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Abstract Research on spinning shafts is mostly
restricted to cases of constant rotating speed without
examining the dynamics during their spin-up or spin-
down operation. In this article, initially the equations
of motion for a spinning shaft with non-constant speed
are derived, then the system is discretised, and finally
a nonlinear dynamic analysis is performed using mul-
tiple scales perturbation method. The system in first-
order approximation takes the form of two coupled
sets of paired equations. The first pair describes the
torsional and the rigid body rotation, whilst the sec-
ond consists of the equations describing the two lat-
eral bending motions. Notably, equations of the lateral
bending motions of first-order approximation coincide
with the system in case of constant rotating speed,
and considering the amplitude modulation equations,
as it is shown, there are detuning frequencies from the
Campbell diagram. The nonlinear normal modes of the
system have been determined analytically up to the
second-order approximation. The comparison of the
analytical solutions with direct numerical simulations
shows good agreement up to the validity of the per-
formed analysis. Finally, it is shown that the Campbell
diagram in the case of spin-up or spin-down operation
cannot describe the critical situations of the shaft. This
work paves the way, for new safe operational ‘modes’
of rotating structures bypassing critical situations, and
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also it is essential to identify the validity of the tools
for defining critical situations in rotating structureswith
non-constant rotating speeds, which can be applied not
only in spinning shafts but in all rotating structures.
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1 Introduction

Starting about 93 years ago, with the pioneered sem-
inal work by Campbell [1–3], the main theory was
developed to examine critical situations in vibrations
of turbine wheels in constant rotating speeds. This
work is the basis of the current examination of criti-
cal speeds of rotating structures in steady states using
the diagram that indicates how the natural frequencies
of the structure vary with the rotating speed (limited
to steady states) incorporating the excitation frequency
due to rotating speed, which forms the Campbell dia-
gram (CD). Since then, based onCD, plenty of research
articles havebeen reported about rotating structures and
spinning shafts but restricted mainly to steady states.
Extended literature review on critical speeds on steady
states is out of the scope of this work. Only a few arti-
cles are related in examining their dynamics during
spin-up and spin-down operation, which corresponds
to non-constant rotating speed. Plaut and Wauer [4]
examined parametric, external and combination reso-
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nances in coupled flexural and torsional oscillations of
an unbalanced rotating shaft with non-constant rotat-
ing speed, but the rigid body equation of motion for
non-constant rotating speed was neglected. Suherman
and Plaut [5] used flexible internal support in order
to mitigate lateral bending vibrations. In [5], a model
was developed and dynamics for a spinning shaft with
non-constant rotating speed was examined including
a flexible internal support considering also the equa-
tion of rigid body motion, but the torsional motion was
neglected in this treatment. Wauer [6] modelled and
formulated equations ofmotion for cracked beams con-
sidering non-constant rotating speed, but without con-
sidering the rigid body equation of motion. It should be
commented that in [4–6] themodels are not considering
all the motions in order to perform nonlinear dynamic
analysis and the results are limited to these models. In
[7], the equations of motion of a spinning shaft with
dynamic boundary conditions (eccentric sleeves) were
derived, since the main work was about the dynamics
of the shaft due to the particular dynamic boundary
conditions; although non-constant rotating speed was
considered, it was not given any special attention.

Further work has been conducted in the so-called
non-ideal systems,which correspond to rotatingmechan-
ical systems incorporating the electromechanical cou-
pling with the DCmotor to examine Sommerfeld effect
but limited to discrete systems with the excitation of
natural frequencies by the external torque of the motor
[8–10]. The significance of considering non-ideal sys-
tems is discussed in [11], whereas there is comparison
in dynamic results between ideal and non-ideal sys-
tems. Although in this area of research it is considered
in some cases non-constant rotating speed, the work is
focused on the effect of external torque through the DC
motor in the nonlinear dynamics of these electrome-
chanical systems, and it is also restricted to discrete
models. In [12], nonlinear dynamics of rings rotating
with variable speed considering small fluctuations from
a constant average value were examined.

Noted that since 1960s with the works of Kauderer
as mentioned in [13] and Rosenberg [14], the develop-
ment of the nonlinear normal modes (NNMs) theory in
examining dynamics of nonlinear mechanical systems
is started, which has been continued about a decade
later, for example, in [15–17]. Further information can
be found in [13,18,19] with summaries of the meth-
ods used on this field. On this article, the method of
multiple scales that has been developed in [20] will be

used, and a discussion of the application of this method
in examining NNMs is given in [21]. The reason for
selecting multiple scales is that the spinning shaft with
non-constant rotating speed is a non-natural mechani-
cal systemand can be treated relatively easywithout the
inversion of the mass matrix. As it is discussed herein
another reason is that the arising formulation allows
straight comparisons with the case of constant rotating
speed.

In [22], NNMs of a Jeffcott rotor using multiple
scales approach considering discrete model represent-
ing geometric nonlinearities of the shaft and constant
rotating speed were determined. Invariant manifolds
approach for the determination of NNMs has been
used in [23] to examine dynamics of a spinning shaft
with constant rotating speed including nonlinearities by
the supported journal bearings. A combined method
based on the invariant manifold with multiharmonic
balance technique has been used in [24], to determine
the NNMs of an asymmetric disc rotor with constant
rotating speeds, considering nonlinearities in bearings.
The multiharmonic balance technique has been used in
[25], to examine stability and vibrations analysis of a
complex flexible rotor bearing system. Based on invari-
ant manifolds approach, in [26] a newmethod has been
developed for the determination of NNMs, incorporat-
ing Rausher and harmonic balance methods, and it has
been applied to determine the dynamics of a spinning
shaft with constant rotating speed with nonlinearities
and inertia forces in the supports. It should be noted
that in [22–26] the models were considering constant
rotating speed and nonlinearities in bearings, without
examination of non-constant rotating speed. In [27],
non-constant rotating speed for a rotating composite
blade was considered, whereas a nonlinear system of
partial differential equations (PDEs) coupled with one
integro-differential equation (IDE) describing the rigid
body angular motion, which is a similar model with the
spinning shaft in non-constant rotating speed derived,
herein, is derived.

In this article, the dynamics of the shaft as an elas-
tic continuum with non-constant rotating speed are
examined purely and its correlation with the criti-
cal situations resulted from the steady-state analysis
using the CD. Initially, the equations of motion of a
spinning shaft with non-constant rotating speed made
of isotropic material and considering Euler–Bernoulli
(EB) beam are derived. Then, the nonlinear system of
the PDEs has been discretised, and finally the method
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Fig. 1 Configuration of the
spinning shaft with the
considered motions, as a
simply supported Euler
Bernoulli beam
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of multiple scales is used to determine the nonlinear
normal modes (NNMs) with the analytical solution for
the first- and second-order approximations of the dis-
cretised nonlinear system. At the end, in the numerical
results section at first, a comparison of the individual
multiple scales solution with numerical integration is
made. Then, there is a comparison of the CD obtained
from commercial finite element analysis (FEA) soft-
ware with this one obtained from analytical solutions.
Finally, the full multiple scales solution is compared
with the direct numerical integration of the original sys-
tem, and also the validity of the critical speeds obtained
from the CD, considering also the detuning frequen-
cies, is examined.

2 Equations of motion

On this part of the article, initially, the system of PDEs
that describes the motion of a spinning shaft with non-
constant rotating speed is derived, and then, it will be
discretised with projection to the infinite basis of the
associated linear system.

The shaft is considered, as simply supported EB
isotropic beam with uniform properties and dimen-
sions in the longitudinal direction, with rigid body
(θ) motion, axial (u), lateral bending motions (v,w)

with rotary inertia terms, and torsional motions (φ).
Also in this paper, any non-conservative forces (damp-
ing, external forces/torques) and any imbalance are not
considered. The Hamilton’s Principle is employed as
follows,

δ J =
∫ t2

t1
(δT − δU ) dt = 0, (1)

with the variation of the kinetic energy of the shaft
(δT ) and the variation of the potential energy of the
shaft (δU ).

Thepartial derivatives are designatedwith a subindex
after a comma that shows under which variable is per-
formed the differentiation, e.g. f,t t means two deriva-
tives of f with respect to time.

The integral of the variation of the kinetic energy is
given by,
∫ t2

t1
(δT ) dt = 1

2

∫ t2

t1

[∫
V

ρδ
(
R,t · R,t

)
dV

]
dt

= −
∫ t2

t1

[∫
V

ρR,tt · δRdV
]
dt, (2)

where R is the position vector, ρ is the density of the
shaft, and V is the volume of the shaft.

Considering the deformations for EB beam with
generalised coordinates axial (u), both lateral bend-
ing (v,w) and torsional (φ) motions are indicated in
Fig. 1. The position vector (R) in a fixed coordinate
system can be defined as a rigid body rotation (θ) with
respect to x axis applied in the position vector (r) in
the rotating frame, and it is given by,

R = Ar =
⎡
⎣ 1 0 0
0 cos θ sin θ

0 − sin θ cos θ

⎤
⎦
⎧⎨
⎩
x + u − zw,x − yv,x

y + v − zφ
z + w + yφ

⎫⎬
⎭

=
⎧⎨
⎩

r1
cos θr2 + sin θr3

− sin θr2 + cos θr3

⎫⎬
⎭ , (3)

where A is the rigid body rotation matrix with respect
to x axis with angle-θ as indicated in Fig. 1.

Considering Eq. (3), the acceleration vector is given
by,

R,tt = A,ttr + 2A,trt + Ar,tt

= θ,t t

⎧⎨
⎩
0
− sin θr2 + cos θr3
− cos θr2 − sin θr3

⎫⎬
⎭

+ θ2,t

⎧⎨
⎩

0
− cos θr2 − sin θr3
sin θr2 − cos θr3

⎫⎬
⎭
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+ 2θ,t

⎧⎨
⎩

0
− sin θr2,t + cos θr3,t
− cos θr2,t − sin θr3, t

⎫⎬
⎭

+
⎧⎨
⎩

r1,t t
cos θr2,t t + sin θr3,t t

− sin θr2,t t + cos θr3,t t

⎫⎬
⎭ , (4)

where the first acceleration term is due to non-constant
rotating speed, the second term is the centrifugal accel-
eration, the third term is the Coriolis acceleration and
the last one is the translational acceleration.

In Eq. (2), inside the integral in the variation of
kinetic energy, the vector product of the acceleration
vector (Eq. 4) and the variation of the position vector
are involved. The explicit form of the variation of the
position vector based on the involved partial derivatives
with respect to the generalised coordinates is derived in
“Appendix-A” section. The determination of the vector
product in right-hand side of Eq. (2) has been done in
“Appendix-A” section, and using equations (A.3), the
variation of kinetic energy with respect to the gener-
alised coordinates is a trivial process.

In case of EB isotropic beam with the associated
displacement vector including rotary inertia terms, it is
trivial to define the variation of potential energy with
respect to the generalised coordinates [28].

Finally, considering the variations of kinetic and
potential energy with respect to the generalised coor-
dinates and using Hamilton’s principle (Eq. 1), the fol-
lowing equations of motion arise:

– Axial motion (u),

δ Ju = mu,t t − (E Au,x
)
,x = 0. (5a)

– Lateral bending in y-direction (v),

δ Jv = mθ,t tw − mθ2,tv + 2mθ,tw,t

+mv,t t − (I1v,t t x
)
,x + (E Iv,xx

)
,xx = 0.

(5b)

– Lateral bending in z-direction (w),

δ Jw = −mθ,t tv − mθ2,tw − 2mθ,tv,t

+mw,t t − (I1w,t t x ),x + (E Iw,xx ),xx = 0.

(5c)

– Torsional motion (φ),

δ Jφ= − I1θ,t t − I1θ
2
,tφ + I1φ,t t − (GIφ,x

)
,x=0.

(5d)

– Rigid body rotation (θ),

δ Jθ = 2I1θ,t t L + θ,t t

∫ L

0

[
mw2 + mv2 + 2I1φ

2
]
dx

+ 2θ,t

L∫

0

[
mvv,t + mww,t + 2I1φ,tφ

]
dx

+
L∫

0

[
mwv,t t − mvw,t t − 2I1φ,t t

]
dx = 0,

(5e)

where the nonlinear terms on these equations are under-
lined and noted that since the angular rigid body posi-
tion (θ) is a variable, then the centrifugal and Coriolis
are also nonlinear terms.

The distributed mass and the inertia coefficient
for the spinning shaft with cyclical cross section as
obtained through integration over the area of the cross
section are given by,

m = ρA = πρ

(
D2
o − D2

i

4

)
, (6a, b)

I1 = ρ I = πρ

(
D4
o − D4

i

64

)
,

where Di = 2ri , Do = 2ro, the internal and exter-
nal diameters of the shaft’s cross section, respectively
(Fig. 1).

Also, it should be noted that Eq. (5a) describing the
axial motion is fully decoupled from the rest of the
system, and it is the typical equation describing the
axial motion of an elastic beam; therefore, there is no
reason to be considered any further in the present anal-
ysis. The derived equations of motion (Eq. 5) in case
of restricted to lateral bending with rigid body rotation
motions coincide with those obtained in [5], whereas
the torsional motion has been neglected.

Considering also simply supported beam and the
Hamilton’s principle, the strong and weak boundary
conditions (BCs) are,

– lateral bending in y-direction (v) (fixed in
displacement-free to rotate, in both sides)

v (0, t) = v (L , t) = v,xx (0, t) = v,xx (L , t) = 0,
(7a–d)
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Nonlinear dynamics of a spinning shaft 93

– lateral bending in z-direction (w) (fixed in
displacement-free to rotate, in both sides)

w (0, t) = w (L , t) = w,xx (0, t) (8a–d)

= w,xx (L , t) = 0,

– torsional motion (φ), in one end that it is asso-
ciated with the rigid body motion the coordinate
system is fixed and the other end is considered as
free (depends on the particular configuration of the
shaft, e.g. second motor in the other side),

φ (0, t) = φ,x (L , t) = 0. (9a–b)

In case of constant rotating speed (θ,t = Ω = ct,
therefore θ,t t = 0), then the system of coupled
equations in both lateral bending and torsion is tak-
ing the form,

– Lateral bending in y-direction (v),

−mΩ2v + 2mΩw,t + mv,t t − (I1v,t t x
)
,x

+ (E Iv,xx
)
,xx = 0. (10a)

– Lateral bending in z-direction (w),

−mΩ2w − 2mΩv,t + mw,t t − (I1w,t t x
)
,x

+ (E Iw,xx
)
,xx = 0. (10b)

– Torsional motion (φ),

−I1Ω
2φ + I1φ,t t − (GIφ,x

)
,x = 0, (10c)

whereas the torsional equation is decoupled from the
rest lateral bending motions, and these both lateral
bending equations of motion are typically found in the
literature of spinning shafts. Also, it should be com-
mented that the torsional motion (φ) is not the total
distributed angular position (ϕ (x, t), which is defined
in the fixed frame with respect to rotation about x
axis). Based on the configuration in Fig. 1, the total
distributed angular position is given by, ϕ (x, t) =
−θ (t) + φ (x, t), and this transformation lead to free–
free boundary conditions for the total distributed angu-
lar position of the shaft with respect to the fixed frame.

The system of equations (5) can be projected to the
infinite base of the corresponding linear modes of the
homogeneous linearised problem of these PDEs (Eq. 5
neglecting the underlined terms). The linearised system
is forming decoupled PDEs, whereas considering the
B.C.s (Eq. 7–9), it can be shown that the equations

are also self-adjoint, since the equations describe the
well-known elasticmotions in bending and torsionwith
typical BCs [29]. Therefore, the linear mode shapes
are orthogonal to each other and also the linear modal
equations decoupled.

The two corresponding PDEs (of Eq. 5b-c) describ-
ing the motion in both lateral bending motions includ-
ing the rotary inertia terms are identical in both direc-
tions. The associated boundary value problem (BVP)
solution is described in “Appendix-B” section with lin-
ear mode shapes and natural frequencies of the k-mode
given by,

yk(x) =
√

2

mL
sin

(
kπ

L
x

)
, (11a–b)

ωbk =
√

k4π4EI

L2k2π2 I1 + L4m
, k = 1, 2, . . .

whereas the mode shapes have been normalised con-
sidering only the mass (m) coefficient terms.

The non-homogeneous torsional BVP can be solved
using the integral of the Green’s function arising from
the homogeneous problem multiplied with angular
positions, but the angular acceleration has to be defined
explicitly in order to obtain a specific solution. There-
fore, we restrict the solutions to the corresponding
linear homogeneous PDE describing torsional motion
which arises from Eq. (5d) by neglecting terms associ-
ated with the rigid body motion. In this case, the linear
BVP is similar to this one of a rod in axial vibrationwith
clamped-free B.C.s. The solution of this BVP is having
the following mode shapes and natural frequencies of
the k-mode [29],

Yk (x) =
√

2

I1L
sin

(
(2k − 1) π

2L
x

)
, (12a–b)

ωT 0k = (2k − 1) π

2L

√
GI

I1
, k = 1, 2, . . .

respectively, whereas the mode shapes have been nor-
malised. The notation in frequency is used to desig-
nate that corresponds to the fixed-free boundary value
problem, and then, the projection of the dynamics to
the linear mode shapes is associated with this BVP.
Noted that on this BVP local torsional motion is used
instead of total angular position which corresponds to
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94 F. Georgiades

the free–free BVP. (And it is associatedwith the natural
frequencies of the rotating shaft in torsion.)

The displacements in bending and the rotational
angles due to torsion in equations (5b–d) are expressed
in series of the linear mode shapes as follows,

v =
∑n

k=1
yk (x) qvk (t) , w =

∑n

k=1
yk (x) qwk (t) ,

φ =
∑n

k=1
Yk (x) qφk (t) , (13a–c)

where qv,k (t) is the k-mode modal displacement in
y-direction of bending, qw,k (t) is the k-mode modal
displacement in z-direction of bending, qφ,k (t) is the
k-mode modal displacement in torsion.

Equations (5b-c) are multiplied with y j (s) and
Eq. (5d) with y j (s), and they are integrated over the
length span of the shaft, using the weighted residual
approach with Bubnov–Galerkin1 approximation. As
first attempt, in order to simplify the problem, the dis-
crete system of equations of motion with truncation of
series to the first linear mode for each motion is con-
sidered, and finally, the discrete equations describing
the motion are taking the form,[
1 + q2v

(2I1L)
+ q2w

(2I1L)
+ q2φ

(I1L)

]
θ,t t

− F

(I1L)
qφ,t t − qvqw,t t

(2I1L)
+ qv,t t qw

(2I1L)

= −θ,t qv,t qv

(I1L)
− θ,t qw,t qw

(I1L)
− 2θ,t qφ,t qφ

(I1L)
, (14a)

θ,t t qw + (1 − M) qv,t t

=
[
θ2,t − ω2

b (1 − M)
]
qv − 2θ,t qw,t , (14b)

− θ,t t qv + (1 − M) qw,t t

=
[
θ2,t − ω2

b (1 − M)
]
qw + 2θ,t qv,t , (14c)

− Fθ,t t + qφ,t t = θ2,t qφ − ω2
T 0qφ, (14d)

with the following constants,

F = I1

∫ L

0
Y1 (x) dx = 2

π

√
2I1L, (15a–b)

M = I1

∫ L

0
y1,xx (x) y1 (x) dx = − I1π2

mL2 ,

and also, the index associatedwith the number ofmodes
is neglected since the first one in all cases is consid-
ered. Restricting equations (14) to the case of constant

1 Based on the remark by Prof. Y. V. Mikhlin.

rotating speed (θ,t = Ω = ct, therefore θ,t t = 0) the
system of (Eq. 14) is taking the form,

(1 − M) qv,t t +
[
ω2
b (1 − M) − Ω2

]
qv + 2Ωqw,t = 0,

(16a)

(1 − M) qw,t t +
[
ω2
b (1 − M) − Ω2

]
qw − 2Ωqv,t = 0.

(16b)

The system of (Eq. 16) has coupled equations only
between lateral bending motions through the Coriolis
force and the associated CD (with these equations); as
it is shown in [30] and herein, it is the same as this one
obtained from FEA of a spinning shaft with constant
rotating speed.

The multiple scales perturbation method developed
by Nayfeh [20] is used, and different time scales are
considered as follows,

Tj = ε j t, (17a)

therefore,

d

dt
=
∑∞

k=0
εk Dk, and (17b–c)

d2

dt2
=
∑∞

j=0

∑∞
k=0

εk+ j Dk D j ,

and also, the solutions of the system of the ‘modal’
equations (Eq. 14) are in the following form,

θ = ε0θ0 + ε1θ1 + ε2θ2 + HOT, (17d–e)

qv = ε1qv,1 + ε2qv,2 + HOT,

qw = ε1qw,1 + ε2qw,2 + HOT, (17f–g)

qφ = ε1qφ,1 + ε2qφ,2 + HOT .

Also, following the multiple scales approach, the sys-
tem of equations (14) for the various ε-scale orders (up
to second order) is taking the form:

ε0,

D2
0θ0 = 0 ⇔ D0θ0 = Ω ⇔ θ0 = ΩT0 + ct, (18)

ε1,

2I1LD
2
0θ1 − 2FD2

0qφ,1 = −4I1LD0D1θ0, (19a)

D2
0θ0qw,1 + (1 − M) D2

0qv,1 − (D0θ0)
2 qv,1

+ω2
b (1 − M) qv,1 + 2D0θ0D0qw,1 = 0, (19b)

123



Nonlinear dynamics of a spinning shaft 95

− D2
0θ0qv,1 + (1 − M) D2

0qw,1 − (D0θ0)
2 qw,1

+ω2
b (1 − M) qw,1 − 2D0θ0D0qv,1 = 0, (19c)

− FD2
0θ1 + D2

0qφ,1 − (D0θ0)
2 qφ,1

+ω2
T 0qφ,1 = 2FD0D1θ0, (19d)

ε2,

2I1LD
2
0θ2 − 2FD2

0qφ,2 = F1

= −2I1L
(
2D0D1θ1 + 2D0D2θ0 + D2

1θ0
)

− D2
0θ0q

2
v,1 − D2

0θ0q
2
w,1 − 2D2

0θ0q
2
φ,1

+ 4FD0D1qφ,1 + qv,1D
2
0qw,1 − qw,1D

2
0qv,1

− 2D0θ0D0qv,1qv,1 − 2D0θ0D0qw,1qw,1

− 4D0θ0D0qφ,1qφ,1, (20a)

D2
0θ0qw,2 + (1 − M) D2

0qv,2 − (D0θ0)
2 qv,2

+ω2
b (1 − M) qv,2 + 2D0θ0D0qw,2

= F2 = −D2
0θ1qw,1 − 2D0D1θ0qw,1

−2 (1 − M) D0D1qv,1

+2D0θ0D0θ1qv,1

+2D0θ0D1θ0qv,1 − 2D0θ0D1qw,1 − 2D0θ1D0qw,1

−2D1θ0D0qw,1, (20b)

− D2
0θ0qv,2 + (1 − M) D2

0qw,2 − (D0θ0)
2 qw,2

+ω2
b (1 − M) qw,2 − 2D0θ0D0qv,2

= F3 = D2
0θ1qv,1 + 2D0D1θ0qv,1

−2 (1 − M) D0D1qw,1 + 2D0θ0D0θ1qw,1

+2D0θ0D1θ0qw,1 + 2D0θ0D1qv,1

+ 2D0θ1D0qv,1 + 2D1θ0D0qv,1, (20c)

−FD2
0θ2 + D2

0qφ,2 − (D0θ0)
2 qφ,2

+ω2
T0qφ,2 = F4 = F (2D0D1θ1 + 2D0D2θ0

+D2
1θ0
)− 2D0D1qφ,1

+2D0θ0D0θ1qφ,1 + 2D0θ0D1θ0qφ,1 (20d)

In the left side of systems of Eqs. (19–20), the equations
are coupled in pairs; the first pair is with the equations
describing the rigid body angle with torsion and the
second pair is with the coupled equations describing
the two lateral bending vibrations.

3 Dynamic analysis

In this section, the systems (Eqs. 19, 20), arising from
multiple-scale formulation in different scales, will be
solved explicitly.

3.1 Solution of first-order approximation for rigid
body with torsional motions

The systemof equations of the rigid bodywith torsional
motions for the first-order approximation is described
by equations (19a, d). Elimination of the secular terms
in Eq. (19a), and taking into consideration Eq. (18),
leads to,

D0D1θ0 = 0 ⇔ D1Ω = 0 ⇔ D1ΩT0 = D1θ0 = 0.

(21)

Considering (21), the terms in the right-hand side of
Eq. (19d) are seen to be eliminated.

To simplify the equations for the rest of the article,
over-dot notation will be used instead of D0, and dash
notation will be used instead of D1.

The first-order approximation for rigid body rotation
(Eq. 19a) with torsion (Eq. 19d), considering equations
(18, 21) and the new notation, can be written in the
following form,

2I1L θ̈1 − 2Fq̈φ,1 = 0 ⇔ θ̈1 = F

I1L
q̈φ,1, (22a)

− F θ̈1 + q̈φ,1 +
(
ω2
T 0 − Ω2

)
qφ,1 = 0 ⇔ q̈φ,1

+ I1L
(
ω2
T 0 − Ω2

)
(
I1L − F2

) qφ,1 = 0. (22b)

In the above system (Eq. 22), the angular rigid body
position is involved only with its derivative; therefore,
this system can be solved with respect to θ̇ . Then, the
angular position can be trivially obtained by integration
in time of the angular velocity.UsingEq. (22a) in (22b),
the system can be decoupled easily, and the solution of
these equations is a trivial problem given by [29],

qφ,1 (T0) = A22e
iμ0T0 + cc, (23a)

θ̇1 (T0) = A11 + A12e
iμ0T0 + cc, (23b)

with,

μ0 =
√

I1L
(
ω2
T 0 − Ω2

)
(
I1L − F2

) , (24)

and setting,

b1 = F

I1L
, c1 = F

2I1L
, (25a–c)

d1 = Fμ0

2I1L
,
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then, the amplitudes of (Eq. 23) are given by,

A22 = qφ,1 (0)

2
− i

q̇φ,1 (0)

2μ0
= Aφ,1 − i Aφ,2, (26)

A11 = θ̇1 (0) − b1q̇φ,1 (0) ,

A12 = c1q̇φ,1 (0) + id1qφ,1 (0) = Aθ,1 − i Aθ,2.

(27a–b)

3.2 Solution of first-order approximation for both
lateral bending motions

The system of equations for both lateral bending
motions of the first-order approximation is described
by equations (19b–c). Considering Eq. (18) and the
new notation, then the first-order approximation (ε1)

equations of motion for lateral bending (Eq. 19b, c)
are taking exactly the same form with equations (16a-
b), which corresponds to constant rotating speed. As
it is shown in [30], it will be verified in the numeri-
cal Sect. 4.2, and the natural frequencies of this system
form theCD.The solution of the system (Eq. 16a-b) can
be obtained by writing the system as first-order differ-
ential equations, and the four roots of the characteristic
polynomial are given by,

λ = ±
√

η1 ± √
η2, (28)

with,

η1 = −ω2
b − (M + 1)

(1 − M)2

2 < 0, (29a)

which, it is true for any 
 if,

L2/
(
r2o + r2i

)
> π2/4 ∼= 2.5, (29b)

then the shaft has sufficient large ratio of length with
respect to the internal and external radius of the hollow
shaft, in which it is the case for most flexible shafts in
engineering applications. Also,

η2 = 4Ω2

(1 − M)2

(
MΩ2

(1 − M)2
+ ω2

b

)
. (29c)

Therefore, based on (Eq. 28) and the values of the fol-
lowing parameters defined by (Eq. 29a,c), and condi-
tion (Eq. 29b), there are the following three cases for
the solutions of the eigenvalue problem.
Case 1 η2 > 0, η1 + √

η2 < 0,

The first condition occurs when,

Ω2 < − (1 − M)2 ω2
b

M
,

(
with M = − I1π2

mL2 < 0

)
,

(30)

And the second occurs when,

−ω2
b−

(M + 1)

(1 − M)2
Ω2+ 2Ω

(1 − M)

√
MΩ2

(1 − M)2
+ ω2

b < 0,

(31)

The eigenvalues are given by,

λ2,1 = −i
√

−η1 − √
η2 = −iω1,

λ2,2 = −i
√

−η1 + √
η2 = −iω2, (32a–b)

λ2,3 = i
√

−η1 − √
η2 = iω1,

λ2,4 = i
√

−η1 + √
η2 = iω2. (32c–d)

Case 2 η2 > 0, η1 + √
η2 > 0,

In the second case, the eigenvalues are given by,

λ2,1 = −i
√

−η1 − √
η2 = −iω1,

λ2,2b = −
√

η1 + √
η2 (real) , (33a–b)

λ2,3 = i
√

−η1 − √
η2 = iω1,

λ2,4b =
√

η1 + √
η2 (real) . (33c–d)

Case 3 η2 < 0,
In the third case, the eigenvalues are given by,

λ2,1c =
√

η1 + i
√−η2,

λ2,2c =
√

η1 − i
√−η2, (34a–b)

λ2,3c = −
√

η1 + i
√−η2,

λ2,4c = −
√

η1 − i
√−η2, (34c–d)
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The first case corresponds to relatively low rotating
speeds. The explicit form of the natural frequencies
with respect to rotating speed, in first case, is given by,

ω1÷2 = 2π f1÷2

=
√√√√

ω2
b + (M + 1)

(1 − M)2
Ω2 ∓ 2Ω

(1 − M)

√
MΩ2

(1 − M)2
+ ω2

b,

(35)

and, the plot of these frequencies with respect to the
rotating speed is used to form the CD for a shaft with
constant rotating speed.

It should be noted that in case of neglecting the rotary
inertia terms in bending (with I1 = 0 in Eq. 5b, c,
then M = 0), then the evaluation of the parameters in
equations (29a,c) indicates that it corresponds to the
first case and the natural frequencies are given by,

ω1÷2 = |ωb ∓ Ω| . (36)

In case of constant rotating speed, it should be men-
tioned that based on the latest definition of the normal
modes which are the periodic motions [19], not all of
these frequencies are associatedwith the normalmodes
since the periodicity condition for the angular position
must satisfy,

θ0
(
T0,T
)− θ0,0 = mod

[
ΩT0,T , 2π

]

= mod

[
2πΩ

ω1,2
, 2π

]
= 0, (37)

and this is true onlywhenωi = nΩ (with n any integer)
which is the case of critical speeds of the shaft in steady
states, and these are the frequencies of the associated

Normal Modes of the shaft, which justifies the reso-
nances in FRFs whilst varying the rotating speeds, and
they occur when the rotating speed is very close (due
to damping) to the critical speed. Otherwise stated, the
critical speeds in terms of frequencies are the same
with the vibration frequencies of the structure which
cause resonance, and this terminology is used also on
this article arising from the standard definition in the
literature, irrespective though, if it is true or not in the
case of non-constant rotating speeds which is under
examination herein.

The associative, on the eigenvalues, matrix of eigen-
vectors and its inverse are given by,

P2 =

⎡
⎢⎢⎣

−iω1,

−b2,
1,

−i b2
ω1

,

−iω2,

−d2,
1,

−i d2
ω2

,

iω1,

−b2,
1,
i b2
ω1

,

iω2
−d2
1
i d2
ω2

⎤
⎥⎥⎦ , (38a, b)

P−1
2 =

⎡
⎢⎢⎣

−iω1d2dn1,
iω2b2dn1,
iω1d2dn1,

−iω2b2dn1,

−dn2,
dn2,

−dn2,
dn2,

−d2dn2,
b2dn2,

−d2dn2,
b2dn2,

iω1ω
2
2dn1−iω2ω
2
1dn1−iω1ω
2
2dn1

iω2ω
2
1dn1

⎤
⎥⎥⎦,

Since system (Eq. 16a–b) is a linear system, the solu-
tion can be determined easily using the fundamental
solution matrix which is given by,

Φ2 (T0)

= 2

⎡
⎢⎢⎣

−dn1
(
ω2
1d2e

iω1T0 − ω2
2b2e

iω2T0
)
, −dn2

(
iω1eiω1T0 − iω2eiω2T0

)
,

−dn1
(
iω1b2d2eiω1T0 − iω2b2d2eiω2T0

)
, dn2

(
b2eiω1T0 − d2eiω2T0

)
,

dn1
(
iω1d2eiω1T0 − iω2b2eiω2T0

)
, −dn2

(
eiω1T0 − eiω2T0

)
,

−dn1
(
b2d2eiω1T0 − b2d2eiω2T0

)
, −dn2

(
ib2/ω1eiω1T0 − id2/ω2eiω2T0

)
,

− dn2
(
iω1d

iω1T0
2 − iω2b2eiω2T0

)
, dn1

(
ω2
1ω

2
2e

iω1T0 − ω2
1ω

2
2e

iω2T0
)

dn2
(
b2d2eiω1T0 − b2d2eiω2T0

)
, dn1

(
iω1b2ω2

2e
iω1T0 − iω2

1ω2d2eiω2T0
)

dn2
(−d2eiω1T0 + b2eiω2T0

)
, − dn1

(
iω1ω

2
2e

iω1T0 + iω2
1ω2eiω2T0

)
− dn2

(
ib2d2
ω1

eiω1T0 − ib2d2
ω2

eiω2T0
)

, dn1
(
b2ω2

2e
iω1T0 − ω2

1d2e
iω2T0
)

⎤
⎥⎥⎥⎥⎦

+ cc, (39)

with,

b2 = −Ω2 + (1 − M)
(
ω2
b − ω2

1

)
2Ω

, (40a, b)

d2 = −Ω2 + (1 − M)
(
ω2
b − ω2

2

)
2Ω

,
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dn1 = Ω[−Ω2 + (1 − M)
(
ω2
b − ω2

1

)]
ω2
2 − [−Ω2 + (1 − M)

(
ω2
b − ω2

2

)]
ω2
1

, (41a, b)

dn2 = Ω

(1 − M)
(
ω2
2 − ω2

1

) .

Therefore, the solutions are given by,

qv,1 (T0) = Cv1e
iω1T0 + Dv1e

iω2T0 + cc, (42a)

qw,1 = Cw1e
iω1T0 + Dw1e

iω2T0 + cc, (42b)

q̇v,1 (T0) = iω1Cv1e
iω1T0 + iω2Dv1e

iω2T0 + cc, (42c)

q̇w,1 (T0) = iω1Cw1e
iω1T0 + iω2Dw1e

iω2T0 + cc, (42d)

with,

Cv1 = −dn2q̇w,1 (0) − dn2d2qv,1 (0)

+ i
(
dn1ω1d2q̇v,1 (0) − dn1ω1ω

2
2qw,1 (0)

)

= Bv1,1 + i Bv2,1, (43a)
Dv1 = dn2q̇w,1 (0) + dn2b2qv,1 (0)

+ i
(
−dn1b2ω2q̇v,1 (0) + dn1ω

2
1ω2qw,1 (0)

)

= Bv1,2 + i Bv2,2, (43b)
Cw1 = −dn1b2d2q̇v,1 (0) + dn1b2ω

2
2qw,1 (0)

+ i

[
−dn2

(
b2
ω1

)
q̇w,1 (0) − dn2 (b2d2/ω1) qv,1 (0)

]

= Bw1,1 + i Bw2,1, (43c)
Dw1 = dn1b2d2q̇v,1 (0) − dn1ω

2
1d2qw,1 (0)

+ i

[
dn2

(
d2
ω2

)
q̇w,1 (0) + dn2 (b2d2/ω2) qv,1 (0)

]

= Bw1,2 + i Bw2,2. (43d)

3.3 Solution of amplitude modulation equations of
first order for rigid body with torsional motions

In order to finalise the first-order approximation solu-
tion for rigid body and torsionalmotions, in this section,
the amplitudes in equations (23) with respect to time
scale T1 are determined by solving the amplitude mod-
ulation equations arising by elimination of the secular
terms of ε2 in equations (20a,d). Considering equations
(18, 21) and elimination of T2 secular terms, the right-
hand side of equations (20a,d) leads to,

D2Ω = 0 ⇔ D2ΩT0 = 0 ⇔ D2θ0 = 0, (44)

F1 = −4I1L θ̇
′
1 + 4Fq̇

′
φ,1 + qv,1q̈w,1 − qw,1q̈v,1

− 2Ωq̇v,1qv,1 − 2Ωq̇w,1qw,1

− 4Ωq̇φ,1qφ,1, (45a)

F4 = 2F θ̇
′
1 − 2q̇

′
φ,1 + 2Ωθ̇1qφ,1. (45b)

The explicit form of equations (45), considering the
first-order solutions (Eqs. 23, 42) are taking the form,

F1 = − 4I5L A
′
11 (T1) − 4I5L

[
A′

θ,1 (T1)

− i A′
θ,2 (T1)

]
eiμ0T0

+ 4Fμ0i
[
A′

φ,1 (T1) − i A′
φ,2 (T1)

]
eiμ0T0

+ F1,1 (T1) e
i2μ0T0 + F1,2 (T1) e

i2ω1T0

+ F1,3 (T1) e
i2ω2T0 + F1,4 (T1) e

i(ω1+ω2)T0

+ F1,5 (T1) e
i(ω1−ω2)T0 + cc, (46a)

F4 = 2FA′
11 (T1) + 2F

[
A′

θ,1 (T1)

−i A′
θ,2 (T1)

]
eiμ0T0 − 2μ0i

[
A′

φ,1 (T1)

−i A′
φ,2 (T1)

]
eiμ0T0 + 2Ω

[
Aθ,1 (T1) Aφ,1 (T1)

+Aθ,2 (T1) Aφ,2 (T1)
]

+ 2ΩA11 (T1)
[
Aφ,1 (T1)

− i Aφ,2 (T1)
]
eiμ0T0 + F4,1 (T1) e

i2μ0T0 + cc,

(46b)

with,

F1,1 (T1) = − 4Ωμ0i A
2
22 (T1) , (47a–b)

F1,2 (T1) = − 2Ωω1i
[
C2

v1 (T1) + C2
w1 (T1)

]
,

F1,3 (T1) = −2Ωω2i
[
D2

v1 (T1) + D2
w1 (T1)

]
, (47c)

F1,4 (T1) =
(
ω2
1 − ω2

2

)
[Cv1 (T1) Dw1 (T1) (47d)

−Cw1 (T1) Dv1 (T1)]

− 2Ωi (ω1 + ω2) [Cv1 (T1) Dv1 (T1)

+Cw1 (T1) Dw1 (T1)] ,
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F1,5 (T1) =
(
ω2
1 − ω2

2

) [
Cv1 (T1) D̄w1 (T1) (47e)

−Cw1 (T1) D̄v1 (T1)
]

− 2Ωi (ω1 − ω2)
[
Cv1 (T1) D̄v1 (T1)

+Cw1 (T1) D̄w1 (T1)
]
,

F4,1 (T1) = 2ΩA11 (T1) A22 (T1) . (47f)

Elimination of secular terms of Eq. (46) and averag-
ing in constant terms lead to the amplitude modulation
equations of first-order approximation given by,

− 4I1L A
′
11 = 0 ⇔ A11 = ct, (48a)

2FA′
11 + 2Ω

(
Aθ,1Aφ,1 + Aθ,2Aφ,2

) = 0

⇔ 2FA′
11 = 0 ⇔ A11 = ct, (48b)

whereas in the derivation of (Eq. 48b) the explicit form
of amplitudes defined in equations (26–27) which lead
to elimination of the second term in left side was con-
sidered. Also, with averaging of the rest secular terms
of Eq. (46) and separating real with imaginary parts,
the following set of equations lead to,

− I1L A
′
θ,1 + Fμ0A

′
φ,2 = 0 ⇔

Aθ,1 (T1) = Fμ0

I1L
Aφ,2 (T1) + a11, (49a)

FA′
θ,1 − μ0A

′
φ,2 + ΩA11Aφ,1 = 0, (49b)

I1L A
′
θ,2 + Fμ0A

′
φ,1 = 0 ⇔

Aθ,2 (T1) = − Fμ0

I1L
Aφ,1 (T1) + a12, (49c)

FA′
θ,2 + μ0A

′
φ,1 + ΩA11Aφ,2 = 0. (49d)

Using equations (26–27) in (Eqs. 49a, 49c) it can be
shown that,

a11 = a12 = 0, (50)

Then, the system of equations (49b,d) is taking the
form,

A′
φ,1 = −μ1Aφ,2, (51a)

A′
φ,2 = μ1Aφ,1, (51b)

with,

μ1 = I1LΩA11

μ0
(
I1L − F2

) . (52)

The eigenvalues
(
λ3,1÷2

)
and also the associated eigen-

vectors are given by,

λ3,1÷2 = ±iμ1, P3 =
[

1 1
−i i

]
, (53a–c)

P−1
3 = 1

2

[
1 i
1 −i

]
,

and the solution of the system (Eq. 49) can be deter-
mined using the fundamental solution matrix, which is
given by,

Φ3 (T1) = 1

2

[
eiμ1T1 + e−iμ1T1 ieiμ1T1 − ie−iμ1T1

−ieiμ1T1 + ie−iμ1T1 eiμ1T1 + e−iμ1T1

]
,

(54)

which lead to the solution of amplitudes for torsional
and rigid bodymotions in T1-scale, and in explicit form
they are given by,

Aφ,1 (T1) = 1

2

[
Aφ,1 (0) + i Aφ,2 (0)

]
eiμ1T1 + cc,

(55a)

Aφ,2 (T1) = 1

2

[
Aφ,2 (0) − i Aφ,1 (0)

]
eiμ1T1 + cc,

(55b)

Aθ,1 (T1) = 1

2

[
Aθ,1 (0) + i Aθ,2 (0)

]
eiμ1T1 + cc,

(55c)

Aθ,2 (T1) = 1

2

[
Aθ,2 (0) − i Aθ,1 (0)

]
eiμ1T1 + cc,

(55d)

whereas the last two equations arise from equations
(49a,c) considering (Eqs. 50, 55a–b) in conjunction
with (Eqs. 26–27).

Combining the solutions in both scales (Eq. 23 with
55), the following final solution in torsional with rigid
body motions for first-order approximation leads to,

qφ,1 (T0, T1) = A22 (0) ei(μ0T0−εμ1T1) + cc, (56a)

θ̇1 (T0, T1) = A11

2
+ A12 (0) ei(μ0T0−εμ1T1) + cc.

(56b)

3.4 Solution of amplitude modulation equations of
first order for both lateral bending motions

In this section, the amplitudes in equations (42) with
respect to time scale T1 by eliminating the secular terms
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of ε2 in equations (20b–c) are determined. Consider-
ing equations (18, 21) and, using the new notation,
the right-hand side of equations (20b–c) are taking the
form,

F2 = −θ̈1qw,1 − 2 (1 − M) q̇
′
v,1

+ 2Ωθ̇1qv,1 − 2Ωq
′
w,1 − 2θ̇1q̇w,1, (57a)

F3 = θ̈1qv,1 − 2 (1 − M) q̇
′
w,1

+ 2Ωθ̇1qw,1 + 2Ωq
′
v,1 + 2θ̇1q̇v,1. (57b)

Considering the first-order solutions (Eqs. 23, 42),
equations (57) are taking the form,

F2 = [−2 (1 − M) iω1C
′
v1 (T1)

+ 2ΩA11Cv1 (T1) − 2ΩC ′
w1 (T1)

− 2iω1A11Cw1 (T1)] e
iω1T0

+ [−2 (1 − M) iω2D
′
v1 (T1) + 2ΩA11Dv1 (T1)

− 2ΩD′
w1 (T1) − 2A11iω2Dw1 (T1)

]
eiω2T0

+ [−iμ0A12 (T1)Cw1 (T1) + + 2ΩA12 (T1)Cv1 (T1)

− 2iω1A12 (T1)Cw1 (T1)] e
i(μ0+ω1)T0

+ [−iμ0A12 (T1) Dw1 (T1)

+ 2ΩA12 (T1) Dv1 (T1)

− 2iω2A12 (T1) Dw1 (T1)] e
i(μ0+ω2)T0 +

+ [−iμ0A12 (T1) C̄w1 (T1)

+ 2ΩA12 (T1) C̄v1 (T1) +
+ 2iω1A12 (T1) C̄w1 (T1)

]
ei(μ0−ω1)T0

+ [−iμ0A12 (T1) D̄w1 (T1)

+ 2ΩA12 (T1) D̄v1 (T1)

+ 2iω2A12 (T1) D̄w1 (T1)
]
ei(μ0−ω2)T0 + cc, (58a)

F3 = [−2 (1 − M) iω1C
′
w1 (T1)

+ 2ΩA11Cw1 (T1) + 2ΩC ′
v1 (T1)

+ 2iω1A11Cv1 (T1)] e
iω1T0

+ [−2 (1 − M) iω2D
′
w1 (T1) + 2ΩA11Dw1 (T1)

+ 2ΩD′
v1 (T1)

+ 2iω2A11Dv1 (T1)] e
iω2T0

+ [iμ0A12 (T1)Cv1 (T1) +
+ 2ΩA12 (T1)Cw1 (T1)

+ 2iω1A12 (T1)Cv1 (T1)] e
i(μ0+ω1)T0 +

+ [iμ0A12 (T1) Dv1 (T1)

+ 2ΩA12 (T1) Dw1 (T1) + 2iω2A12 (T1) Dv1 (T1)]

× ei(μ0+ω2)T0 + [iμ0A12 (T1) C̄v1 (T1)

+ 2ΩA12 (T1) C̄w1 (T1)

− 2iω1A12 (T1) C̄v1 (T1)
]
ei(μ0−ω1)T0

+ [iμ0A12 (T1) D̄v1 (T1)

+ 2ΩA12 (T1) D̄w1 (T1)

− 2iω2A12 (T1) D̄v1 (T1)
]
ei(μ0−ω2)T0 + cc, (58b)

where the overbar denotes the complex conjugate. In
equations (58), the elimination of secular terms and
the separation of real with imaginary parts lead to the
following two decoupled similar systems of differential
equations,which canbewritten in the followinggeneral
form,

⎡
⎢⎢⎣

(1 − M) ω j , 0, 0, −Ω,

0, − (1 − M) ω j , −Ω, 0
0, Ω, (1 − M) ω j , 0
Ω, 0, 0, − (1 − M) ω j

⎤
⎥⎥⎦

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B ′
v2, j (T1)

B ′
v1, j (T1)

B ′
w2, j (T1)

B ′
w1, j (T1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

⎡
⎢⎢⎣

0, ΩA11, A11ω j , −Ω,

ΩA11, 0, 0, −A11ω j

−A11ω j , 0, 0, ΩA11

0, A11ω j , ΩA11, 0

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Bv2, j (T1)
Bv1, j (T1)
Bw2, j (T1)
Bw1, j (T1)

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

0
0
0
0

⎫⎪⎪⎬
⎪⎪⎭

, j = 1, 2, (59)

where j = 1 corresponds to the system arising from
first frequency (ω1) and j = 2 to the system arising
from the second frequency (ω2).

Setting,

a3, j = (1 − M) ω j , b3 = ΩA11, c3, j = A11ω j .

(60a–c)

The eigenvalues of this system are given by,

λ4, j,1 = −
(
b3 − c3, j

)
a3, j − Ω

i = −
(

ΩA11 − A11ω j

(1 − M) ω j − Ω

)

× i = 2π fdet, j,1i = ωdet, j,1i, (61a)

λ4, j,2 = −
(
b3 + c3, j

)
a3, j + Ω

i = −
(

ΩA11 + A11ω j

(1 − M) ω j + Ω

)

× i = −2π fdet, j,2i = −ωdet, j,2i, (61b)

λ4, j,3 = −ωdet, j,1i, λ4, j,4 = ωdet, j,2i. (61c–d)
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The associated matrix of eigenvectors and its inverse
are given by,

P4,j =

⎡
⎢⎢⎣

1, 1, 1, 1,
i p j,1, −i p j,2, −i p j,1, i p j,2

iq j,1, −iq j,2, −iq j,1, iq j,2

r j,1, r j,2, r j,1, r j,2

⎤
⎥⎥⎦ , (62a, b)

P−1
4,j =

⎡
⎢⎢⎣
e j,1, −i f j,1, ig j,1, −h j,1

e j,2, −i f j,2, ig j,2, h j,1

e j,1, i f j,1, −ig j,1, −h j,1

e j,2, i f j,2, −ig j,2, h j,1

⎤
⎥⎥⎦ ,

With fundamental solution matrix given by,

Φ4,j (T1) (62c)

=

⎡
⎢⎢⎣

e j,1eiωdet, j,1T1 + e j,2eiωdet, j,2T1 ,

ie j,1 p j,1eiωdet, j,1T1 + ie j,2 p j,2eiωdet, j,2T1 ,

−i f j,1eiωdet, j,1T1 + i f j,2eiωdet, j,2T1 ,

f j,1 p j,1eiωdet, j,1T1 − f j,2 p j,2eiωdet, j,2T1 ,

ie j,1q j,1eiωdet, j,1T1 + ie j,2q j,2eiωdet, j,2T1 ,

e j,1r j,1eiωdet, j,1T1 + e j,2r j,2eiωdet, j,2T1 ,

f j,1q j,1eiωdet, j,1T1 − f j,2q j,2eiωdet, j,2T1 ,

−i f j,1r j,1eiωdet, j,1T1 + i f j,2r j,2eiωdet, j,2T1 ,

ig j,1eiωdet, j,1T1 − ig j,2eiωdet, j,2T1 ,−h j,1eiωdet, j,1T1 + h j,1eiωdet, j,2T1

−g j,1 p j,1eiωdet, j,1T1 + g j,2 p j,2eiωdet, j,2T1 ,−ih j,1 p j,1eiωdet, j,1T1 + ih j,1 p j,2eiωdet, j,2T1

−g j,1q j,1eiωdet, j,1T1 + g j,2q j,2eiωdet, j,2T1 ,−ih j,1q j,1eiωdet, j,1T1 + ih j,1q j,2eiωdet, j,2T1

ig j,1r j,1eiωdet, j,1T1 − ig j,2r j,2eiωdet, j,2T1 ,−h j,1r j,1eiωdet, j,1T1 + h j,1r j,2eiωdet, j,2T1

⎤
⎥⎥⎦

+ cc,

and,

p j,k = j j,k
d j,kωdet, j,k

, (63a–c)

q j,k = k j,k
d j,kωdet, j,k

,

r j,k = l j,k
d j,k

, with k = 1, 2,

e j,1 = d j,1l j,2
m j,1

, e j,2 = −d j,2l j,1
m j,1

, (63d–g)

f j,1 = d j,1k j,2ωdet, j,1

m j,2
, f j,2 = d j,2k j,1ωdet, j,2

m j,2
,

g j,1 = d j,1 j j,2ωdet, j,1

m j,2
, g j,2 = d j,2 j j,1ωdet, j,2

m j,2
,

(63h–j)

h j,1 = d j,1d j,2

m j,1
,

d j,k = a23, jω
2
det, j,kΩ − 2a3, j b3c3, j (63k)

+ b23Ω+c23, jΩ−ω2
det, j,kΩ

3,

j j,k = a23, j c3, jω
2
det, j,k − 2a3, j b3ω

2
det, j,kΩ (63l)

+ b23c3, j − c33, j + c3, jω
2
det, j,kΩ

2,

k j,k = a23, j b3ω
2
det, j,k − 2a3, j c3, jω

2
det, j,kΩ (63m)

+ b3c
2
3, j − b33 + b3ω

2
det, j,kΩ

2,

l j,k = a33, jω
2
det, j,k − a3, j b

2
3 − a3, j c

2
3, j (63n)

− a3, jω
2
det, j,kΩ

2+2b3c3, jΩ,

m j,1 = 2
(
d j,1l j,2 − d j,2l j,1

)
, (63o–p)

m j,2 = 2
(
j j,1k j,2 − j j,2k j,1

)
.

Then, the solution of system (Eq. 59) is given by,

Bv1, j (T1) = (QR1, j + i QI1, j
)
eiωdet, j,1T1

+ (QR2, j + i QI2, j
)
eiωdet, j,2T1 + cc,

(64a)

Bv2, j (T1) = (PR1, j + i PI1, j
)
eiωdet, j,1T1

+ (PR2, j + i PI2, j
)
eiωdet, j,2T1 + cc,

(64b)

Bw1, j (T1) = (UR1, j + iUI1, j
)
eiωdet, j,1T1

+ (UR2, j + iUI2, j
)
eiωdet, j,2T1 + cc,

(64c)
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Bw2, j (T1) = (SR1, j + i SI1, j
)
eiωdet, j,1T1

+ (SR2, j + i SI2, j
)
eiωdet, j,2T1 + cc,

(64d)

with amplitudes for:
Bv1, j (T1) given by,

QR1, j = f j,1 p j,1Bv1, j (0) − g j,1 p j,1Bw2, j (0) ,

(65a)

QI1, j = e j,1 p j,1Bv2, j (0) − h j,1 p j,1Bw1, j (0) ,

(65b)

QR2, j = − f j,2 p j,2Bv1, j (0) + g j,2 p j,2Bw2, j (0) ,

(65c)

QI2, j = e j,2 p j,2Bv2, j (0) + h j,1 p j,2Bw1, j (0) ,

(65d)

Bv2, j (T1) given by,

PR1, j = e j,1Bv2, j (0) − h j,1Bw1, j (0) , (65e)

PI1, j = − f j,1Bv1, j (0) + g j,1Bw2, j (0) , (65f)

PR2, j = e j,2Bv2, j (0) + h j,1Bw1, j (0) , (65g)

PI2, j = f j,2Bv1, j (0) − g j,2Bw2, j (0) , (65h)

Bw1, j (T1) given by,

UR1, j = e j,1r j,1Bv2, j (0) − h j,1r j,1Bw1, j (0) , (65i)

UI1, j = − f j,1r j,1Bv1, j (0) + g j,1r j,1Bw2, j (0) ,

(65j)

UR2, j = e j,2r j,2Bv2, j (0) + h j,1r j,2Bw1, j (0) , (65k)

UI2, j = f j,2r j,2Bv1, j (0) − g j,2r j,2Bw2, j (0) , (65l)

Bw2, j (T1) given by,

SR1, j = f j,1q j,1Bv1, j (0) − g j,1q j,1Bw2, j (0) , (65m)

SI1, j = e j,1q j,1Bv2, j (0) − h j,1q j,1Bw1, j (0) , (65n)

SR2, j = − f j,2q j,2Bv1, j (0) + g j,2q j,2Bw2, j (0) ,

(65o)

SI2, j = e j,2q j,2Bv2, j (0) + h j,1q j,2Bw1, j (0) . (65p)

Combining the solutions in both scales (Eq. 42 with
64), the following final solution in both lateral bending
motions for first-order approximation leads to,

qv,1 (T0, T1) = 2
2∑
j=1

2∑
k=1

[(
QRj,k − PI j,k

)

cos
(
ωkT0 + εωdet,k, j T1

)]

− 2
2∑
j=1

2∑
k=1

[(
QI j,k + PRj,k

)

· sin (ωkT0 + εωdet,k, j T1
)]

+ 2
2∑
j=1

2∑
k=1

[(
QRj,k + PI j,k

)

· cos (ωkT0 − εωdet,k, j T1
)]−

− 2
∑2

j=1

∑2

k=1

[(
PRj,k − QI j,k

)

sin
(
ωkT0 − εωdet,k, j T1

)]
, (66a)

qw,1 (T0, T1) = 2
2∑
j=1

2∑
k=1

[(
URj,k − SI j,k

)

cos
(
ωkT0 + εωdet,k, j T1

)]−
− 2

2∑
j=1

2∑
k=1

[(
UI j,k + SRj,k

)

· sin (ωkT0 + εωdet,k, j T1
)]+

+ 2
2∑
j=1

2∑
k=1

[(
URj,k + SI j,k

)

· cos (ωkT0 − εωdet,k, j T1
)]−

− 2
∑2

j=1

∑2

k=1

[(
SRj,k −UI j,k

)

sin
(
ωkT0 − εωdet,k, j T1

)]
, (66b)

In equations (66a-b), it is clear that the frequencies
ωdet,1,1, ωdet,1,2, ωdet,2,1, ωdet,2,2 are all detuning fre-
quencies from the CD; since it is shown in [30] and
in numerical section 4.2 of this article, the first-order
solution frequencies (ω1, ω2) coincide with those in
CD.

It should be mentioned that the system (Eq. 59)
becomes singular near the first-order critical speeds
with the condition of,

(1 − M) ω j − Ω = 0, (67)

and this analysis is no longer valid. Similarly, in the
case of neglecting rotary inertia terms with (M = 0),
then, exactly at the critical speeds of first-order approx-
imation the system (Eq. 59) becomes singular and this
analysis is no longer valid.
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Also, in case of critical speeds in first-order approxi-
mation (which can be obtained also from the CD), then
ω j = Ω , either for j = 1, 2, and then,

ωdet, j,1 = −
(

ΩA11 − A11Ω

(1 − M) Ω − Ω

)
= 0. (68)

3.5 Solution of second-order approximation for rigid
body with torsional motions

In this section, the second-order system of differen-
tial equations for the rigid body with torsional motions
formed by equations (20a,d) is solved, and consider-
ing Eq. (46) after the elimination of secular terms in
Sect. 3.3, the following system of differential equations
leads to:

2I1L θ̈2 − 2Fq̈φ,2 = F1,1 (T1) e
i2μ0T0

+ F1,2 (T1) e
i2ω1T0 + F1,3 (T1) e

i2ω2T0

+F1,4 (T1) e
i(ω1+ω2)T0 + F1,5 (T1) e

i(ω1−ω2)T0 + cc,

(69a)

− F θ̈2 + q̈φ,2 = −
(
ω2
T 0 − Ω2

)
qφ,2

+F4,1 (T1) e
i2μ0T0 + F̄4,1 (T1) e

−i2μ0T0 , (69b)

with constants in T0-scale given by (Eq. 47). This sys-
tem can be decoupled easily to,

θ̈2 = S0qφ,2 +
[
S1 (T1) e

i2μ0T0 + S2 (T1) e
i2ω1T0

+S3 (T1) e
i2ω2T0 + S4 (T1) e

i(ω1+ω2)T0

+S5 (T1) e
i(ω1−ω2)T0 + cc

]
, (70a)

q̈φ,2 + μ2
0qφ,2 = V1 (T1) e

i2μ0T0 + V2 (T1) e
i2ω1T0

+V3 (T1) e
i2ω2T0 + V4 (T1) e

i(ω1+ω2)T0

+V5 (T1) e
i(ω1−ω2)T0 + cc, (70b)

with,

S0 = −Fμ2
0

I1L
, S1 (T1) = F1,1 (T1) + 2FF4,1 (T1)

2
(
I1L − F2

) ,

(71a–c)

S j (T1) = F1, j (T1)

2
(
I1L − F2

) with j = 2 : 5,

V1 (T1) = FF1,1 (T1) + 2I1LF4,1 (T1)

2
(
I1L − F2

) , (71d–e)

Vj (T1) = FF1, j (T1)

2
(
I1L − F2

)with j = 2 : 5

The solution of second equation can be derived easily
considering the solution of first-order approximation,
and using the Duhamel’s integral, it is given by [29],

qφ,2 (T0) = R2,0 (T1) e
iμ0T0

+ R2,1 (T1) e
i2μ0T0 + R2,2 (T1) e

i2ω1T0 +
+ R2,3 (T1) e

i2ω2T0 + R2,4 (T1) e
i(ω1+ω2)T0

+ R2,5 (T1) e
i(ω1−ω2)T0 + cc, (72)

with,

R2,0 (T1)

= 1

6μ2
0

[
3V1 (T1) − V̄1 (T1)

]

+ V2 (T1) (2ω1 + μ0) − V̄2 (T1) (2ω1 − μ0)

2μ0
(
4ω2

1 − μ2
0

)

+ V3 (T1) (2ω2 + μ0) − V̄3 (T1) (2ω2 − μ0)

2μ0
(
4ω2

2 − μ2
0

)

+ V4 (T1) (ω1 + ω2 + μ0)

2μ0
[
(ω1 + ω2)

2 − μ2
0

] − V̄4 (T1) (ω1 + ω2 − μ0)

2μ0
[
(ω1 + ω2)

2 − μ2
0

]

+ V5 (T1) (ω1 − ω2 + μ0) − V̄5 (T1) (ω1 − ω2 − μ0)

2μ0
[
(ω1 − ω2)

2 − μ2
0

] ,

(73a)

R2,1 (T1) = −V1 (T1)

3μ2
0

, (73b-d)

R2,2 (T1) = − V2 (T1)(
4ω2

1 − μ2
0

) ,

R2,3 (T1) = − V3 (T1)(
4ω2

2 − μ2
0

) ,

R2,4 (T1) = − V4 (T1)[
(ω1 + ω2)

2 − μ2
0

] , (73e-f)

R2,5 (T1) = − V5 (T1)[
(ω1 − ω2)

2 − μ2
0

] .

Finally, considering (Eq. 72) with direct integra-
tion of Eq. (70a) the angular velocity in second-order
approximation leads to,

θ̇2 (T0) = U2,0 (T1) +U2,1 (T1) e
iμ0T0

+U2,2 (T1) e
i2μ0T0 +U2,3 (T1) e

i2ω1T0
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+U2,4 (T1) e
i2ω2T0 + U2,5 (T1) e

i(ω1+ω2)T0

+U2,6 (T1) e
i(ω1−ω2)T0 + cc, (74)

with,

U2,1 (T1) = − i S0R2,0 (T1)

μ0
, (75a–b)

U2,2 (T1) = − i
[
S0R2,1 (T1) + S1 (T1)

]
2μ0

,

U2,3 (T1) = − i
[
S0R2,2 (T1) + S2 (T1)

]
2ω1

, (75c–d)

U2,4 (T1) = − i
[
S0R2,3 (T1) + S3 (T1)

]
2ω2

,

U2,5 (T1) = − i
[
S0R2,4 (T1) + S4 (T1)

]
(ω1 + ω2)

, (75e-f)

U2,6 (T1) = − i
[
S0R2,5 (T1) + S5 (T1)

]
(ω1 − ω2)

,

U2,0 (T1) = −
∑6

j=1
U2, j (T1) . (75g)

3.6 Solution of second-order approximation for both
lateral bending motions

In this section, the second-order system of differential
equations for both lateral bending motions formed by
equations (20b–c) is solved, whereas using new nota-
tion, considering (Eq. 58) and neglecting secular terms,
leads to the following system of differential equations:

(1 − M) q̈v,2 − Ω2qv,2 + ω2
b (1 − M) qv,2 + 2Ω q̇w,2

= F2 = F2,1 (T1) e
i(μ0+ω1)T0 + F2,2 (T1) e

i(μ0+ω2)T0

+ F2,3 (T1) e
i(μ0−ω1)T0 + F2,4 (T1) e

i(μ0−ω2)T0 + cc,

(76a)

(1 − M) q̈w,2 − Ω2qw,2 + ω2
b (1 − M) qw,2 − 2Ω q̇v,2

= F3 = F3,1 (T1) e
i(μ0+ω1)T0 + F3,2 (T1) e

i(μ0+ω2)T0

+ F3,3 (T1) e
i(μ0−ω1)T0 + F3,4 (T1) e

i(μ0−ω2)T0 + cc,

(76b)

with,

F2,1 (T1) = −iμ0A12 (T1)Cw1 (T1)

+ 2ΩA12 (T1)Cv1 (T1)

− 2iω1A12 (T1)Cw1 (T1) , (77a)

F2,2 (T1) = −iμ0A12 (T1) Dw1 (T1)

+ 2ΩA12 (T1) Dv1 (T1)

− 2iω2A12 (T1) Dw1 (T1) , (77b)

F2,3 (T1) = −iμ0A12 (T1) C̄w1 (T1)

+ 2ΩA12 (T1) C̄v1 (T1)

+ 2iω1A12 (T1) C̄w1 (T1) , (77c)

F2,4 (T1) = −iμ0A12 (T1) D̄w1 (T1)

+ 2ΩA12 (T1) D̄v1 (T1)

+ 2iω2A12 (T1) D̄w1 (T1) , (77d)

F3,1 (T1) = iμ0A12 (T1)Cv1 (T1)

+ 2ΩA12 (T1)Cw1 (T1)

+ 2iω1A12 (T1)Cv1 (T1) , (77e)

F3,2 (T1) = iμ0A12 (T1) Dv1 (T1)

+ 2ΩA12 (T1) Dw1 (T1)

+ 2iω2A12 (T1) Dv1 (T1) , (77f)

F3,3 (T1) = iμ0A12 (T1) C̄v1 (T1)

+ 2ΩA12 (T1) C̄w1 (T1)

− 2iω1A12 (T1) C̄v1 (T1) , (77g)

F3,4 (T1) = iμ0A12 (T1) D̄v1 (T1)

+ 2ΩA12 (T1) D̄w1 (T1)

− 2iω2A12 (T1) D̄v1 (T1) . (77h)

The solution of the non-homogeneous linear system
(Eq. 76), for zero initial conditions, can be deter-
mined through integration of the fundamental matrix
�2 (T0 − s) (explicit form is given by Eq. 39) multi-
plied with the non-homogeneous part; therefore, using
also equations (27, 42, 55, 64), it is given by,

qv,2 (T0, T1) = W2,1,3 (T1) e
iω1T0

+W2,2,3 (T1) e
iω2T0

+W2,3,3 (T1) e
i(μ0+ω1)T0

+W2,4,3 (T1) e
i(μ0+ω2)T0

+W2,5,3 (T1) e
i(μ0−ω1)T0

+W2,6,3 (T1) e
i(μ0−ω2)T0 + cc, (78a)

qw,2 (T0, T1) = W2,1,4 (T1) e
iω1T0

+W2,2,4 (T1) e
iω2T0

+W2,3,4 (T1) e
i(μ0+ω1)T0

+W2,4,4 (T1) e
i(μ0+ω2)T0

+W2,5,4 (T1) e
i(μ0−ω1)T0

+W2,6,4 (T1) e
i(μ0−ω2)T0 + cc, (78b)

with, amplitudes given in equations (C.2-13) in
“Appendix-C” section.
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Fig. 2 Comparison of the direct numerical simulation with the analytical solution of first-order approximation: a for bending motion
in y-direction (qv,1 (T0)), b for bending motion in z-direction (qw,1 (T0))

It should be noted that considering zero initial con-
ditions in torsion, equation (27b) applied in (Eq. 77)
leads to,

qv,2 (T0) = qw,2 (T0) = 0. (79)

Therefore, Eq. (79) means that in case of zero torsional
initial conditions the second-order approximation for
both lateral bending motions is zero.

4 Numerical results and discussion

A stainless steel shaft with external and internal
radius ro= 0.03m, and ri= 0.028m is considered,
respectively. The length is L = 1m, the density is
ρ= 7850 kg/m3,with thematerial properties ofYoung’s
and shear modulus are E = 200GPa, G = 76.9GPa,
respectively. It should be noted that the particular shaft
is thin-walled since the ratio of length with thickness
is 500 (� 10) and ratio of length with external diam-
eter is 16.67 (> 10); therefore, for the examination of
the lower modes of vibration it can be modelled as EB
beam by neglecting the shear effects [31].

4.1 Verification of individual analytical solutions

In this section, the shaft with the following initial con-
ditions is considered,

θ̇1(0) = 500 rad/s(= 4775 R.P.M.), qφ,1 (0) = 1, q̇φ,1 (0) = 1,

qv,1 (0) = 1, qw,1 (0) = 1, q̇v,1, (0) = 1 q̇w,1(0) = 1,

and it is compared, the individual solutions are obtained
in Sects. 3.1–3.6 with direct numerical integration of
the associated individual systems. It should be men-
tioned that for this angular velocity (θ̇1(0)), in order
to define the natural frequencies in bending, based on
Sect. 3.2 for the first-order approximation analysis, the
following parameters have to be specified using equa-
tions (32a,c),

η1 = −1.2874 × 106 < 0, η2 = 1.0309 × 1012 > 0,

η1 + √
η2 = −2.7208 × 105 < 0,

which corresponds to the first case and the frequen-
cies in bending for first-order approximation are given
by Eq. (35). Also, for this particular shaft η2 ≤ 0 for
θ̇1(0) ≥ 15,890 rad/s (= 151,741R.P.M.) in very high
rotating speeds which is the third case and can be prac-
tically ignored for this shaft.

In Fig. 2a, b, the responses from analytical solution
(Eq. 42a–b) and the responses with the direct numer-
ical integration of the system with equations (28a–b)
are depicted, which is the first-order approximation for
both lateral bending motions. In both figures (2a,b), the
numerical simulation with the analytical solutions is in
very good agreement.

The analytical solutions (Eq. 64a–d) of amplitude
modulation equations for both lateral bending motions
in T1 scale defined by the systems (Eq. 59 for first
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Fig. 3 Comparison of the direct numerical simulation with the
analytical solution of amplitude modulation equations for both
lateral bending motions: a amplitudes Bv1,1 (T1) and Bv2,1 (T1),

b amplitudes Bv1,2 (T1) and Bv2,2 (T1), c amplitudes Bw1,1 (T1)
and Bw2,1 (T1), d amplitudes Bw1,2 (T1) and Bw2,2 (T1)

with j = 1 and second mode with j = 2) and those
obtained by direct numerical integration, are depicted
in Fig. 3a–d. The analytical solutions in both figures
are in very good agreement with those obtained from
direct numerical integration.

In Fig. 4a–b are depicted the responses for the
second-order approximation for torsional and rigid
body motions of the system of equations (69) using
direct numerical integration and also using the analyt-
ical solutions (Eqs. 72, 74). In Fig. 4a, b, the analyt-
ical solutions are in very good agreement with those
obtained from numerical integration.

In Fig. 5a, b are depicted the second-order approx-
imation responses, from analytical solutions (Eq. 78a,

b) for both lateral bending motions and compared with
those obtained with direct numerical integration of the
system (Eq. 76); they are in very good agreement.

4.2 Determination of Campbell diagram

In this section, the CD obtained with finite element
simulations using commercial software (ANSYS), the
analytical frequencies from Sect. 3.2, and the detuning
frequencies from Sect. 3.4 is compared. Based on the
particular shaft dimensions and material, in Table 1 are
listed the different values of the parameters (η1, η2)

determined by equations (29a, c) for several rotating
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Fig. 5 Comparison of the direct numerical integration results with the analytical response of second-order approximation: a for bending
motion in y-direction (qv,2 (T0)), b for bending motion in z-direction (qw,2 (T0)).

speeds, whereas it is clear: η1 < 0, η2 > 0 and(
η1 + √

η2
)

< 0 which leads to the first case of solu-
tions as described in Sect. 3.2. The natural frequencies
are given by Eq. (35). It should be noted that the natural
frequencies obtained with Eq. (35) are corresponding
to the solution of the first-order approximation without
considering the detuning frequencies arising from the
amplitude modulation equations.

A solid model of the shaft was created for FEA with
the commercial software ANSYS, and linear modal
analysis for various rotating speeds was performed. In
Fig. 6 are depicted the natural frequencies of the first
two modes in bending for five rotating speeds deter-

mined with FEA and those obtained from analytical
methods of Sects. 3.2 (linear) and 3.4 (detuning fre-
quencies).

It is clear that the two lines associated with the theo-
retical linear natural frequencies (f1, f2) obtained using
Eq. (35) are in very good agreementwith those obtained
with FEA.

Even for zero rotating speed, whereas there is one
double mode in bending (with different mode shapes),
there is a slight discrepancy in frequencies between
analytical and FEA with the value of the later to be
slightly lower. This can be attributed to the fact that the
EBbeam theory is neglecting the shear effects, which is
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Table 1 Estimated parameters for the definition of natural fre-
quencies in first-order approximation in bending

Ω (R.P.M.) η1 × 10−6 η2 × 10−12
(
η1 + √

η2
)× 10−6

0 −1.0405 0 −1.0405

100 −1.0406 0.0005 −1.0193

250 −1.0412 0.0028 −0.988

500 −1.0432 0.0113 −0.9368

750 −1.0466 0.0255 −0.887

1000 −1.0513 0.0453 −0.8386

1250 −1.0574 0.0707 −0.7915

1500 −1.0649 0.1018 −0.7458

1750 −1.0737 0.1386 −0.7014

2000 −1.0838 0.181 −0.6583

2250 −1.0953 0.2291 −0.6167

2500 −1.1082 0.2828 −0.5764

2750 −1.1224 0.3422 −0.5374

3000 −1.138 0.4072 −0.4998

3250 −1.1549 0.4779 −0.4636

3500 −1.1732 0.5542 −0.4287

3750 −1.1928 0.6361 −0.3952

4000 −1.2138 0.7237 −0.3631

4250 −1.2361 0.8169 −0.3323

4500 −1.2598 0.9158 −0.3028

4750 −1.2849 1.0203 −0.2748

5000 −1.3113 1.1304 −0.2481

not the case in the finite element modelling in ANSYS.
The same trend is following the natural frequencies in
all the rest rotating speeds.Also, it can be depicted from
Fig. 6 that the critical speed based on the linear natural
frequencies is at 4878 R.P.M.

Also in Fig. 6, the theoretical natural frequencies for
different rotating speeds are depicted using the first-
order solution (Eq. 35) incorporating the detuning fre-
quencies from amplitude modulation equations (67a–
b) (considering A11 = Ω) and neglecting the single
point that the amplitude modulation equations become
singular. In Fig. 6, examining the detuning frequencies
from the CD, there are additional three distinct main
lines of frequencies (below 5000 R.P.M.).

The first one is below the first linear mode resulting
in one more ‘critical speed’ at 3260 R.P.M., which is
lower than the linear one. Also, about the other two
additional lines of modes; one is in between the two
linear modes and one is higher than the second linear
mode. The significance of the solutions of the first-
order approximation and also of the CD with the asso-
ciated critical speeds are examined in the next section,
whereas it is compared the analytical solutions with
direct numerical integration of the original system.

4.3 Comparison of multiple scales solution with
direct numerical integration

In this section, a shaft with initial conditions only in lat-
eral bending to restrict the examination in phenomena

Fig. 6 Campbell diagram
and the nonlinear first-order
solution with detuning
frequencies
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relevant to the CD is considered. It should be noted that
a considered set of initial conditions in lateral bend-
ing is not just one. The shaft can have any value of
θ as initial condition (arbitrary constant); therefore,
the selected set of initial conditions for lateral bend-
ingmotions corresponds to all instanceswhich have the
samecombined radial amplitude, and it is definedby the
two deformations of the lateral bendingmotions. In this
section, the following set of initial conditions is used,

qv (0) = 1, qw (0) = 1, q̇v (0) = 0,

q̇w (0) = 0, qφ (0) = 0, q̇φ (0) = 0,

for four different rotating speeds,

(a) θ̇a (0) = 104.72 rad/s (= 1000 R.P.M.),
(b) θ̇b (0) = 157.08 rad/s (= 1500 R.P.M.),
(c) θ̇c (0) = 341.39 rad/s (= 3260 R.P.M.),
(d) θ̇d (0) = 510.82 rad/s (= 4878 R.P.M.),

and the responses obtained from overall multiple scale
solution (Eq. 17) using first- and second-order solu-
tions (Eqs. 56, 66, 72, 74, 78) are compared with those
responses obtained with the direct numerical integra-
tion of equations (14). It should be commented that for
these initial conditions, the second-order approxima-
tion for both lateral bending motions is zero (Eq. 79).

The third (θ̇c(0) and fourth (θ̇d(0)) angular veloci-
ties are at the critical speeds as they are obtained from
Fig. 6, and it is examined the validity of this first-order
approximation analysis.

On each one of the following figures that corre-
spond to the responses of lateral bendingmotions, three
responses are depicted: these ones obtained from direct
numerical simulation; the second ones obtained from
the full multiple scales analysis; and the third ones
obtained frommultiple-scale analysis restricted to only
T0-scale of the first-order approximation analysis.

In Fig. 7a–d are depicted the transient responses
from analytical solution and those from direct numer-
ical integration for the first angular velocity θ̇a(0). In
Fig. 7a, the modal responses are depicted for lateral
bending motion in the y-direction (qv (t)), obtained
from analytical and numerical solutions. The responses
of the direct numerical integration with the full multi-
ple scales solution are in very good agreement apart
of some small spikes, e.g. in around 0.2, 0.35 s etc.
in higher frequencies due to restricted multiple scales
analysis to second-order approximation. On the con-
trary, the first-order solution which corresponds to the
restricted T0-scale solution (associated with the CD)

is very different from this one obtained from direct
numerical integration even in low frequencies, e.g.
envelope. In Fig. 7b are depicted the transient modal
responses for lateral bending motion in the z-direction
(qw (t)), which are provide the same qualitative results
as those obtained from Fig. 7a for lateral bending
motion in the y-direction (qv (t)); the numerical with
the analytical are in good agreement.

For low angular velocities, the first-order total ana-
lytical solution is valid for the estimation of the dom-
inant frequencies as they are obtained including the
detuning frequencies from the CD, noted though that
the associated solutions with the CD are not describing
the dynamics.

In Fig. 7c are depicted the transient modal responses
for torsion, obtained from direct numerical integration
and the multiple scales solution. They follow the same
envelope in lower frequencies but not in higher frequen-
cies. Similar results are concluded from Fig. 7d, with
the transient responses of the angular velocity between
the solutions obtained from direct numerical integra-
tion and multiple scales solutions. In both analytical
solutions, for torsional modal angle and angular veloc-
ity, the higher-order terms in multiple scales analysis
are needed for convergence in higher frequencies.

It should be noted that similar results for torsional
and rigid body rotation responses were obtained in
all the other cases. Therefore on the subsequent pre-
sented results, although there has been comparison
between numerical with analytical solutions for all the
responses, due to the fact that the torsional with rigid
body motions responses have the same information as
in Fig. 7c, d, they will be omitted and it will be pre-
sented only the results for lateral bending motions.

Figure 8a, b depicts the transient responses of the
analytical solution, and the direct numerical integra-
tion using the second angular velocity θ̇b(0). In Fig. 8a
are depicted the modal responses for lateral bending
motion in the y-direction (qv (t)), obtained from the
direct numerical integration of the original system, and
of the analytical solutions. The responses of the direct
numerical integration with the multiple scales solution
are in very good agreement for a short time interval,
e.g. 0–0.3 s, but in later stages some lower frequencies
in numerical responses are different from the full ana-
lytical solution and this discrepancy can be attributed
that the higher-order terms (higher than second-order
approximation) are getting significant for this initial
angular velocity.
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(a) (b)

(c) (d)

Fig. 7 Comparison of the direct numerical integration responses with the multiple scales solution for θ̇a(0) rad/s: a bending motion in
y-direction (qv (t)), b bending motion in z-direction (qw (t)), c torsional modal angle

(
qφ (t)

)
, d angular velocity (θ̇(t))

Also, considering the restricted to T0-scale of first-
order approximation solution, the comparison with
direct numerical integration solution shows that they
are very different.

In Fig. 8b are depicted the transient modal responses
for lateral bending motion in the z-direction (qw (t)).
The full multiple scales analytical solution is in good
agreement with this one obtained from direct numeri-
cal integration only for the first 0.04 s and then some
different lower frequencies in the numerical solution
are playing a dominant role and can be attributed to
the need of including higher-order terms in the mul-
tiple scales solution. It should be commented that the
first-order analytical solution restricted only to T0-scale
is very different from this one obtained from direct
numerical integration.

In Fig. 9 are depicted the transient responses for lat-
eral bending motion in the y-direction (qv (t)), of the
analytical solutions, and direct numerical integration
for the third angular velocity θ̇c(0) which is in the crit-
ical speed caused by the detuning frequency.

The responses of the direct numerical integration
with themultiple scales solution are in very good agree-
ment for a very short time interval, e.g. 0–0.2 s, but
in later stages some lower frequencies in numerical
responses make them different from the full analyt-
ical solution, and this discrepancy can be attributed
to the absence of higher-order terms in the multiple
scales analytical solution. Also, considering the first-
order approximation response restricted to T0-scale
solution, the comparison with direct numerical integra-
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Fig. 8 Comparison of the
direct numerical integration
responses with the multiple
scales solution for
θ̇b(0) = 157.08 rad/s:
a bending motion in
y-direction (qv (t)),
b bending motion in
z-direction (qw (t))

(a)

(b)

tion response shows that they are very different, even
in lower frequencies.

Considering that the lower extreme values of almost
the sameamplitude on this time interval,which are indi-
cations of the lower frequency, then for the numerical
solution they are 13 and for the first-order restricted
analytical solution they are 21, which means that
the analytical frequency is almost double of this one
existing in numerical responses. Similar results were
obtained for the responses of lateral bending motion in
the z-direction (qw (t)).

In Fig. 10 are depicted the transient modal responses
for lateral bendingmotion in the y-direction (qv (t)), of
the analytical solutions, and the direct numerical inte-
gration for the fourth angular velocity θ̇d(0), which
is the first critical speed designated by the CD. The
responses of the direct numerical integration with the
multiple scales solution are very different.

Also, considering the first-order approximation
restricted to T0-scale solution (CD frequencies), the
comparison with direct numerical integration solution
shows that they are very different too, even in lower
frequencies considering that the lower extreme values

123



112 F. Georgiades

Fig. 9 Comparison of the
direct numerical integration
responses with the multiple
scales solution for
θ̇c(0) = 341.39 rad/s,
corresponding to bending
motion in y-direction
(qv (t))

Fig. 10 Comparison of the
direct numerical integration
responses with the multiple
scales solution for
θ̇d (0) = 510.82 rad/s,
corresponding to bending
motion in y-direction
(qv (t))

of the numerical solution on this time interval are 8,
and for the first-order analytical solution they are 16;
therefore, the designated by CD frequency is double
of this one from numerical simulation. Similar results,
without any qualitative difference, were obtained from
the comparison of the transient modal responses for
lateral bending motion in the z-direction (qw (t)).

The numerical responses in fourth case, for both lat-
eral bending motions, have been further analysed using
wavelet transform (with Morlet motherwavelet) with a
MATLAB tool developed in University of Liege [32,
33]. In Fig. 11 is depicted the wavelet spectrum of the
response in lateral bending in y-direction (qv (t)), and

it is clear that the dominant lower frequency is about
38 Hz, and also considering the first-order theoretical
analysis in T0-scale, f1 = 81.3 Hz, (equal to the crit-
ical speed) which is about the double size of the main
frequency of both lateral bending numerical responses.

Similar results were obtained from thewavelet spec-
trum of the numerical response for lateral bending in
z-direction (qw (t)). Therefore, the ‘critical speed’ aris-
ing from the CD in case of non-constant rotating speed
is no longer critical since the numerical responses are
having different frequencies from this one which cor-
responds to the critical speed ( f1).
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Fig. 11 Wavelet spectra of
the numerical responses for
lateral bending motion in
y-direction (qv (t)) at
θ̇d (0) = 510.82 rad/s

The critical speeds defined by the CD are no longer
valid to describe critical situations in case of non-
constant rotating speed.

Also, near the critical speeds the multiple scales, up
to second-order solution, are not capturing the dom-
inant lower frequencies. In such cases, higher-order
terms have to be included in themultiple scales solution
for the determination of NNMs. Noted that the selected
method in determining the NNMs (multiple scales) is
rather useful to make clear the comparison between the
dynamical systems arising with constant rotating speed
and the case of non-constant rotating speed, since they
coincide in first-order approximation.

Since the system is nonlinear, it should bementioned
that for the selected initial conditions in numerical sim-
ulations there is no evidence of chaos, small perturba-
tions led after several circles to very close solutions
with the original simulation. Further investigation is
needed on this aspect for any case of spinning shaft,
by means of examining possible routes to chaos in a
spinning shaft with non-constant rotating speed. Also,
noted that the Bubnov–Galerkin approximation is trun-
cated to only the first mode, in order to examine nonlin-
earmodal interactions (caused from themodal coupling
in rigid body rotation equation) more modes have to be
included.

5 Conclusions

In this article, modelling of the spinning shaft with non-
constant rotating speed and then discretisation by pro-

jecting the dynamics in the basis of infinitemodes asso-
ciated with the linear system have been performed. In
the discrete system which arises after truncation to the
first mode, the method of multiple scales for nonlinear
dynamic analysis is applied. The system’s equations
were written up to second-order time scale and their
left side showed that the four originally coupled equa-
tionswere coupled in pairs. The first pair consists of the
equations describing rigid body motion coupled with
torsion and the first- and second-order approximations
have been solved explicitly considering also the ampli-
tudemodulation equations arising from the elimination
of the secular terms in second-order approximation.
The comparison of the individual analytical responses
obtained from the second-order approximation for tor-
sional and rigid body motions with those arising from
direct numerical integration is in very good agreement.

The second pair of equations, describing the two
lateral bending motions in the first order, is coincid-
ing with the case of constant rotating speed, and then,
the explicit formof the natural frequencieswas derived,
which are in very good agreementwith theCDobtained
with commercial finite element software. The consid-
eration of the amplitude modulation equations arising
from the elimination of secular terms in second-order
approximation resulted detuning frequencies in theCD.
The individual solutions for first- and second-order
approximations for both lateral bending motions are
in very good agreement with the solutions obtained by
direct numerical integration.
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Finally, the original system of the discrete modal
equations is numerically integrated to get the responses
for comparison with the multiple scales analytical
solutions. In case of relative low rotating speeds, the
full multiple-scale analytical responses for both lateral
bendingmotions are in good agreementwith the numer-
ical solution, but the restricted solution to T0-scale of
first-order approximation which is associated with the
CD is very different. The analytical torsional and angu-
lar velocity responses are very close to numerical solu-
tions only in low frequencies (the envelope). In order to
have better agreement, between numerical and analyt-
ical results for torsional and rigid body responses the
higher-order terms in multiple scales analysis have to
be considered.

In higher rotating speeds even close to the critical
speeds obtained from the CD, the multiple scales solu-
tion up to second order for lateral bending motions,
is not describing very well the dynamics, and higher-
order terms in multiple scales analysis have to be
included. Also, in critical speeds arising from the CD,
the original nonlinear system is vibrating in frequen-
cies different than those corresponding to the critical
speeds. Therefore, these speeds are not critical for non-
constant rotating speed, and therefore, the CD fails to
describe the critical situations during spin-up, down
operation.

Since it is shown in this work that the CD is no
longer describing the critical situations, thiswork paves
the way for new safe operational ‘modes’ of rotating
structures with bypassing critical situations defined by
theCDusing acceleration of the rotating speed and then
‘settle’ in a ‘secure’ higher rotating speed for steady-
state operation. Further work is needed on this direc-
tion, since the critical situations during spin-up/down
operation for the safety of the rotating structure have
to be identified.

Also, this work is important to identify the validity
of the tools used to describe critical situations in case of
spin-up, down operations of all rotating structures not
only restricted to spinning shafts but in any other rotat-
ing structure, e.g. motors, gearboxes, turbines, wind
turbines and helicopter blades.

As a continuation of this work, additional terms
in modelling, e.g. non-conservative forces/torques,
imbalances etc, subsequentwith dynamic analysis have
to be considered. Since the system is nonlinear, it is
essential to find any possible routes to chaos.Also, non-

linear modal interactions have to be examined, includ-
ing more terms in Bubnov–Galerkin approximation.
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Appendix-A

In this part of the article, it is determined explicitly
the variation of position vector (δR) and also the prod-
uct with the acceleration vector. Considering the gen-
eralised coordinates, with all the deformation variables
and the rigid body motion (and their derivatives), then
the variation of position vector is given by,

δR = R,uδu + R,vδv + R,wδw + R,v,xδv,x

+R,w,xδw,x + R,φδφ + R,θδθ. (A.1)

The product in right-hand side of Eq. (2), using equa-
tions (A.1) and the explicit definition of the partial
derivatives of the position vector in fixed frame (R),
can be written as follows:

R,tt · δR = {A,ttr + 2A,t rt + Ar,tt
}

· {R,uδu + R,vδv + R,wδw + R,v,xδv,x

+R,w,xδw,x + R,φδφ + R,θδθ
}
, (A.2)

and each term in Eq. A.2 has the explicit form,{
A,ttr + 2A,trt + Ar,tt

} · R,uδu

= r1,t tδu, (A.3a){
A,ttr + 2A,trt + Ar,tt

} · R,vδv

=
(
θ,t t r3 − θ2,t r2 + 2θ,t r3,t + r2,t t

)
δv, (A.3b){

A,ttr + 2A,trt + Ar,tt
} · R,v,xδv,x

= (−yr1,t t
)
δv,x , (A.3c){

A,ttr + 2A,trt + Ar,tt
} · R,wδw

=
(
− θ,t t r2 − θ2,t r3 − 2θ,t r2,t + r3,t t

)
δw, (A.3d){

A,ttr + 2A,trt + Ar,tt
} · R,w,xδw,x

= (− zr1,t t
)
δw,x , (A.3e){

A,ttr + 2A,trt + Ar,tt
} · R,θδφ
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=
[
θ,t t (−yr2 − zr3) + θ2,t (zr2 − yr3)

+ 2θ,t
(−yr2,t − zr3,t

)− zr2,t t + yr3,t t
]
δφ,

(A.3f){
A,ttr + 2A,trt + Ar,tt

} · R,θδθ

=
[
θ,t t

(
r22 + r23

)
+ 2θ,t

(
r2r2,t + r3r3,t

)
+ (r3r2,t t − r2r3,t t

)]
δθ. (A.3g)

Appendix-B

In this Appendix, the BVP for the underlying linear
equation of Eq. (5c) is solved, which is given by,

mw,t t − (I1w,t t x
)
,x + (E Iw,xx

)
,xx = 0, (B.1)

Using separation of variables,

w (x, t) = a (t) · Y (x) , (B.2)

and, considering constant cross section in longitudinal
direction lead to,

Y (x),xxxx + dη2 · Y (x),xx − η2 · Y (x) = 0. (B.3)

with the following constants,

η2 = mω2
b

E I
, and

I1ω2
b

E I
= I1

m
η2 = dη2, (B.4a–b)

and the boundary conditions arising from equation (8)
using (Eq. B.2),

Y (0) = Y (L) = 0, Y (0),xx = Y (L),xx = 0.
(B.5a–d)

The characteristic polynomial of Eq. (B.3) is,

P (k) = k4 + η2dk2 − η2 = 0, (B.6)

with roots,

k1,2 = ±

√√√√−
(
η2d +√η4d2 + 4η2

)

2

= ±i

√
η2d +√η4d2 + 4η2

2
= ±iσ1, (imaginary),

(B.7a)

k3,4 = ±
√

−η2d +√η4d2 + 4η2

2

= ±
√

−η2d +√η4d2 + 4η2

2
= ±σ2.(real), (B.7b)

Considering the roots (B.7a–b) of the characteristic
polynomial, the general solution ofEq. (B.3) after using
hyperbolic and trigonometric identities is given by,

Y (x) = L1 sin (σ1x) + L2 cos (σ1x)

+ L3 sinh (σ2x) + L4 cosh (σ2x) . (B.8)

Considering the boundary conditions (B.5a–d) lead to,

L2 = L4 = 0, (B.9a–c)

L3 = −L1
sin (σ1L)

sinh (σ2L)
, L1

(
σ 2
1 + σ 2

2

)
sin (σ1L) = 0,

whereas (B.9c) has the non-trivial solution of,

sin (σ1L) = 0 ⇔ σ1L = kπ ⇔ σ1 = kπ

L
,

with k = 1, 2, . . . . (B.10)

Using Eq. (B.10), with (Eq. B.7a with B.4) the nat-
ural frequencies are given by,

ωb,k =
√

E I (kπ)4(
mL4 + L2(kπ)2 I1

) . (B.11)

Finally, considering equations (B.9a–b) in Eq. (B.8)
the mode shapes are given by,

Yk (x) = L1 sin

(
kπ

L
x

)
, k = 1, 2, . . . , (B.12–13)

with L1 =
√

2

mL

considering orthonormality condition.

Appendix-C

In this appendix, the amplitudes for second-order
approximation of the second-order solution for lateral
bending motions will be given explicitly.

Defining the following constants,

C3,1,a = iω1d2dn1, C3,1,b = −iω2b2dn1,
(C–1a–d)

C3,2,a = −dn2, C3,2,b = dn2,

C4,1,a = −b2d2dn1, C4,1,b = b2d2dn1, (C–1e–h)

C4,2,a = −ib2dn2/ω1, C4,2,b = id2dn2/ω2,

then the amplitudes in Eq. (78) are given by,
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W2,1, j (T1) =
2∑

k=1

[
i Fk+1,1 (T1)C j,k,a (μ0 + 2ω1) − i F̄k+1,1 (T1)C j,k,aμ0

(μ0 + ω1)
2 − ω2

1

]
(C–2)

+
2∑

k=1

[
i Fk+1,2 (T1)C j,k,a (μ0 + ω1 + ω2) − i F̄k+1,2 (T1)C j,k,a (μ0 − ω1 + ω2)

(μ0 + ω2)
2 − ω2

1

]

+
2∑

k=1

[
i Fk+1,3 (T1)C j,k,aμ0 − i F̄k+1,3 (T1)C j,k,a (μ0 − 2ω1)

(μ0 − ω1)
2 − ω2

1

]

+
2∑

k=1

[
i Fk+1,4 (T1)C j,k,a (μ0 + ω1 − ω2) − i F̄k+1,4 (T1)C j,k,a (μ0 − ω1 − ω2)

(μ0 − ω2)
2 − ω2

1

]
,

with j = 3:4,

W2,2, j (T1) (C–3)

=
2∑

k=1

[
i Fk+1,1 (T1)C j,k,b (μ0 + ω1 + ω2) − i F̄k+1,1 (T1)C j,k,b (μ0 + ω1 − ω2)

(μ0 + ω1)
2 − ω2

2

]

+
2∑

k=1

[
i Fk+1,2 (T1)C j,k,b (μ0 + 2ω2) − i F̄k+1,2 (T1)C j,k,bμ0

(μ0 + ω2)
2 − ω2

2

]

+
2∑

k=1

[
i Fk+1,3 (T1)C j,k,b (μ0 − ω1 + ω2) − i F̄k+1,3 (T1)C j,k,b (μ0 − ω1 − ω2)

(μ0 − ω1)
2 − ω2

2

]

+
2∑

k=1

[
i Fk+1,4 (T1)C j,k,bμ0 − i F̄k+1,4 (T1)C j,k,b (μ0 − 2ω2)

(μ0 − ω2)
2 − ω2

2

]
,

with j = 3:4

W2,3, j (T1) = −
2∑

k=1

[
i Fk+1,1 (T1)C j,k,a (μ0 + 2ω1) + i Fk+1,1 (T1) C̄ j,k,aμ0

(μ0 + ω1)
2 − ω2

1

]
(C–4)

−
2∑

k=1

[
i Fk+1,1 (T1)C j,k,b (μ0 + ω1 + ω2) + i Fk+1,1 (T1) C̄ j,k,b (μ0 + ω1 − ω2)

(μ0 + ω1)
2 − ω2

2

]
,

with j = 3:4
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W2,4, j (T1) (C–5)

= −
2∑

k=1

[
i Fk+1,2 (T1)C j,k,a (μ0 + ω1 + ω2) + i Fk+1,2 (T1) C̄ j,k,a (μ0 − ω1 + ω2)

(μ0 + ω2)
2 − ω2

1

]

−
2∑

k=1

[
i Fk+1,2 (T1)C j,k,b (μ0 + 2ω2) + i Fk+1,2 (T1) C̄ j,k,bμ0

(μ0 + ω2)
2 − ω2

2

]
,

with j = 3:4

W2,5, j (T1) = −
2∑

k=1

[
i Fk+1,3 (T1)C j,k,aμ0 + i Fk+1,3 (T1) C̄ j,k,a (μ0 − 2ω1)

(μ0 − ω1)
2 − ω2

1

]
(C–6)

−
2∑

k=1

[
i Fk+1,3 (T1)C j,k,b (μ0 − ω1 + ω2) + i Fk+1,3 (T1) C̄ j,k,b (μ0 − ω1 − ω2)

(μ0 − ω1)
2 − ω2

2

]
,

with j = 3:4

W2,6, j (T1) (C–7)

= −
2∑

k=1

[
i Fk+1,4 (T1)C j,k,a (μ0 + ω1 − ω2) + i Fk+1,4 (T1) C̄ j,k,a (μ0 − ω1 − ω2)

(μ0 − ω2)
2 − ω2

1

]

−
2∑

k=1

[
i Fk+1,4 (T1)C j,k,bμ0 + i Fk+1,4 (T1) C̄ j,k,b (μ0 − 2ω2)

(μ0 − ω2)
2 − ω2

2

]
,

with j = 3:4
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