Skip to main content
Log in

A spectrally accurate algorithm for electromagnetic scattering in three dimensions

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this work we develop, implement and analyze a high-order spectrally accurate algorithm for computation of the echo area, and monostatic and bistatic radar cross-section (RCS) of a three dimensional perfectly conducting obstacle through simulation of the time-harmonic electromagnetic waves scattered by the conductor. Our scheme is based on a modified boundary integral formulation (of the Maxwell equations) that is tolerant to basis functions that are not tangential on the conductor surface. We test our algorithm with extensive computational experiments using a variety of three dimensional perfect conductors described in spherical coordinates, including benchmark radar targets such as the metallic NASA almond and ogive. The monostatic RCS measurements for non-convex conductors require hundreds of incident waves (boundary conditions). We demonstrate that the monostatic RCS of small (to medium) sized conductors can be computed using over one thousand incident waves within a few minutes (to a few hours) of CPU time. We compare our results with those obtained using method of moments based industrial standard three dimensional electromagnetic codes CARLOS, CICERO, FE-IE, FERM, and FISC. Finally, we prove the spectrally accurate convergence of our algorithm for computing the surface current, far-field, and RCS values of a class of conductors described globally in spherical coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alleon, G., Benzi, M., Giraud, L.: Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics. Numer. Algor. 16, 1–15 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Antilla, G.E., Alexopoulos, N.G.: Scattering from complex three-dimensional geometries by a curvilinear hybrid finite-element-integral equation approach. J. Opt. Soc. Am. A 11, 1445–1457 (1994)

    Article  Google Scholar 

  3. Bendali, A., Boubendir, Y., Fares, M.: A FETI-like domain decomposition method for coupling finite elements and boundary elements in large-size scattering problems of acoustic scattering. Comput Struct (in print) (2006)

  4. Canino, L., Ottusch, J., Stalzer, M., Visher, J., Wandzura, S.: Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nystrom discretization. J. Comput. Phys. 146, 627–663 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carpentieri, B., Duff, I.S., Giraud, L.: Sparse pattern selection strategies for robust frobenius-norm minimization preconditioners in electromagnetism. Numer. Linear Algebra Appl 7, 667–685 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, K.: An analysis of sparse approximate inverse preconditioners for boundary integral equations. SIAM J. Matrix Anal. Appl. 22, 1058–1078 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chew, W.C., Jin, J.M., Michielssen, E., Song, J.: Fast and Efficient Algorithms in Computational Electromagnetics. Artech House (2001)

  8. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. John Wiley & Sons (1983)

  9. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer (1998)

  10. Darve, E., Havé, P.: Efficient fast multipole method for low-frequency scattering. J. Comput. Phys. 197, 341–363 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Darve, E., Havé, P.: A fast multipole method for Maxwell equations stable at all frequencies. Phil. Trans. R. Soc. Lond. A 362, 603–628 (2004)

    Article  MATH  Google Scholar 

  12. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere. Oxford University Press (1998)

  13. Ganesh, M., Graham, I.G.: A high-order algorithm for obstacle scattering in three dimensions. J. Comput. Phys. 198, 211–242 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ganesh, M., Graham, I.G., Sivaloganathan, J.: A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problem from finite elasticity. SIAM. J. Numer. Anal. 31, 1378–1414 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ganesh, M., Graham, I.G., Sivaloganathan, J.: A new spectral boundary integral collocation method for three-dimensional potential problems. SIAM. J. Numer. Anal. 35, 778–805 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Graham, I.G., Sloan, I.H.: Fully discrete spectral boundary integral methods for helmholtz problems on smooth closed surfaces in \(\mathbb{R}^3\). Numer. Math. 92, 289–323 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hsiao, G.C., Monk, P.B., Nigam, N.: Error analysis of a finite element-integral equation scheme for approximating the time-harmonic Maxwell system. SIAM J. Numer. Anal. 40, 198–219 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Knott, E.F., Shaeffer, J.F., Tuley, M.T.: Radar Cross Section. SciTech (2004)

  19. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003)

  20. Reitich, F., Tamma, K.K., Namburu, R.R. (eds.): Special Issue on Computational Electromagnetics. Comput. Model. Eng. Sci. 5(4), (2004)

  21. Saad, Y.: SPARSKIT. http://www-users.cs.umn.edu/~saad/software/home.html (2005)

  22. Song, J.M., Lu, C.C., Chew, W.C., Lee, S.W.: Fast Illinois Solver Code (FISC). IEEE Antennas Propag. Mag. 40, 27–34 (1998)

    Article  Google Scholar 

  23. Tsang, L., Kong, J.A., Ding, K.: Scattering of Electromagnetic Waves: Theories and Applications. John Wiley & Sons (2000)

  24. Wienert, L.: Die Numerische Approximation von Randintegraloperatoren für die Helmholtzgleichung im \(\mathbb{R}^3\). PhD thesis, University of Göttingen (1990)

  25. Woo, A.C., Wang, H.T., Schuh, M.J., Sanders, M.L.: Benchmark radar targets for the validation of computational electromagnetics programs. IEEE Antennas Propag. Mag. 35, 84–89 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ganesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesh, M., Hawkins, S.C. A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer Algor 43, 25–60 (2006). https://doi.org/10.1007/s11075-006-9033-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-006-9033-7

AMS Subject Classifications

Keywords

Navigation