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Abstract We consider a linear mechanical system
under the action of potential, gyroscopic and dissipa-
tive (partial) forces. The classical Kelvin–Chetaev the-
orems are not applicable here, and another approach,
which is based on Barbashin–Krasovskii theorem, is
suggested. This approach is based on decomposition
of the whole system and is convenient for systems of
high dimension or with uncertain parameters. Some
advantages of the proposed method are demonstrated
by examples.

Keywords Stability ·Dissipative/gyroscopic/potential
forces · Kelvin–Chetaev/Barbashin–Krasovskii theo-
rems

1 Introduction

The methods of the stability theory are mathematically
rigorous and widely used in various applied problems.
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The forces acting on the mechanical system often can
be employed and classified according to their phys-
ical nature. The state-of-the-art classification consid-
ers potential, gyroscopic, dissipative and circulatory
forces. The influence of these forces (excluding the last
one) has been characterized by the following classical
Kelvin–Chetaev theorems [1–3]:

Theorem 1 If the equilibrium of the mechanical sys-
tem is stable under the action of potential forces only,
it becomes asymptotically stable while adding dissipa-
tive forces with full dissipation.

Theorem 2 If the isolated equilibrium is unstable
under the action of potential forces only, it cannot be
stabilized by adding arbitrary dissipative forces with
full dissipation.

Theorem 3 If the isolated equilibrium is unstable
under the action of potential forces only, it remains
unstable while adding arbitrary gyroscopic forces and
dissipative forces with full dissipation.

Later these theorems were generalized in numer-
ous papers, both from theoretical [4–10] and applied
[11–14] points of view. Rather complete observations
of references on this topic are given in [15–18]. Most
of these studies considered the classical case of full
energy dissipation when Rayleigh function R is pos-
itive definite on all generalized velocities. However,
numerous examples of mechanical systems in different
areas of technology (celestialmechanics, robotics, seis-
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mology, etc.) consider the situation when dissipation is
partial, i.e., function R is semi-positive. As Chetaev
has noted, “If the dissipation is incomplete, then the
stability of equilibrium existing under certain potential
forces will not be strengthened from adding such dissi-
pative forces to the asymptotic stability” [2]. Actually,
this is not quite true, because the result of the influ-
ence of such forces may vary, and whether the system
becomes asymptotically stable or not strongly depends
on other forces. This dependence is more complicated
and less obvious than those addressed in Theorems 1–
3. One of the first researchers, who drew attention to
this, was Zajac. He noted that “In the design of attitude-
control systems, one strives not for a positive definite
damping matrix but rather for damping that affects the
entire system, so that any motion induces energy dis-
sipation” and introduced the term “pervasiveness” for
this kind of damped systems [5].

Some results concerning this problem are presented
in papers [19–23]. Bernstein and Bhat [24] formulated
necessary and sufficient conditions for Lyapunov sta-
bility, semi-stability and asymptotic stability of matrix
second-order systems with and without damping. The
problem regarding stability of mechanical systems
subjected to dissipative, gyroscopic, conservative/non-
conservative forces has been reconsidered again by
Agafonov [25]. The condition of asymptotic stability
under action of thementioned forces has been proposed
as well as the estimation of the attraction domain in
phase space has been formulated. The relation between
stability of origin and precession systems has been
derived, and examples of stabilization of the station-
ary motion of the balanced gimbal suspension gyro
through external moments have been provided. A gen-
eralization of the Barbashin–Krasovskii theorem has
been proposed by Jiang [26]. More recently, Tonkov
[27] addresses the problem devoted to the Barbashin–
Krasovskii asymptotic stability theorem in application
to control systems on smooth manifolds. Kalyakin [28]
studied the autoresonance problem aimed at distin-
guishing solutionswith unboundedly increasing ampli-
tude. The constructed Lyapunov function allowed to
investigate stability of the autoresonance with respect
to perturbation of the initial data and regarding con-
stantly acting perturbations. In this paper, we confine
ourselves to autonomous linear system with potential,
gyroscopic and dissipative forces. Such a system can
be presented in the following form

M ξ̈ + Bξ̇ + Kξ = 0, (1)

M, K, B are square real matrices, two first of them are
symmetric and positive, B is semi-positive and always
can be separated to symmetric (dissipative) and skew-
symmetric (gyroscopic) components B = D+ G, ξ ∈
R
n .

Our aim is to suggest the constructive approach to
distinguish cases whether the stability is asymptotical
with respect to all variables or not. We believe it will
be effective both for systems of high dimension and
systems with uncertain parameters.

2 Preliminaries

Moran’s criterion [20] states that system (1) is asymp-
totically stable if and only if none of the eigenvectors v

of the conservative system MGK lies in the null space
of D, that is Dv �= 0 for all eigenvectors v.

AlsoMuller [21] has given criterion whether system
(1) is pervasive from the viewpoint of the control theory

rank
[
M−1D, (M−1K )(M−1D), . . . ,

(M−1K )n−1(M−1D)
] = n.

Both conditions are effective when matrices of (1) are
numerical or a system has a few parameters. However,
if the number of parameters and n exceed 3–4, the ver-
ification of these conditions becomes too complicated.
In this situation, some kind of decomposition may be
helpful.

For our purposes, we shall use the classical
Barbashin–Krasovskii theorem:

Theorem 4 [29]. Consider the ODE system

ẋ = f (t, x), (2)

where f is ω− periodic function on t. Let x = 0 be
an equilibrium point for (2), and V : Ω → R be a
continuously differentiable function on a domain Ω ⊂
Rn containing the origin, such that

V̇ (t, x(t)) ≤ 0

in Ω. Let further suppose that no other solution can
stay in S = {x ∈ Ω : V̇ (x) = 0}, other than the trivial
solution x = 0. Then, the origin is:

(A) Asymptotically stable (locally) if V is positive def-
inite;

(B) Unstable if V takes negative values.
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3 Main results

Below we use the block notation for square matrix P
of s + l order in the form

P =
(
P11 P12

P21 P22

)
,

where P11, P22− are square matrices of s and l orders,
respectively, and P12, P21− corresponding rectangle
matrices. Also, we split the vector ξ to sub-vectors

ξ = col(x, y), x ∈ R
s, y ∈ R

l .

We suppose that matrix D = 0s
⊕

diag(d1,
d2, . . . , dl), in otherwords, the right lower block D22 is
diagonalized, and three other blocks are zero matrices.
Matrix D22 is positive. Similarly, we denote differen-
tial operators

L = M
d2

dt2
+ B

d

dt
+ K ,

L11 = M11
d2

dt2
+ G11

d

dt
+ K 11,

and the corresponding lambda-matrices (matrix poly-
nomials)

Λ(λ) = Mλ2 + Bλ + K ,

Λ11(λ) = M11λ
2 + G11λ + K 11.

Let λ0 be some eigenvalue of L11, and β10− the
corresponding eigenvector, i.e.,

Λ11(λ0)β10 = 0s .

Here 0s means the matrix-column with s zero ele-
ments. One can introduce the equality

Λ21(λ0)β10 = 0l . (3)

Theorem 5 Let us consider a mechanical system,
motion equations of which are described by (1) and
suppose that none of the eigenvectors of operator L11

satisfies condition (3). Then, adding to system an arbi-
trary dissipative force, which provides full dissipation
on ẏ, leads to the following results:

(I) If all eigenvalues of matrix K are positive, then
equilibrium of (1) becomes asymptotically stable.
Stability is exponential and uniform.

(II) If matrix K has some negative eigenvalues, then
equilibrium is unstable, even if it was stabilized
before by gyroscopic forces. Among particular
solutions of the system, at least one has negative
Lyapunov characteristic number.

Proof (I) Let us take the Lyapunov function

V (ξ̇ , ξ) = ξ̇
T
M ξ̇ + ξ T K ξ .

According to (1) its full time derivative is equal to
− ẏT D ẏ and thus is non-positive. The set S from The-
orem 4 is defined by ẏ = 0, consequently y = y0−
const. Along with this, the system (1) is as follows

M11 ẍ + G11 ẋ + K 11x + K 12 y0 = 0, (4)

M21 ẍ + G21 ẋ + K 21x + K 22 y0 = 0. (5)

Subsystem (4) ismarginally stablewith purely imag-
inary eigenvalues λ j , λ̄ j ( j = 1; s), and the whole sys-
tem (4–5) will be consistent if and only if the partial
non-zero solution x� = β j e

λ j t exists and satisfies the
Eq. (5), here the β j is corresponding eigenvector. In
this case, the non-zero solution

x = εx�, y = 0, (6)

of system (1) belongs to set S, and ε is an arbi-
trary small constant. With this fact, the conditions of
Theorem 4 are broken, and system (1) is not perva-
sive; for example, solution (6) does not tend to zero as
t → ∞. On the other hand, if none of the eigenval-
ues/eigenvectors of L11 is valid for (5), then system
(4–5) is inconsistent, and the set S is empty. Accord-
ing to Theorem 4, in this case the trivial solution
ξ = 0, ξ̇ = 0 is asymptotically stable.
(II) If we change the status of the matrix K from

“all eigenvalues are positive” to “at least one of them is
negative”, all previous arguments concerning solutions
of (4–5) remain valid. However, the Lyapunov function
V can take negative values now, and paragraph (B) of
Theorem 4 is involved; hence, Eq. (1) is unstable. �	
Example 1 Now, as a simple illustration of theorem 5,
consider the 2-degree-of-freedom system. Note that
necessary and sufficient conditions of asymptotic sta-
bility for such case were given in a number of papers
(for instance, [30–32]), but we intend to clarify the
mechanical sense of the edge between pervasive and
marginally stable cases. To verify the condition (3), we
need thematrix D to satisfy restrictions of Theorem 5.
As it is semi-positive, we can write

D = d

(
1 p
p p2

)
, d > 0,

(
G = g

(
0 1

−1 0

))
.

The eigenvectors of D are: β1 = (p,−1)T , β2 =
(1, p)T , and with transformation ξ = Sη
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= (β1, β2)η, we rewrite the motion equations in
the form which allows to verify fulfillness of (3).
Namely,

M̃ = S−1MS

= 1

1 + p2

(
p2 m11 − 2p m12 + m22 p (m11 − m22) + m12(p2 − 1)

p (m11 − m22) + m12(p2 − 1) m11 + 2p m12 + p2 m22

)
,

and the same representation holds for matrix K̃ (where
eachm is replaced with k). The eigenvalues of L11 are

±i

√
p2 k11 − 2 p k12 + k22
p2 m11 − 2 p m12 + m22

and to satisfy (3), we use two conditions

b̃21 = g = 0, (7)

and m̃21λ
2 + k̃21 = 0, which leads to

k̃11m̃12 − m̃11k̃12 = 0. (8)

Equality (7) means that any gyroscopic force makes
the system pervasive [and is (8) fulfilled or not does not
change this fact]. Along with this, if G = 0 and coef-
ficients of matrices M, B, K satisfy (8), the system
is not pervasive.1 On the contrary, if B is symmetric,
then equality (8) may be rewritten in amore descriptive
form

∣∣∣
∣∣∣

m11 m12 m22

b11 b12 b22
k11 k12 k22

∣∣∣
∣∣∣
= 0. (9)

So, for system (1) (n = 2) the presence of dissipa-
tive (partial) force leads to asymptotic stability with the
exception of the case when gyroscopic force is absent
and matrices M, D, K are linearly dependent.

Also the following circumstance connected with the
role of gyroscopic forces for partial dissipative system
should be emphasized. Taking into account the latter
issue, we consider the following example.

Example 2 Let matrices of (1) be:

B = D + G =
⎛

⎝
1 −1 0

−1 1 0
0 0 0

⎞

⎠ +
⎛

⎝
0 g1 g2

−g1 0 1
−g2 −1 0

⎞

⎠ ,

1 There is partial asymptotic stability with respect to η2, i.e.,
b12ξ1 + b22ξ2 → 0 as t → ∞.

K =
⎛

⎝
2 p −1
p 2 −1

−1 −1 1

⎞

⎠ (10)

and M = I , the identity matrix. Firstly, let us try the
common approach. With the characteristic polynomial

6∑

j=0

a jλ
j = λ6 + 2λ5 + (g21 + g22 + 6)λ4

+ (2p + g22 + 2g2 + 7)λ3

+ (g21 + 2g1g2 + 2g22
−2pg2 − 2g1 − p2 + 8)λ2

+2pλ − p2 + 2p = 0,

applying the Lienard–Chipart criterion [33] one gets:
Eqs. (1), (10) is asymptotically stable (while 0 < p <

2)2 if and only if the determinant

Δ5 = 4p3g21(g2 − 1)2 + p2(g2 − 1)
[
16g31

+ 2g21(g2 − 1)(g22 + 2g2 + 5)

−8g1(g2 − 1)2 + (g2 + 1)2(g2 − 1)3
]

+ p(g1 + g2 − 1)2
[
4g21(g

2
2 + 2g2 + 5)

−16g1(g2 − 1) + 2(g42 − 4g2 + 3)
]

(11)

is positive. This expression is not very large; however,
the direct analysis is not obvious. With the transforma-
tion matrix

S̃ =
⎛

⎝
1 1 0

−1 1 0
0 0

√
2

⎞

⎠ ,

one has

B̃ =
⎛

⎜
⎝

2 g1
√
2
2 (g2 − 1)

−g1 0
√
2
2 (g2 + 1)

−
√
2
2 (g2 − 1) −

√
2
2 (g2 + 1) 0

⎞

⎟
⎠ ,

K̃ =
⎛

⎝
2 − p 0 0
0 2 + p −√

2
0 −√

2 1

⎞

⎠

2 With p < 0, or p > 2 it has at least one eigenvalue with
positive real part.
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Let λ0 be an eigenvalue of L11 satisfying the equation

λ4 +
(
1

2
g22 + g2 + p + 7

2

)
λ2 + p = 0 (12)

(it does not depend on g1). The corresponding eigen-
vector β = col(β1, β2), and what is more

β2 =
√
2

2
β1

(1 + g2)λ0 + 2

λ20 + 1
.

Obviously, the denominator is not equal to zero,
because, according to (12), it would lead to

1

2
g22 + g2 + 5

2
= 0,

which is not possible for any real value of g2.Therefore,
equality (3) brings the following condition

β1

[

g1 + 1

2
(g2 − 1)

(1 + g2)λ0 + 2

λ20 + 1

]

= 0.

As λ0 is a purely imaginary number, it leads to

g22 − 1 = 0, g1(λ
2
0 + 1) + g2 − 1 = 0. (13)

So, if both equalities (13) are fulfilled, there is no
complete asymptotical stability (probably, partial) −L
has purely imaginary eigenvalues. If at least one of
these equalities is broken, then L is asymptotically
stable. In contradiction to (11), equalities (13) can be
easily analyzed: (a) the first case is g2 = 1, and then
g1 = 0;

(b) the second case is g2 = −1, and then g1 =
2/(λ20 + 1), or λ20 = 2/g1 − 1 and with (12):

p = λ20(λ
2
0 + 3)

λ20 + 1

we have the binding between p and g1. Finally, this
case yields

g2 = −1, p = (g1 − 2)(g1 + 1)

g1
(0 < p < 2). (14)

Recall that in the case when D is positive, the sup-
plementation of the MDK-system with any matrix G
stores asymptotic stability property. When dissipation
is incomplete, this property remains valid only for y
coordinates. The presence of G(x) force may bring the
residual motion.

Remark 1 Not only the rigorous analysis of (11) is dif-
ficult, but even the geometrical (numerical) way is not
reliable. We have tried to plot the set Δ5(g1, g2, p) =
0 with Maple/Mathematica, and the results were
deteriorated—although the line (a) was caught, but
illegible surfaces were plotted at the same time some.
As it follows from (14), the required set is a part of a
curve—not surface. Conditions (14) can be easily ver-
ified numerically, for example, with

g2 = −1, g1 = 7

3
, p = 10

21
,

the characteristic polynomial has roots ±ı
√
7/7 and

with g2 = −1, g1 = 2.333, p = 0.476 all real parts
are negative.

4 Another method of verification of condition (3)

For some reasons, the methods based on the use of
eigenvectors technique aswell as diagonalization of the
matrix D seem to be inconvenient. There is no problem
to suggest another way for verification of equality (3).
Actually, let matrix D of order j ≤ n has rank l <

j, and ξs1 , . . . , ξs j−l (1 ≤ s1 < · · · < s j−l ≤ n)

is some fundamental3 system of solutions for linear
homogeneous system

Dξ = 0 (ξ ∈ R
j ). (15)

Then, any solution of (15) can be given in the fol-
lowing form

ξsq = α1qξs1 + · · · + αlqξs j−l (q = 1; j), (16)

where α1q , . . . , αlq are some real constants. As it fol-
lows from the proof of Theorem 5, the emptiness of
the set S depends on whether some solutions (15) sat-
isfy the system (7)–(8) or not. Eliminating j variables
from (1) with (16) and denoting renewed matrices as
M�, G�, K � (these matrices are rectangular now), we
get necessary and sufficient conditions of consistency
the algebraic system

(M�λ20 + G�λ0 + K �) ξ � = 0 (ξ � ∈ R
n−l) (17)

which is tantamount to (3), and here λ0 stands for some
purely imaginary number. The last system is the system

3 Maximal linearly independent system of solutions.
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of n homogeneous linear equations with n−l variables,
and the matrix Λ�(λ0). This system is consistent if and
only if

rank Λ�(λ0) < n − l. (18)

To illustrate this approach, let us study back the
Example 1. Here j = n = 2, l = 1. With ξ1 = −p ξ2
we get the matrix Λ� in the following form
(

(−pm11 + m12)λ
2
0 + gλ0 − pk11 + k12

(−pm12 + m22)λ
2
0 + pgλ0 − pk12 + k22

)
.

To satisfy (18), the rank of the matrix must be less
then1. In otherwords, both elements ofmatrix are equal
to zero. As λ0 is purely imaginary, we immediately
conclude that g = 0. From linear dependence of the
elements of matrix with respect to λ20, we get

(−pm11 + m12)(−pk12 + k22) = (−pm12

+m22)(−pk11 + k12).

The last can be easily rewritten in the form (9), as
b12 = p b11, b22 = p2 b11.

The same procedure applied to example 2 (n =
3, j = 2, l = 1) leads to :

ξ1 = ξ2, Λ�(λ0)

=
⎛

⎝
λ20 + g1λ0 + 2 + p g2λ0 − 1
λ20 − g1λ0 + 2 + p λ0 − 1
−(g2 + 1)λ0 − 2 λ20 + 1

⎞

⎠

∼
⎛

⎝
λ20 + g1λ0 + 2 + p g2λ0 − 1

−2g1λ0 λ0(1 − g2)
−(g2 + 1)λ0 − 2 λ20 + 1

⎞

⎠ .

Its rank must be less then 2, so all minors of the
second order are equal to zero. It follows that

(1 − g2)(λ
2
0 + 2 + p) + g1[(1 + g2)λ0 − 2] = 0,

2g1(λ
2
0 + 1) + (g22 − 1)λ0 + 2(g2 − 1) = 0.

(19)

From the second equality, we have g2 = ± 1. If
g2 = 1, then from the first equality (19) one gets g1 =
0. If g2 = − 1, we come to condition (14).

This technique seems simpler than the one proposed
in Sect. 3; however, it strongly depends on the specific
circumstances of the investigated system.

5 Nonlinear systems

Weconsider themotionof a holonomicmechanical sys-
tem subject to stationary, ideal constraints. The posi-
tion of this system is specified by m + k generalized

coordinates with the first m of them q1, . . . , qm being
positional and r1, . . . , rk being cyclic. The equations of
motion of the system are written in the Lagrange form

d

dt

∂K
∂ q̇ j

− ∂K
∂q j

= ∂

∂q j
+Q j ( j = 1, . . . ,m+ k), (20)

where K,Π are the kinetic and potential energies of
the system, Q j represent the generalized non-potential
forces. Expression for kinetic energy can be written as

K(q, q̇, ṙ) = 1

2
q̇T Ã(q)q̇ + ṙT B̃(q)q̇ + 1

2
ṙT C̃(r)ṙ

= 1

2
〈 Ã(q)q̇ + B̃(q)ṙ, q̇〉

+1

2
〈B̃(q)q̇ + C̃(q)ṙ, ṙ〉. (21)

Here Ã, C̃ are square, symmetric, positive matrices
of ordersm and l, respectively; B̃ stands for the rectan-
gular matrix of order k×m. It is supposed that all three
matrices have continuous partial derivatives of the sec-
ond order, the upper index T denotes the transpose, and
oblique brackets denote the scalar product.

According to the definition of the cyclic coordinates,
we have B̃q̇ + C̃ ṙ = γ , where γ is a matrix-column
of cyclic constants. Expressing ṙ and conveying it to
(21), we write down the Routh function

R = K − ṙT γ = 1

2
q̇T ( Ã − B̃

T
C̃

−1
B̃)q̇

+γ T C̃
−1

B̃q̇ − 1

2
γ T C̃

−1
γ ,

which leads to the Routh kinetic potential

LR = R − Π = 1

2
q̇T A(q)q̇ + B(q, γ )q̇ + W (q, γ )

A = Ã − B̃
T
C̃

−1
B̃,

B = βT C̃
−1

B̃, W = Π + 1

2
γ T C̃

−1
γ . (22)

Thus, the motion equations can be written as Routh
equations

d

dt

∂LR

∂ q̇ j
− ∂LR

∂q j
= Q j ( j = 1,m), (23)

or in the counter part explicit form
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Asymptotical stability of the motion of mechanical systems 335

Aq̈+B�q̇+(q̇T D1(q)q̇, . . . , q̇T Dn(q)q̇)+∂W

∂q
= Q.

(24)

Here B� is a skew-symmetric matrix, and

b�
k j = ∂bk

∂q j
− ∂b j

∂qk
,

dsjk = a j
sk + aks j − asjk ( j �= k),

dsj j = a j
s j − 1

2
asj j . (25)

Stationary motions of (20) are governed by equilib-
rium positions of (24). The last one can be determined
from the following condition

∂W

∂q
= 0, (26)

Suppose that (26) determines the equilibrium state

q = q0, q̇ = 0, (27)

the matrix Q represents dissipative forces and is semi-
positive in the neighborhood of (27). Then equations
of perturbed motion q = q0 + ξ , q̇ = ξ̇ are

M ξ̈ + (D + G)ξ̇ + Kξ = N(ξ̇ , ξ), (28)

where

M = A(q0), G = B�(q0), K = ∂2W

∂q2
|q=q0 ,

(29)

and N(ξ̇ , ξ) comprises all nonlinear terms of the sys-
tem.

Let the linear part of (28) satisfies assumptions of
Theorem 5. If the zero solution is asymptotically sta-
ble, then all Lyapunov characteristic exponents are neg-
ative, and according to his stability theorem on the first
approximation [34], this entails the asymptotical sta-
bility for nonlinear system. In the same way, if the lin-
ear system is unstable, then at least one characteristic
exponent is positive, and this leads to instability of zero
solution of the system (28). Thus, involving the deno-
tations of Sect. 3, and above-mentioned arguments, we
can formulate

Theorem 6 Assume that the linear part of equations
(28) satisfies the preconditions of Theorem 5 and none
of the eigenvectors of linear operator L11 satisfies the
condition

�21(λ0)β10 = 0l . (30)

Then:

(1) If all eigenvalues of K are positive, the stationary
motion of the mechanical system corresponding to
(28) is uniformly and asymptotically stable with
respect to positional coordinates and their time
derivatives. Motion is stable with respect to cyclic
velocities and then tends to some constant values
as t → ∞.

(2) If matrix K has at least one negative eigenvalue,
then the motion is unstable.

Remark 2 Once again, condition (18) can be used
instead of (3). It is more convenient if the matrix D
is not diagonalized.

Remark 3 FunctionN canbeperiodic or quasi-periodic
regarding time. The statement of the theorem remains
valid.

Below we illustrate the use of the theorem by taking
into account two mechanical systems.

Example 3 The double pendulum with attached mass.
The double pendulum model [35] is widely used in

various areas of science and technology (mechanics,
physics, engineering, biomechanics, medicine, sports,
etc.). One of the main reasons is the “leap” in com-
plexity of its dynamics compared with a simple pen-
dulum. The double pendulum behaves in a different
way. If its oscillations are small, the double pendulum
demonstrates the phenomenon of beats. The character
of oscillations of the pendulums changes radically with
increasing energy, i.e., the oscillations become chaotic
[36,37]. This means stabilization of oscillations of the
pendulum is quite a challenging problem.

Consider the double pendulumwith distributedmass
[38] in a gravitational field (Fig. 1). It has a fixed point
O, and C1, C2 are the mass centers of the first and
second limbs, respectively. A dynamic absorber with
stiffness k and damping coefficient h is attached to
the second limb. The absorber oscillates along the axis
O2x ′, which is orthogonal to the line O1C2 and inter-
sects it in the point O2. Pivots in the points O, O1

are assumed to be frictionless.
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Fig. 1 Double pendulum with absorber attached

Verification of the validity of Theorem’s 6 condi-
tions by (18) yields that the rank of matrix

�� =
⎛

⎝
[I1 + l2(1 + ma)]λ2 + l(1 + ma) + m1l1 l(1 + mala)λ2

l(1 + mala)λ2 [I2 + mal2a ]λ2 + 1 + mala
malλ2 malaλ2 + ma

⎞

⎠ ,

is equal to 1. The following notation has been employed

Ĩs = Is
m2l22

(s = 1, 2), m̃1 = m1

m2
, m̃a = ma

m2
,

l̃1 = l1
l2

, l̃ = l

l2
, l̃a = la

l2
,

τ =
√

g

l2
t, k̃ = kl2

m2g
, h̃ = h

m2
, ũ = u

l2
, (31)

where m1,m2 are the masses of the first and second
limbs, respectively; ma is the mass of the absorber;
I1, I2 are their moments of inertia with respect to poles
O, O1, respectively; ϕ1, ϕ2 are the angles of deflection
of the pendulum limbs about a vertical axis; l is the
length of the first limb; l j ( j = 1, 2) are the distances
from the suspension point of the j-link to its mass cen-
ter.

(For reasons of convenience, the symbol “∼” is
neglected in elements of ��, and the matrices M, K
are given in “Appendix”).

Therefore, all minors of the second order have to
be zeros. From the second and the third strings of the
matrix we get λ4( Ĩ2 − l̃a) = 0. Since λ �= 0 (matrix
K is positive), the equilibrium is asymptotically stable
if Ĩ2 �= l̃a . With formulas (31) this condition reads
I2 �= m2l2la or

la �= I2
m2l2

, (32)

and it establishes the restriction for placement of a
device inside the limb of pendulum. It is remarkable
that (32) does not depend on parameters of absorber
ma, k, h, but only on la . In other words, it reveals the
“dead point” on the axis O1C2, i.e., the position for O2

which does not result with stabilization of pendulum
oscillations. This fact can be easily justified by numer-
ical calculus: for example, considering the following
parameters

Ĩ1 = 3, Ĩ2 = 2, m̃1 = 2

3
, l̃1 = 1, l̃a = Ĩ2 = 2,

m̃a = 1

3
, h̃ = 1

2
, k̃ = 2, l̃ = 2

the eigenvalues become:

±1

6
i

√
27 − 3

√
33, ±1

6
i

√
27 + 3

√
33,

− 5

12
± 1

12
i
√
407.

If the value of l̃a varies a little, four pure imaginary
roots acquire small negative real parts.

In Figs. 2 and 3 we show the results of the numeri-
cal simulations in form of projections of the phase tra-
jectories on coordinate planes. Both trajectories were
calculated with identical values of mechanical param-
eters on the time interval τ ∈ [0, 150]. The difference
of trajectories character is connected with phase shift
of perturbations of each limb at the beginning of the
motion. In Fig. 2 this shift is small (ϕ1(0) · ϕ2(0) > 0)
and in Fig. 3 the shift is big, since the limbs are in anti-
phase at the initial time instant. By this reason, in the
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Fig. 2 Projections of the phase trajectory. P0(0.2, 0.3,−0.3) is the initial point

Fig. 3 Projections of the phase trajectory. P1 : τ = 2; P2 : τ = 5; P3 : τ = 30.

Fig. 4 Rigid body with a damper–balancer

second case the system needs more time (≈ 30 τ - sec-
onds) to exhibit “smooth” oscillations of both limbs,
and the absorber transfers more energy (amplitude of
its oscillations increases several times) to recover the
steady motion of the system. In both cases the oscilla-
tions of the limbs synchronize in some period of time
(the spiral part of trajectory).

Example 4 Lagrange’s gyroscope with damper–
balancer

As a second example of the Theorem 6 application,
we consider the stabilization problem for the steady-
state motion (permanent rotation) of dynamically sym-
metric rigid body with fixed point O (Fig. 4). Let
Oxyz be an inertial coordinate system, and the system
Ox1y1z1 be connected with the rigid body, whereas
Ox1 stands for the axis of symmetry. Inside the body
there is installed a balancer—a weightless rod N1N2

with two masses m at the ends. This rod intersects the
axis of symmetry of the body at point O1. The bal-
ancer is mounted by viscoelastic torsion spring hinge,
and �, h̄ are its coefficients of stiffness and viscosity,
respectively. The axis of the hinge is collinear to Oy1,
so the balancer can oscillate around the point O1 in
the plane Ox1z1. The length of the rod is 2R, and O1

is its midpoint. As generalized coordinates we choose
Euler angles θ, ϕ, ψ, which describe the position
of connected coordinate system with respect to iner-
tial one, and the angle α between axis of the balancer
and Oz1.

The motion equations and auxiliary formulas are
presented in “Appendix B”. The matrices of (29) have
the following form
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M = Ã(q0) =
⎛

⎝
1 0 0
0 1 + μ −μ

0 −μ μ

⎞

⎠ , D = diag(0, 0, h),

G =
⎛

⎝
0 2 − a 0

a − 2 0 0
0 0 0

⎞

⎠ ,

K =
⎛

⎝
a − b − 1 0 0

0 a − b − 1 + μ −μ

0 −μ κ

⎞

⎠ .

Obviously, the matrix M is positive, and K is posi-
tive if and only if the inequalities

a − b − 1 > 0, κ >
μ2

a − b − 1 + μ
(33)

hold. Then, one can easily see that

rank

⎛

⎝
λ2 + a − b − 1 (2 − a)λ

(a − 2)λ (1 + μ)λ2 + a − b − 1
−μλ2 −μ

⎞

⎠ > 1.

In fact, to counteract this, all minors of the second
order have to be equal to zero, and this means that λ is
a purely imaginary number, as det(M11λ

2 +G11λ+
K 11) = 0. However in this case the minor
(

λ2 + a − b − 1 (2 − a)λ

−μλ2 −μ

)

may be equal to zero only if a = 2, which cannot
be realized due to condition I1 < 2I2 (restrictions
of triangle on moments of inertia). Consequently, the
permanent rotations of the gyro are asymptotically sta-
ble if inequalities (33) are fulfilled. The first of those
conditions reads I1 + 2mR2 > I2 + 2ml21 and means
that a body with a “frozen” balancer has oblate inertia
ellipsoid. The second inequality sets a limit from below
on the stiffness of the hinge.

6 Discussion and concluding remarks

We have studied the stability problem for linear
mechanical system subjected to the influence of poten-
tial, gyroscopic and dissipative (partial) forces. Such a
situation is more confusing than the case of complete
dissipation. The latter allows one to solve the prob-
lem in a qualitative manner, i.e., by analysis of poten-
tial (or potential and gyroscopic) forces only, and con-
clusion does not depend on the quantitative nature of

forces. In other words, only signs of matrix eigenval-
ues are important, not their exact values or connections
between them.

While dissipation is incomplete, the results of
Kelvin–Chetaev theorems mostly persist, excluding
some special relations between quantitative values that
characterize the forces (some surfaces in space of
mechanical parameters). A way of finding these rela-
tions is proposed by formulas (3) and (18).

We note that the proposed approach is of a quali-
tative nature and does not allow to directly assess the
quantitative characteristics of the system, i.e., its fre-
quency, amplitude, decay rate. This is a certain draw-
back; however, the procedure for verifying the feasibil-
ity of these conditions is fairly simple. This procedure
can be adapted to estimate the rate of damping of per-
turbed solutions, although it becomes muchmore cum-
bersome. For this reason, these issues are not discussed
in the present paper.

As can be seen from the statements of Theorems 5
and 6, the magnitude of the damping force does not
affect the fact of stabilization of the motion of the
system. In fact, this indicator is important for appli-
cations, since too little dissipative force does not allow
to ensure a sufficient rate of attenuation of oscillations
in the dynamical system. For instance, Fig. 5 shows the
dependences for ϕ2(τ ) from Sect. 2 (double pendulum)
for the following values of the parameters:

Ĩ1 = 3, Ĩ2 = 2, m̃1 = 1.3, m̃a = 0.3, l̃ = 2, l̃1 = 1,

l̃a = 0.3, h̃ = (0.1; 0.6; 1.6), k̃ = 0.8.

It is not difficult to see that the damping is practically
absent in Fig. 5a and c.

Another remarkable fact is that in the case when
condition (3) or (18) holds, this does not prevent the
asymptotic stability of equilibrium for a nonlinear sys-
tem. The linear approximation has purely imaginary
roots, and we get the critical case in Lyapunov sense
[39,40]. For example, such a situation takes place for
the system shown in Fig. 6. To prove the asymptotic
stability, the Lyapunov function V can be constructed.
This function is the sum of positively defined quadratic
form and form of the fourth order and has a negative
derivative with respect to time. Basically, this proce-
dure is not difficult, but it leads to extremely huge ana-
lytical expressions for the coefficients of the function
V (and its derivative), and is not discussed here.
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Fig. 5 Influence of h magnitude on damping rate

Fig. 6 Pendulum with
varying length and attached
mass
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ted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and
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Appendix

(A) Matrices for example 3:

M =
⎛

⎝
I1 + l2(1 + ma) l(1 + mala) mal
l(1 + mala) I2 + mal2a mala

mal mala ma

⎞

⎠ ,

K =
⎛

⎝
l(1 + ma) + m1l1 0 0

0 1 + mala ma

0 ma k

⎞

⎠ .

(B) Formulas for example 4:Denoting by r j the radius
vector of point N j ( j = 1, 2) in the coordinate
system connected with the rigid body, we have

r1 = (l + R sin α, R cosα1, 0)
T ,

r2 = (l − R sin α,−R cosα, 0)T .

Kinetic energy of the balancer holds

K+ = mR2[ω2
1 cos

2 α + ω2
2(sin

2 α + l2

R2 )

+ω2
3

(
1+ l2

R2

)
−(ω1ω2 sin 2α+2ω3α̇)+α̇2].

Components of angular velocity vector are given by
kinematic Euler relations

ω1 = θ̇ cosϕ + ψ̇ sin θ sin ϕ,

ω2 = −θ̇ sin ϕ + ψ̇ sin θ cosϕ,

ω3 = ϕ̇ + ψ̇ cos θ. (34)

The generalized inertia tensor of the system can be
written as Ĩ = I + I+, where
I = diag(I1, I2, I2) is the inertia tensor of the car-
rier, and I+ is the “appendant” inertia tensor of the
balancer

I+ =
⎛

⎝
2mR2 cos2 α −mR2 sin 2α 0
−mR2 sin 2α 2m(R2 sin2 α + l2) 0
0 0 2m(R2 + l2)

⎞

⎠ .

(35)

Potential forces are the gravitational force and elas-
ticity in the balancer’s hinge. Hence, the potential
energy of the system is given by expression

 = g(Ml + 2mlb) sin θ sin ϕ + 1

2
�(α − α0)

2.

Here M is the mass of the rigid body, α0 is the
constant value that corresponds to the equilibrium state
of the balancer. For simplicity, we shall take it equal to
zero.

The kinetic energy of the system holds

K = K0 + K+ = 1

2
〈ω, Ĩω〉

+m〈ω, r1 × ŕ1 + r2 × ŕ2〉 + m ŕ21,
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and generalized coordinate ψ is cyclic. The motion
Eq. (20) allows the solution

θ = π

2
, ϕ = π

2
, α = 0, θ̇ = 0,

ϕ̇ = 0, ψ̇ = ω, α̇ = 0, (36)

which describes the permanent rotations of the body
with “frozen” balancer around the vertical axis with
rotational speed ω.

The square matrix Ã is of the third order, B̃ is a
rectangular 1 × 3 matrix, and C̃ = c̃11 is the scalar
one. The elements of these matrices are:

ã11 = (I1 + 2mR2cos2α)cos2ϕ

+
[
I2 + 2m(l2 + R2sin2α)

]
sin2ϕ

−mR2 sin 2α sin 2ϕ,

ã12 = ã13 = 0,

ã22 = I2 + 2m(l2 + R2), ã23 = −2mR2, ã33 = 2mR2,

b̃11 = sin θ

{
1

2

[
I1 − I2 + 2m(R2 cos 2α − l2)

]
sin 2ϕ

−mR2 sin 2α cos 2ϕ
}

,

b̃12 =
[
I2 + 2m(l2 + R2)

]
cos θ, b̃13 = −2mR2 cos θ,

c̃11 = (I1 + 2mR2 cos2 α) sin2 θ sin2 ϕ

+
[
I2 + 2m(l2 + R2 sin2 α)

]
sin2 θcos2ϕ

+
[
I2 + 2m(l2 + R2)

]
cos2 θ

−mR2 sin 2α sin2 θ sin 2ϕ.

To get linearized equations of the motion, we need
further the linear approximation of matrix B and
quadratic terms of c̃11. According to formulas (22),
(25) we have

Blin =
([

I2 − I1 + 2m(l2 − R2)
]
ξ2 + 2mR2ξ3,

−
[
I2 + 2m(l2 + R2)

]
ξ1, 2mR2ξ1

)
,

(
1

c̃11

)(2)

=
[(
I1 − I2 − 2ml2

)
ξ21 + (I1 − I2 + 2mR2 − 2ml2)ξ22 + 2mR2ξ23 − 4mR2ξ2ξ3

]

(I1 + 2mR2)2

G̃ = (2I2 − I1 + 4l2)(1,−1, 0).

Also the following dimensionless parameters are
used

a = I1
I2 + 2ml21

, b = g(Ml + 2ml1)

ω2(I2 + 2ml21)
,

μ = 2mR2

J2 + 2ml21
,

h = h̄

2mR2ω
, κ = �

2mR2ω2 + 1, τ = ωt, (37)
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