorescent
Lifetime Imaging Microscopy (FLIM) matures. FLIM is widely applied to
detect interactions between fluorescently labeled biological molecules such as
proteins, lipids, DNA and RNA, and results in a count of photons detected
for many time points, at many spatial locations, often with 250 nanometer
spatial resolution and sub-nanosecond temporal resolution. In many FLIM
experiments, proteins of interest are genetically tagged with variants of the
green fluorescent protein [55].

FLIM experiments give rise to a global analysis problem when the same
ncomp kinetic processes may be assumed to underlie the fluorescent decay at all
locations. The decay of each kinetic process is exponential, but is complicated
by the fact that it must be convolved with the time profile of the IRF. The IRF
is often not described well by an analytical function with only a few parameters,
and it is often necessary to make a measurement of the IRF time profile, and
numerically convolve it with that of the exponential decay used to describe
each kinetic process. Thus data analysis requires solution of an instance of
Problem (6) where each kinetic process g is represented by a column of C(z)

C[, g] = e−kgt ⊕ i(t) (27)

where t is the vector of time points represented by the rows of C(z), kg ∈ z is
a parameter to be estimated, ⊕ indicates convolution and i(t) is the measured
time profile of the IRF. In many FLIM experiments, fluorescent dyes give rise
to the observed fluorescence, which is measured at the maximum emission
wavelength of the dye of interest, and can typically be described by two to
four kinetic processes. The amplitude that each kinetic process contributes to
the collected image at pixel j (that is, location j) is the row E[ j, ] that appears
in � = C(z)ET , where � is the time-resolved image. The goal of data analysis
is to estimate z and E.

Verveer et al. [57] recognized that variable projection could be applied to
global analysis problems arising in FLIM data analysis, but did not implement
the partitioned technique described in Section 2.1 and therefore were stymied
by the large memory resources required. Laptenok et al. [21] studied the utility
of variable projection for modeling FLIM data via a number of simulation
studies and a control study in estimating the parameters describing the decay
of Cyan Fluorescent Protein (CFP).

Note that FLIM data and fluorescence data in general represent a count
of the number of photons detected at a given pixel and time. Poisson noise
statistics often apply to such non-negative count data. For datasets in which the
counts are large, the assumption of NI D(0, σ 2) noise made by least squares
methods is acceptable. However, for datasets in which most counts are not
large, optimal estimates under least squares criteria do not well-approximate
the true underlying parameter values, an issue that has been studied by [25].
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This issue can be addressed to some extent by weighting each data point �[i, j]
by 1√

�[i, j] , but in order to obtain fully correct estimates it would be necessary

to develop an analogue of variable projection for the Poisson noise case.

4.1 Example: detection of protein–protein interactions

In this example we consider the simultaneous analysis of multiple FLIM
images. Each pixel j in each image 1, 2, . . . , K is modeled using Eq. 7. The
nonlinear parameters kg ∈ z used to describe the fluorescent decay are esti-
mated using all data included in the simultaneous analysis. To allow a physical
interpretation, the vectors a j1, a j2, . . . , a jK , describing the amplitudes of the
kinetic processes at pixel j in each dataset are constrained to non-negative
values by the NNLS method, and the fluorescence decay rate parameters
kg ∈ z are also constrained to non-negative values by a simple logarithmic
transformation (zg = log(kg)).

The experiments giving rise to the data involve two proteins known to
be homogeneously distributed in the cell nucleus. In one set of experiments,
the first protein is tagged with CFP. In the second set of experiments, the
first protein is tagged with CFP, and the second protein of interest is tagged
with yellow fluorescent protein (YFP). When intracellular dynamics bring the
proteins within 1–10 nm of each other, the CFP molecule transfers energy
to the YFP molecule. This results in an increase in the decay rate of CFP,
which can be observed. The general process in which excited-state energy of a
donor fluorophore, like CFP, is non-radiatively transferred to a ground-state
acceptor molecule, like YFP, is termed Förster Resonance Energy Transfer
(FRET). FRET as measured by FLIM is extensively used to detect protein–
protein interactions, as [52] review.

Since CFP acts as a donor in the CFP-YFP FRET pair, we can use the
FLIM set-up to measure only the wavelength at which CFP fluoresces, and
examine whether the decay rate of CFP increases in the experiment with CFP
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Fig. 5 Intensity images resulting from FLIM experiments that measure fluorescence from cells
at the wavelength at which CFP emission is maximum. Each pixel represents the sum of the data
at that pixel over the 206 time-points in the entire time-resolved FLIM dataset. The left plots
represent CFP tagged cells; the right plots represent cells tagged with both CFP and YFP. Only
pixels representing the cell nucleus are subject to analysis
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Fig. 6 Average decay rate
per pixel for the cells shown
in Fig. 5 after parameter
estimation via global analysis.
The higher decay rates in the
datasets at right indicate
protein–protein interactions

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

and YFP tags as compared to in the experiment with only CFP tags. Such a
decrease would be interpreted as evidence of FRET, which would imply that
the proteins are often expressed in close proximity.

For the analysis, we select those pixels that represent the nucleus. The two
CFP-only datasets whose intensity images are shown in Fig. 5 (left) are used
in a simultaneous analysis to estimate the associated decay rates. The two
CFP-YFP datasets shown in Fig. 5 (right) are analyzed together in the same
way. The decay of CFP is described by a bi-exponential decay in both pairs of
datasets.

The estimated decay rates for CFP in the first pair of datasets are k̂ =
{1.53, 0.34} whereas in the second pair of datasets these decay rates are
estimated to be k̂ = {2.13, 0.44}. The average decay rate for pixel j is given
as

< kg >=
∑ncomp

g=1 kga j[g]
∑ncomp

g=1 a j[g] (28)

Figure 6 shows the estimated average decay rate per-pixel for CFP in the CFP-
only datasets (left panels) and in the CFP-YFP datasets (right panels). Clearly,
the bi-exponential decay of CFP is significantly faster in the CFP-YFP datasets
as compared to in the CFP-only datasets. We conclude that there is evidence
of significant FRET, and that the two tagged proteins are often expressed
simultaneously in close proximity.

5 Mass spectrometry applications

The experimental techniques of gas chromatography mass spectrometry
(GC/MS) and liquid chromatography mass spectrometry (LC/MS) measure
the mass spectrum of a complex sample as it elutes from a chromatography
column (see e.g., the book by [14] for a discussion of the experimental tech-
nique). The mass spectrum of a chemical compound acts as its fingerprint: it
allows the compound to be uniquely identified. The time a chemical compound
takes to pass through a liquid or gas chromotographer, in contrast, may not be
unique. Therefore, if more than one chemical compound elutes at the same
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time, the mass spectrum at those times represents a mixture of the pure mass
spectra of the underlying compounds. Since the purpose of GC/MS and LC/MS
experiments is typically to obtain the pure mass spectra of the underlying
compounds of a sample in order to perform compound identification and
possibly quantification, it is necessary to solve a component resolution problem
if compounds are co-eluting.

GC/MS or LC/MS measurements of a single sample can be modeled as
� = CET where C are the elution profiles of components, and E are the
associated mass spectra, which are resolved with respect to mass-to-charge
ratio (m/z). For the case that multiple datasets are modeled, the same mass
spectra are assumed to be present in all samples �1, �2, . . . , �K, though the
elution profiles are usually not assumed to be constant, so that Eq. 14 applies.
The inverse problem of estimating C and E, or in the multiple sample case
C1, C2, . . . , CK and E from � or �1, �2, . . . , �K, respectively, is often tackled
with the multivariate curve resolution alternating least squares (MCR-ALS)
algorithm, as in, e.g., [5, 17, 18, 53, 54].

MCR-ALS is a non-parametric algorithm, and the number of free para-
meters involved in estimating an elution profile C[, g] is length(C[, g]). In
situations where the overlap of the elution profiles is large, using a parametric
description for C[, g] may be desirable, as [50] have recently explored. This
reduces the number of free parameters associated with estimating an elution
profile dramatically, since C[, g] can often be described well with an exponen-
tially modified Gaussian with only four parameters. The problem of estimating
E and the nonlinear parameters z associated with the model for the elution
profiles C(z) is an instance of Problem (6), which may be addressed with
variable projection.

5.1 Example: component resolution in GC/MS data

We consider briefly GC/MS measurements �1 and �2 of two samples known
to represent the same unknown compounds. We model the data using Eq. 14.
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Fig. 7 (Left) Estimated concentration profiles for component 1 (black) and component 2 (grey).
Solid lines are for �1, while dashed lines are for �2, and the profiles differ in the two datasets
by amplitude only. (Right) Mass spectra associated with component 1 (black) and component 2
(grey), which are assumed to underlie both �1 and �2
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Fig. 8 Data shown as points at selected mass values from two datasets �1 (black) and �2 (grey).
The fitted model associated with a simultaneous analysis of both datasets is shown as lines

Each column C j[, g](z) is represented by an exponentially modified Gaussian
function with four parameters, for width, location, decay rate, and amplitude.
The elution profiles C j1[, g] and C j2 [, g] for component g in the two datasets at
mass j are described with the same parameter values except for the amplitude,
(because the elution profiles in these datasets are aligned; for datasets in which
the locations of components are not aligned, the location parameter also varies
per-dataset). A singular value decomposition of the data yields two singular
values that clearly exceed the remaining values on a log scale; we therefore
choose to model two components. It is furthermore known that the data at
38 - 44 m/z contain a large peak at every timepoint. We therefore assign these
m/z values a very low weight, so that the model for C j(z) is dependent on
the mass j considered. The full model specification is found on the webpage
of the TIMP package. The estimated mass spectra and concentration profiles
that result from fitting this model are shown in Fig. 7. Data and model fit at
selected masses are shown in Fig. 8.

6 Future work

We see several avenues for further development of algorithms for separable
nonlinear optimization problems. It would be of interest to develop method-
ology and software for separable optimization problems in which the noise is
described by a non-Gaussian distribution. Of most practical importance would
be the generalization to the Poisson noise case.
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It would also be desirable to develop variable projection implementations
to regularize ill-conditioned or over-parametrized models. Golub and Pereyra
[12] suggest that this be accomplished via use of a truncated singular value
decomposition method to obtain the Jacobian. Recent work by [41] is in
this direction. However, to our knowledge no public domain general purpose
optimization routines for the case that C(z) is rank deficient have been made
available.

7 Conclusions

We have surveyed the variable projection algorithm and its implementation
with emphasis on matrix-data fitting problems. Methodology for standard
error estimation was discussed, along with extensions to constrain the linear
parameters.

The variable projection algorithm has been an important tool for modeling
time-resolved spectroscopy data for many years, and we outlined some of the
most influential work in this domain. Implementations allowing the flexible
specification of models (e.g., the R package TIMP) are contributing to the
spread of the use of the algorithm, and will continue to do so as such software
further matures.

Two new application domains in which variable projection is making an
impact are time-resolved fluorescence microscopy and GC/MS mass spectrom-
etry data analysis. Datasets associated with microscopy and mass spectrometry
techniques are often large, and more heuristic methods for data analysis
have previously been popular largely to avoid the prohibitive execution time
and memory needed for model-based analysis. Improvements in computer
hardware are changing this and making model-based analysis more feasible.
Here again the variable projection algorithm is posed to play a central role,
since the parameter estimation task associated with many models applicable to
microscopy and mass spectrometry data consists of fitting a linear combination
of nonlinear functions.
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