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Abstract The dynamics of a system consisting of a
rotating rigid hub and a thin-walled composite beam
with embedded active element is presented. The beam
comprises of a generally orthotropic host made of
an arbitrary laminate and an additional layer of a trans-
versely isotropic piezoceramic material. The higher-
order constitutive relations for piezoelectric are used
to properly model its electromechanical structural
behaviour when operated in near resonance conditions
or subjected to strong electric fields. In the mathe-
matical formulation of the problem, the full two-way
coupling piezoelectric effect is considered by adopt-
ing the assumption of a spanwise electric field varia-
tion. To enhance the generality of the formulation, the
model considers also the hub mass moment of iner-
tia and a non-constant rotating speed case. A general
nonlinear system of mutually coupled partial differ-
ential equations is derived using the Hamilton princi-
ple, and the Galerkin method is applied to reduce these
governing equations to the ordinary differential ones.
A specific case of CAS lamination scheme that exhibits
flapwise bending and twist mode elastic coupling is
discussed in detail. Numerical results for system free
vibrations are obtained to investigate the natural mode
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shapes and electrical field spatial distribution depend-
ing on the system rotation speed and laminae fibre ori-
entation angle. Next, a forced vibration case is studied
by applying to the hub a periodic driving torque with
zero mean value. Nonlinear frequency response curves
for the combined beam–hub system together with time
series plots are prepared for different driving torque
scenarios.

Keywords Coupled-field problem · Nonlinear
piezoelectric effect · Thin-walled composite beam ·
Rotating structure

1 Introduction

The development of composite structures and active
materials technology offers a great potential for
advanced structural systems that can benefit from syn-
ergistic interactions of anisotropic composite material
tailoring and adaptive material properties. One of the
most popular active materials is piezoelectric ones that
are commonly employed as both actuators and sensors
by taking advantage of direct and converse piezoelec-
tric effects.

There are a number of approaches tomodelling these
advanced systems concerning problems of electric field
distribution, deformations kinematics and constitutive
relations. As regards actuator behaviour and electric
field domain, the most popular formulations are based
on the converse effect only. These models consider
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the impact of known electrical field on the mechanical
one and neglect electric potential generated due to the
actuator deformation (direct piezoelectric effect). This
one-way coupling approach leads to further simplifi-
cation that ignores in-plane electric field spatial varia-
tion. In consequence, for the cantilever structureswhere
the piezoactuators are spread over the entire specimen
span, the external electric excitation appears merely
as an additional term present in the boundary condi-
tions associated with bending. Besides, the equations
ofmotion of the systemmodelled by the discussed one-
way coupling approach are reduced just to mechani-
cal ones and electric degree of freedom is not present.
Therefore, within this framework, the structural con-
trol can be achieved via the boundary moment strategy
only [1–3].

However, as reported by several researchers [4–6],
these one-way coupling models are not sufficiently
accurate since they tend to underestimate the mate-
rial stiffness and natural frequencies of the structure.
The improved models of piezoelectric active systems
are formulated incorporating both converse and direct
effects (two-way coupling) and assuming spatial dis-
tribution of the electric potential in the longitudi-
nal/transversal direction of the piezoelectric actuator.
Further reading on issues related to mathematical mod-
elling of electroelastic systems can be found in a com-
prehensive overview by Erturk and Inman [7].

Initial research on fully coupled models of piezo-
electric structures was done in mid-1990s by Ander-
son and Hagood [8] and by Mitchell and Reddy [9]
who formulated the hybrid plate theory.More advanced
approaches were presented in papers published in the
next decade. Zhou and collaborators [4] investigated
cantilever composite plates with surface-bonded piezo-
electric actuators and sensors. The assumptions to the
mathematical model took into account spatial varia-
tion of the electric field as well as its higher-order
distribution through the thickness of piezoelectric lay-
ers. Moreover, a higher-order laminate theory was used
to represent mechanical displacement fields of both
composite and piezoelectric layers and to accurately
model transverse shear deformation. Numerical results
indicated that two-way coupling effects significantly
affected the predicted structural deflection, stress dis-
tribution and electrical signal magnitude.

Next, Zhang et al. [10] proposed a mathematical
model of a piezoelectric active element bonded to
an elastic substrate taking into account interfacial shear

and normal stresses. In the analysis the linear constitu-
tive equations were used to accurately represent fully
coupled electromechanical field effects. A set of differ-
ential and integro-differential static equilibrium equa-
tions in terms of force, moment and electric displace-
ments was derived.

Also Thornburgh et al. [5] developed a coupled-
field model of a smart composite plate structure. In
the formulation an additional degree of freedom was
added to incorporate any attached electrical circuitry
dynamics. The equations of motion were formulated
using the fully coupled linear piezoelectric relation
and solved for strain and electric charge. In the per-
formed analysis, transient responses of the cantilever
beam with piezoelectric active elements and integrated
simple LRC circuit were studied. A cross-check with
the classical plate theory and uncoupled piezoelectric
modelling techniques was made to illustrate the impor-
tance of the coupled-field approach. Comparison with
experimental data confirmed the accurate estimation
of sensor response during transient loading of adaptive
structures.

Next, Chandiramani [11] proposed a mathematical
model of a smart rotating thin-walled doubly tapered
composite beam carrying a tip mass. In the proposed
formulation a spanwise and thicknesswise variation of
the electric field applied to actuators was considered.
Stress–strain relations were based on the linear piezo-
electric material constitutive equations. To improve
model accuracy for medium–thick wall structures, the
higher-order shear deformation theory (HSDT) was
incorporated. The proposedmodel was used to perform
parametric studies involving ply angle, rotation speed,
beam taper, etc., and finally to study the optimal con-
trol of a thin-walled rotating beam. It was concluded
that considering the fully coupled piezoelectric effect
yielded an order-of-magnitude reduction in beam set-
tling time and required control voltage while compared
to the decoupled approach.

The problem of accurate modelling of smart com-
posite beams was investigated also by Roy and Yu
[12]. In contrast to thementioned above papers, authors
approach was not based on classical a priori kine-
matic assumptions but fell into the class of asymp-
totic models. Through a rigourous dimensional reduc-
tion of the original 3-D fully coupled electromechanical
problem and using the variational asymptotic method,
authors developed the model of a Timoshenko beam
with embedded/surface mounted active layer. Pre-
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sented results demonstrated good agreement with the
research available in the literature and with the direct
3-D multiphysics ANSYS simulation. Moreover, the
significance of electro- to mechanical coupling effects
was disclosed through comparison with an uncoupled
approach. Later on authors extended theirmodel to take
into account the beam pre-twist effect as well as initial
curvature [13].

All the discussed above papers indicated that the
two-way coupling electromechanical effects affected
the predicted structural properties significantly and had
to be taken into account in mathematical models.

A further improvement in modelling hybrid systems
may be achieved by considering the inherent nonlinear
effects. This is especially important in case of high-
power systems often operated under extreme condi-
tions or in near resonant regime. The observed non-
linear characteristics of flexible piezoelectric devices
can be attributed, among others, to large amplitude
oscillations (geometric nonlinearities) and the hystere-
sis between the electric field and polarisation as well
as strain. The importance of geometric nonlinearities
and nonlinear damping hysteresis in cantilever PZT
beam energy harvesters has been examined by Yang
and Upadrashta [14]. The studies let to estimate the
threshold value of the ratio of tip deflection to beam
length, below which the geometrical linearity is a
valid assumption and beyond which modelling of geo-
metric nonlinearity is necessary. Studies on transient
responses of smart cantilever beams and plates in geo-
metrically nonlinear regime have been presented also
by Zhang and Schmidt [15].

Other sources of structural nonlinearities are higher-
order terms present in piezoceramic constitutive for-
mula. These terms might involve purely elastic ones,
only electrical effects or higher-order electromechan-
ical coupling [16,17]. Finally, nonlinearities may also
result from coupling interactions to an electrical cir-
cuit connected to piezoelement (power source or energy
harvesting circuit)—see research by, for example, Stan-
ton et al. [18]. An attempt to develop a unified nonlin-
ear non-conservative framework considering the above
given constitutive effects and interactions within the
two-way coupling approach frame was made very
recently by Leadenham and Erturk [19].

Regarding the electric field effect, themost common
mathematical models are the linear ones. They provide
a reasonable approximation of the characteristics of
piezoelectric materials at low levels of applied voltages

and stresses. Unfortunately, these relations become
increasingly inaccurate as the magnitude of electric
field and stress levels increase. This is manifested in
numerous laboratory experiments on the piezoelectric
materials and piezoelectric devices—see, for example,
[20–22]. Besides, as reported byWagner andHagedorn
[21], nonlinear effects can be observed even if the elec-
tric field remains small but the piezoceramic actuators
are excited in resonance.

Advanced studies on strong electric field effects in
smart piezoelectric flexible structures were started in
very recent years. Kapuria et al. [23] derived a fully
coupled mathematical model of a smart composite
plate considering piezoelectric constitutive nonlinear-
ity with respect to electric field. To represent hybrid
system kinematics accurately, a layerwise zig-zag the-
orywas employed.A set of governing equations includ-
ing an electric degree of freedom was derived within
the frame of finite element formulation. The dynamic
response of the system controlled by a linear quadratic
Gaussian (LQG) controller was tested. It was revealed
that, considering piezoelectric nonlinearity, an efficient
vibration control could be achieved at a much lower
actuation potential than predicted by the fully coupled
but the linear model.

The authors continued this topic in their subsequent
paper [24] where the previously developed mathemati-
cal model was extended to consider piezoelectric non-
linearity on an active vibration suppression of smart
cylindrical and spherical shells. The effects of actuator
thickness, radius of curvature to span ratio and applied
loading on the relative difference between linear and
nonlinear predictions are illustrated for the shape and
vibration control cases.

Also Rao et al. [25] studied the behaviour of lami-
nated shells under large applied electric fields. In the
mathematical model, the assumptions of small strains
and second-order nonlinear constitutive equationswere
adopted to develop a nonlinear finite element formula-
tion of the problem. Numerical simulations were per-
formed to study the effect of material nonlinearity for
piezoelectric bimorph and composite shells under static
loading. The importance of the derived nonlinearmodel
under strong electric fields was confirmed by a signif-
icant difference between the results obtained by the
linear and nonlinear constitutive models.

While analysing the above referenced literature one
observes, there is no research on the integrated piezo-
laminated rotating composite beams involving the two-
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(a) (b)

(c)

Fig. 1 a Rotating thin-walled composite beam with electroded
top/bottom surfaces referenced in global (inertial) (X0, Y0, Z0)
and local (x, y, z) coordinate systems; b beam profile cross sec-

tion and associated coordinate system (n, s); c generalised dis-
placements of a representative point 0 due to elastic deformation
of the specimen

way coupled electromechanical theory. Also the elec-
trically nonlinear piezoelectric constitutive relation has
not been taken into account when studying the dis-
cussed structures. To bridge this gap, the present paper
is given as an extension of recent author’s research
[26], where the derivation of an analytical model for
these types of hybrid systems was presented. In the
proposed formulation the non-classical effects like
material anisotropy, rotary inertia, first-order transverse
shear deformation and warping restraint are incorpo-
rated.Moreover, themodel considers an arbitrary beam
pitch angle, the hub mass moment of inertia and a non-
constant rotating speed case. In the proposed formu-
lation the higher-order constitutive relations given by
Joshi [16] and Tiersten [27] for small strains and large
electric fields were used to take into account the effect
of a nonlinear piezoceramic material behaviour.

In this research the previously developed set of
nonlinear governing PDE equations is updated and
solved for an unidirectional graphite–epoxy laminate
and PZT-3203HD piezoceramic case. The results for
system free vibrations are obtained to investigate the
natural mode shapes and electrical field spatial dis-
tribution depending on the system rotation speed and
laminae fibre orientation angle. Next, forced vibration
cases are studied by applying to the hub a periodic driv-
ing torque with zero mean value. Nonlinear frequency

response curves for the combined beam–hub system
are presented, as well as bifurcation diagrams studying
the system response with respect to excitation ampli-
tude. Finally, time series plots are prepared for differ-
ent driving torque scenarios. The observed differences
between the responses of linear and nonlinear piezoce-
ramic material models are discussed.

2 Problem formulation

Let us consider a slender, straight and elastic compos-
ite thin-walled smart beam clamped at the rigid hub of
radius R0 and inertia Jh rotating about a fixed frame
axis CZ0 as shown in Fig. 1. The hub current position
is described by an angleψ(t)with respect to an inertial
reference frame (X0,Y0, Z0), and the rotational speed
of the system ψ̇(t) is assumed to be arbitrary, i.e. not
necessarily constant. The system is driven by an exter-
nal torque Text applied to the hub.

The beam has a prismatic cross section, spanwise
uniform (no taper) and no initial twist and curvature in
its natural state.

In the analysis it is assumed the original shape of the
cross section is maintained in its plane, but is allowed
to warp out of the plane due to an elastic deformation
of the beam. Presetting angle of the beam with respect
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to the plane of rotation (X0,Y0) is denoted by θ—see
Fig. 1b.

The composite material of the hosting beam is lin-
early elastic. Reinforcing fibres in individual laminas
are set at an arbitrary angle α with respect to the cross-
section circumferential axis s (see Fig. 1b). The number
of layers as well as the their stacking sequence is arbi-
trary but preserving the profile thin-wall assumption,
so the stresses in the wall transverse normal direction
n can be neglected.

Apart from the fibre unidirectional layer, there are
two additional piezoceramic layers of thickness hp
each. These are located on the outer surfaces of profile
flanges and cover the full span of the beam. The active
material is poled through its thickness and equipped
with traditional surface electrodes. This is the typical
geometry for (31) mode operating piezoelectric actua-
tors and sensors.

For more details on all the imposed assumptions and
discussion on their significance for the mathematical
formulation of the problem, please refer to the previous
author’s papers [28,29].

3 Electromechanical governing equations

The mechanical equations of motion of the rotating
beamand a charge equation of electrostatics are derived
according to the extended Hamilton principle of the
least action

δ J =
∫ t2

t1
(δT − δU + δWext) dt = 0 (1)

where J is the action, T is the kinetic energy, U is
the potential energy including mechanical (Um) and
electrical components (Ue), and the work done by the
external loads is given by the Wext term.

Following the kinematic assumptions given in the
previous section and discussed in detail in [28,29], the
elastic displacements of an arbitrary pointA of the cross
section can be expressed in the local coordinates frame
(0, x, y, z) as [29]

Dx = u0(x, t) + ϑy(x, t)
(
z − n dy

ds

)

+ ϑz(x, t)
(
y + n dz

ds

)− G(n, s)ϕ′

Dy = v0 (x, t) − (y + n dz
ds

)
(1 − cosϕ)

−
(
z − n dy

ds

)
sin ϕ

≈ v0 (x, t) − 1
2

(
y + n dz

ds

)
ϕ2 − (z − n dy

ds )ϕ

Dz = w0 (x, t) + (y + n dz
ds

)
sin ϕ

−
(
z − n dy

ds

)
(1 − cosϕ)

≈ w0 (x, t) + (y + n dz
ds

)
ϕ − 1

2

(
z − n dy

ds

)
ϕ2 (2)

In formulas (2) the variables u0, v0, w0 are the dis-
placements of the point 0 located on the beam axis and
belonging to the same cross section as the discussed
point A, ϕ = ϕ(x, t) denotes rotation of the cross sec-
tion about the Ox axis (profile twist)—see Fig. 1c.
Angles ϑy(x, t) = γxz − w′

0 and ϑz(x, t) = γxy − v′
0

represent cross-section rotations about the respective
local axes y and z and considering the shear effect.
These six variables constitute a set of basic mechanical
unknowns of the problem. Besides, the first equation in
the above set includeswarping effect due to thewarping
function term G(s, n), where n stands for the distance
of the considered point A to the cross-section wall mid-
line, and s is a circumferential coordinate—see Fig. 1b.

Strain formulas are as follows:

εxx = ε(0)
xx + nε(1)

xx = u′
0 + zϑ ′

y + yϑ ′
z − G(0)(s)ϕ′′

+ 1
2

(
v′
0 − zϕ′)2

+ 1
2

(
w′
0 + yϕ′)2

+ n
(
dz
dsϑ

′
z − dy

ds ϑ
′
y − G(1)(s)ϕ′′)

γxs = γ (0)
xs + nγ (1)

xs = (ϑy + w′
0)

dz
ds + (ϑz + v′

0)
dy
ds

+ g(0)(s)ϕ′ + ng(1)(s)ϕ′

γxn = γ (0)
xn = −(ϑy + w′

0)
dy
ds + (ϑz + v′

0)
dz
ds (3)

where the prime symbol corresponds to the differenti-
ation with respect to space variable x , and the super-
scripts (�)(0) and (�)(1) denote the cross-sectionmid-line
and off-mid-line components, respectively.

Although the mathematical model of the beam is
limited to the linear case, higher-order terms associ-
ated with the lateral and transversal displacements in
axial strain εxx are taken into account. These terms
play a crucial role in a proper modelling of the blade
stiffening effect arising from the system rotation ψ̇(t).
This approach is one of several methods that are used
in linear models of rotating systems to capture these
phenomena.
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To write down the expressions for stresses in piezo-
ceramic layer, its constitutive relations have to be used.
For the specific case of an active material subjected to
electric field in poling direction x3 (thicknesswise) and
limiting the analysis to linear strains and cubic non-
linearities in the electric field as well as plane stress
condition, a set of reduced constitutive equations for
the converse effect is [26]

⎧⎨
⎩

σss
σxx
σxs

⎫⎬
⎭

(p)

=
⎡
⎣Q̃11 Q̃12 0
Q̃12 Q̃11 0
0 0 Q̃66

⎤
⎦
⎧⎨
⎩

εss
εxx
γss

⎫⎬
⎭−

⎧⎨
⎩
ẽ31E3

ẽ31E3

0

⎫⎬
⎭

− sgn(E3)

⎧⎨
⎩
b̃31E2

3
b̃31E2

3
0

⎫⎬
⎭−

⎧⎨
⎩

f̃31E3
3

f̃31E3
3

0

⎫⎬
⎭

σxn(p) = C̃44γxn (4)

where the reduced stiffnesses Q̃i j and appropriate con-
stants are

Q̃11 = Q̃22 = C̃11 − C̃2
13

C̃33
Q̃66 = C̃66

Q̃12 = C̃12 − C̃2
13

C̃33

ẽ31 = e31 − C̃13e33

C̃33
f̃31 = f31 − C̃13 f33

C̃33

b̃31 = b̂31 − C̃13b̂33

C̃33

In the above expressions C̃i j stands for members of the
second-order piezoceramic material elasticity tensor,
e13 and e33 are two terms of the piezoelectric tensor,
b̂31 and b̂33 aremembers of the effective electrostrictive
tensor, and finally f31 and f33 are components of the
fourth-order piezoelectric tensor—see also [16,27].

Since the active material is poled through its thick-
ness with traditional surface electrodes normal to axis
3, one can retain electric displacement term D3 only.
The direct piezoelectric effect equation is as follows
[26]

D3 = ẽ31εss + ẽ31εxx + ξ̃33E3 + sgn(E3)χ33E
2
3

+ (χ̂1 + 2χ̂2 + χ̂3)E
3
3 (5)

Lss

Fig. 2 In-plane and transversal stress resultants and stress cou-
ples acting on a beam wall representative element

where new reduced material constants are

ξ̃33 = ξ33 + e233
C̃33

χ̃33 = χ33 + e33b̂33

C̃33

χ̃123 = χ̂1 + 2χ̂2 + χ̂3 + e33 f33

C̃33

In the above expressions ξ33 is material permittivity
coefficient, χ33 and χ̂i , i = 1, 2, 3 are members of
the third- and the fourth-order electric susceptibility
tensors, respectively [16,27].

Constitutive equations for the individual layers of
composite plant may be formulated according to the
classical laminate theory (CLT). The detailed expres-
sions for individual stress resultants σ��(c) are given in
“Appendix A”.

The 2-D stress resultants and stress couples—see
Fig. 2—in the combinedhybrid laminate–piezoceramic
system can be obtained after integration of individual
stress components σ��(p) and σ��(c) through the total
thickness of the beam wall. Next, these can be trans-
formed from local (0, x, s, n) coordinate system to
global one (0, x, y, z). The expressions for resulting
terms Nxx , Nxn , Nxs , Lxx , Lxs (see Eq. B.4) as well as
appropriate comments are found in “Appendix B”.

Bearing in mind the given expressions, the potential
energy of the system is given as follows [26]

Um = 1
2

l∫

0

∫

c

∫

h+hp

(
σxxεxx + σxnγxn + σxsγxs

)
dn ds dx

= 1
2

l∫

0

∫

c

[
Nxxε

(0)
xx + Lxxε

(1)
xx + Nxnγ

(0)
xn

+ Nxsγ
(0)
xs + Lxsγ

(1)
xs

]
ds dx (6)
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where subscript (�)c corresponds to integration over
cross-section perimeter.

The total kinetic energy of the system consists of
components coming from the hub and the beam

T = 1

2
Jhψ̇

2(t) + 1

2

∫

V

ρ ṘᵀṘ dV, (7)

where designation ρ refers to an average beam mate-
rial density and representative infinitesimal volume ele-
ment is dV = dn ds dx ; Jh is the mass moment of hub
inertia. Individual components of the velocity vector
R = {Ṙx , Ṙy, Ṙz }T are time derivatives of a tempo-
rary position of an arbitrary point A in global (inertial)
coordinate system

Rx = (Dx + x + R0) cosψ − (Dy + Y ) cos θ sinψ

+ (Dz + Z) sin θ sinψ

Ry = (Dx + x + R0) sinψ + (Dy + Y ) cos θ cosψ

− (Dz + Z) sin θ cosψ

Rz = (Dy + Y ) sin θ + (Dz + Z) cos θ (8)

Regarding the virtual work of external loadingsWext

in (1), the considered research is limited to external
torque Text,z driving the hub shaft (see Fig. 1); there-
fore,

δWext = Text,zδψ(t) (9)

Using the Hamilton’s variational principle, the min-
imisation of the action J Eq. (1) with respect to six
mechanical degrees of freedom (u0, v0, w0, ϑy, ϑz, ϕ)
and electrical one (E3) yields seven electromechani-
cal differential equations of motion and the associated
boundary conditions. These are as follows [26]:

• δψ(t)

− Jhψ̈(t) − B22ψ̈(t) − B14lψ̈(t) cos2 θ

− B13lψ̈(t) sin2 θ+2B15lψ̈(t) cos θ sin θ

−
∫ l

0

{
2(R0 + x)

[
B1u0 + B11ϑy

+B12ϑz − B7ϕ
′] ψ̈(t)

+ 2 (B12 cos θ − B11 sin θ) [(v0 cos θ

−w0 sin θ) ψ̈(t) + (v̇0 cos θ − ẇ0 sin θ) ψ̇(t)
]

+ 2
[
B17 sin

2θ + (B16 − B19) sin θ cos θ

−B18 cos
2 θ
] (

ϕψ̈(t) + ϕ̇ψ̇(t)
)+ (B11 sin θ

−B12 cos θ) ü0 + (B13 sin θ − B15 cos θ
)
ϑ̈y

+ (B15 sin θ − B14 cos θ
)
ϑ̈z

+ (B9 cos θ−B8 sin θ
)
ϕ̈′

+ (R0+x)
[
B1v̈0 cos θ − B1ẅ0 sin θ

− (B3 sin θ+B2 cos θ
)
ϕ̈
]

+ 2(R0 + x)
(
B1u̇0 + B11ϑ̇y + B12ϑ̇z

− B7ϕ̇
′)ψ̇(t)

}
dx + Text,z = 0 (10)

• δu0,

− B1ü0 − B12ϑ̈z − B11ϑ̈y + B7ϕ̈
′ + 2 [(B1v̇0

−B2ϕ̇) cos θ − (B1ẇ0 + B3ϕ̇) sin θ ] ψ̇(t)

+ [
B1(R0+x+u0) + B12ϑz + B11ϑy

−B7ϕ
′] ψ̇2(t) + [(B1v0 − B2ϕ + B12) cos θ

−(B1w0 + B3ϕ + B11) sin θ ] ψ̈(t)

+ (Tx )
′ = 0 (11)

with boundary conditions u0
∣∣
x=0 = 0, Tx

∣∣
x=l = 0

• δv0

− B1v̈0 + B2ϕ̈ − 2
(
B1u̇0 + B12ϑ̇z + B11ϑ̇y

−B7ϕ̇
′) ψ̇(t) cos θ + [(B1v0 − B2ϕ

+ B12) cos
2 θ − (B1w0 + B3ϕ

+B11) sin θ cos θ ] ψ̇2(t) − [B1(R0 + x + u0)

+B12ϑz + B11ϑy − B7ϕ
′] ψ̈(t) cos θ + Q′

y

+ (Txv
′
0)

′ = 0 (12)

with boundary conditions v0
∣∣
x=0 = 0, [Qy

+ Txv′
0]
∣∣
x=l = 0

• δw0

− B1ẅ0 − B3ϕ̈ + 2
(
B1u̇0 + B12ϑ̇z + B11ϑ̇y

−B7ϕ̇
′) ψ̇(t) sin θ

+
[
(B1w0 + B3ϕ + B11) sin

2 θ

−(B1v0 − B2ϕ + B12)ψ̇
2(t) sin θ cos θ

]
ψ̇2(t)

+ [B1(R0+x+u0) + B12ϑz + B11ϑy

−B7ϕ
′] ψ̈(t) sin θ + Q′

z + (Txw
′
0)

′ = 0 (13)

with boundary conditions w0
∣∣
x=0 = 0, [Qz + Tx

w′
0]
∣∣
x=l = 0
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• δϑy

− B11ü0 − B13ϑ̈y − B15ϑ̈z + B8ϕ̈
′

+ 2
[
(B11v̇0 − B16ϕ̇) cos θ − (B11ẇ0

+ B17ϕ̇) sin θ
]
ψ̇(t)

+ [(B11v0 − B16ϕ + B15) cos θ − (B11w0

+B17ϕ + B13) sin θ ] ψ̈(t)

+ [B11(R0 + x + u0) + B15ϑz

+B13ϑy − B8ϕ
′] ψ̇2(t) − Qz + M ′

y = 0 (14)

with boundary conditionsϑy
∣∣
x=0 = 0, My

∣∣
x=l = 0

• δϑz

− B12ü0 − B15ϑ̈y − B14ϑ̈z + B9ϕ̈
′ + 2 [(B12v̇0

−B18ϕ̇) cos θ − (B12ẇ0 + B19ϕ̇) sin θ ] ψ̇(t)

+ [(B12v0 − B18ϕ + B14) cos θ

−(B12w0 + B19ϕ + B15) sin θ ] ψ̈(t)

+ [B12(R0 + x + u0) + B14ϑz

+B15ϑy − B9ϕ
′] ψ̇2(t) − Qy + M ′

z = 0 (15)

with boundary conditions ϑz
∣∣
x=0 = 0, Mz

∣∣
x=l = 0

• δϕ

B2v̈0−B3ẅ0−B4ϕ̈−B5ϕ̈+2 [(B2 cos θ

+B3 sin θ)u̇0+(B16 cos θ+B17 sin θ)ϑ̇y
]
ψ̇(t)

+ 2
[
(B18 cos θ + B19 sin θ)ϑ̇z − (B20 cos θ

+B21 sin θ)ϕ̇′ + (B7v̇0 − B20ϕ̇)′ cos θ

− (B7ẇ0 + B21ϕ̇)′ sin θ
]
ψ̇(t)

+ (B2 cos θ + B3 sin θ)(w0 sin θ

− v0 cos θ)ψ̇2(t) +
[
B17 sin

2 θ

+ (B16 − B19) cos θ sin θ − B18 cos
2 θ
]
ψ̇2(t)

+
[
(B4 − B19) cos

2 θ + (2B6 + B17

+B18) sin θ cos θ + (B5 − B16) sin
2 θ
]
ϕψ̇2(t)

+
{
[B7(R0 + x + u0)]

′ + (B8ϑy
)′ + (B9ϑz)

′

− (B10ϕ
′)′} ψ̇2(t) + (B2 cos θ + B3 sin θ)(R0

+ x)ψ̈(t) + [(B18 cos θ + B19 sin θ)ϑz

+(B16 cos θ + B17 sin θ)ϑy
]
ψ̈(t)

+ [(B3 cos θ − B2 sin θ)(R0 + x)ϕ

−(B20 cos θ + B21 sin θ)ϕ′] ψ̈(t)

+ [(B7v0 − B20ϕ)′ cos θ − (B7w0

+B21ϕ)′ sin θ
]
ψ̈(t) − (

B8ϑ̈y
)′ − (B9ϑ̈z

)′
− (B7ü0)

′ + (B10ϕ̈
′)′ + M ′

x+B ′′
w + (Trϕ

′)′=0
(16)

with boundary conditions,

{−B7ü0−B8ϑ̈y−B9ϑ̈z+B10ϕ̈
′+2 [(B7v̇0

−B20ϕ̇) cos θ−(B7ẇ0+B21ϕ̇) sin θ ] ψ̇(t)

+ [(B7v0−B20ϕ + B9) cos θ−(B7w0 + B21ϕ

+B8) sin θ ] ψ̈(t) + [B7(R0 + x + u0) + B8ϑy

+B9ϑz − B10ϕ
′] ψ̇2(t) + Mx+B ′

w + Trϕ
′}∣∣

x=l

= 0, Bw

∣∣
x=l = 0, ϕ′∣∣

x=0 = 0, ϕ
∣∣
x=0 = 0. (17)

where Bi (i = 1 . . . 21) terms are inertia coeffi-
cients as defined in [28].

• δE3

aE1u
′
0+aE2ϑ

′
z+aE3ϑ

′
y+aE4(ϑz+v′

0)+aE5(ϑy

+ w′
0)−aE6ϕ

′′+aE7ϕ
′−aEeE3

− aEb sgn(E3)E
2
3 − aE f E

3
3 = 0 (18)

Relations (10)–(18) form a nonlinear system of par-
tial differential equations (PDEs) that exhibit a com-
plete coupling between various modes, i.e. axial defor-
mation, chordwise and flapwise bendings plus cor-
responding transverse shear deformations, twist and
warpings (primary and secondary) aswell as an electro-
static equilibrium. Although the governing equations
look similar to the purely mechanical system [29], the
principal difference stays in the definition of 1-D gener-
alised stress resultants and stress coupleswhich include
electrical components as expressed in (B.4).Obviously,
the addition to the governing system is the electrostatic
Eq. (18).

If limited to the linear electric field and to zero pre-
setting angle, the given above governing equations are
similar to the ones derived by Mitra et al. [30]. When
referring to their research, one comment is to be made.
Although the full two-way coupling effect was posed
while deriving equations ofmotion, the discussed prob-
lemwas simplified at the stage of system discretisation.
In the finite element code developed by the authors,
a uniform electric field magnitude over the finite ele-
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ment domain was assumed resulting in the electrical
and mechanical modes decoupling.

3.1 CAS lamination scheme

General equations of motion given in the previous
section get significantly simplified if any of the spe-
cial lamination schemes is assumed. In particular, as
reported in, for example, [2] the circumferentially
asymmetric stiffness (CAS) composite configuration
decouples the full set of six mechanical equations of
motion into two independent sub-systems. One corre-
sponds to the flapwise bending–shear-twisting speci-
men deformation, and the second one exhibits the coex-
isting axial stretching and chordwise bending–shear
modes. Thus, presuming the CAS fibre arrangement
and clamping the beam to the hub at θ = −90◦ angle
make the piezoelectric transducers to excite lead–lag
plane bending coupled with the specimen twisting.
Furthermore, considering the simplifications resulting
from the cross-section symmetry (see [28] for iner-
tia terms calculations) the general equations of motion
(10)–(18) are simplified to the following form

– for the rigid hub

Jhψ̈(t) + (B22 + B4l)ψ̈(t) + B4lϑ̈y

+
∫ l

0

{
b1(R0+x)

[
2u0ψ̈(t)+2u̇0ψ̇(t)−ẅ0

]}
dx

− Text,z(t) = 0 (19)

– displacement in the lead–lag plane w0

b1ẅ0 + 2b1u̇0 ψ̇(t) − b1w0ψ̇
2(t)

+ b1(R0+x+u0)ψ̈(t) − a55ϑ
′
y−a55w

′′
0

− (Txw′
0

)′ = 0 (20)

with boundary conditions w0
∣∣
x=0 = 0,

(ϑy + w′
0)
∣∣
x=l = 0

– transverse shear ϑy

B4ϑ̈y−B4ϑyψ̇
2(t)−B4ψ̈(t)

+ a55ϑy+a55w
′
0−a33ϑ

′′
y − a37ϕ

′′

− a3eE
′
3−a3b

[
sgn(E3)E

2
3

]′−a3 f
(
E3
3

)′ = 0
(21)

with boundary conditions

ϑy
∣∣
x=0 = 0,

[
a33ϑ

′
y+a37ϕ

′

+ a3eE3+a3b sgn(E3)E
2
3+a3 f E

3
3

]∣∣
x=l = 0

– profile twist angle ϕ

(B4 + B5)ϕ̈ + (B4 − B5)ϕψ̇2(t) − a37ϑ
′′
y

− a77ϕ
′′ − (Trϕ′)′ = 0, (22)

with boundary conditions

ϕ
∣∣
x=0 = 0,

(
a37ϑ

′
y + a77ϕ

′)∣∣
x=l = 0,

– electrostatic equation E3

aE3ϑ
′
y − aEeE3 − aEb sgn(E3)(E3)

2 − aE f E
3
3 = 0

(23)

Terms Tx (x) and Tr (x) present in (20) and (22) cor-
respond to system stiffening resulting from rotational
transportation motion, and they are defined as

Tx (x)=b1(l−x)
[
R0+ 1

2 (l+x)
]
ψ̇2(t), Tr (x)=γ Tx (x)

where γ = B4+B5
m0β

and β is cross-section perimeter.
The derived equations of motion for the rigid hub–

thin-walled piezoelectric composite beam constitute a
system of nonlinear coupled partial differential equa-
tions. It can be observed the electrical degree of free-
dom (dof) and the individual mechanical ones repre-
senting bending and profile twist are coupled through
the transverse shear deformationEq. (21).Higher-order
electric field terms are present in this equation, as well
as in electrostatic one. These termsnaturally result from
the discussed nonlinear piezoelectric effect.

In Eqs. (19)–(23) the coefficient a33 corresponds to
bending stiffness, a55 to transverse shear stiffness, a77
is torsional one and a37 is bending–torsion coupling
stiffness. Coefficients a3e = aE3, a3b, a3 f and aEb,
aEf are electromechanical reduced stiffnesses resulting
from piezoelectric and electrostatic properties of the
actuators, where (�)b and (�) f subscripts refer to higher-
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order electric field E3 terms. Individual definitions are
as follows:

a3λ =
∫
c

∫
hp

[(
A12

A11
− 1

)
z − dy

ds

(
B12

A11
− n

)]
λ̃31 ds dn

for λ ∈ (e, b, f )

aEe =
∫
c

∫
hp

(
ξ33 + e233

C̃33
+ hp

A11
ẽ231

)
dn ds

aEb =
∫
c

∫
hp

(
χ33 + e33b̂33

C̃33
+ hp

A11
b̃31ẽ31

)
dn ds

aE f =
∫
c

∫
hp

(̂
χ1+2χ̂2+χ̂3+ e33 f33

C̃33
+ hp

A11
f̃31ẽ31

)
dn ds

(24)

where the integration limit c denotes profile perimeter
following the contour tangent axis s (seeFig. 1b).Mate-
rial stiffness C̃33 term and appropriate reduced stiff-
nesses of extension Ai j and bending–extension cou-
pling B12 arise from the piezoceramic material prop-
erties and the plane stress assumption for the profile
wall. Detailed expressions for remaining a(��) factors
are given in the paper by Georgiades et al. [28].

It should be observed that in the more general case
of a tapered beam inertia coefficients B(�) as well as
stiffnesses a(��) depend on the axial variable x . This
significantly complicates the equations of motion and
boundary conditions as well. Moreover, in addition
to the above-mentioned elastic couplings induced by
the CAS ply angle distribution, the additional ones are
observed [2,11,31]. Specifically, these are a coupling
between the flapwise shear and chordwise bending and
between chordwise shear and flapwise bending. Thus,
the adopted CAS lamination scheme does not entail the
problem simplification, and all six general equations
of motion must be taken into account. However, for an
axisymmetric box beam of a square cross-section case,
the flapwise–chordwise coupling arises independently
from the pre-twist effect.

3.2 Spatial discretisation

To reduce the derived system of partial differential
equations (PDEs) of the structure to ordinary differen-
tial ones, the extended Galerkin method (EGM) is used
as an efficient and accurate approach [32]. The choice
of the extended modification of the regular Galerkin
method comes from the imposed dynamic boundary

conditions that are non-trivial at the free end with
respect to basic problem unknowns. The EGM adopts
the assumption of a set of trial functions that satisfy
only geometric boundary conditions and do not prevent
dynamic boundary conditions from being fulfilled (so-
called consistent admissible functions). These func-
tions are used to calculate the residual of the differ-
ential equation. Next, this residual is integrated over
the domain with a weight function (same as the trial
one) andminimised.While evaluating the integrals, the
appropriate natural boundary conditions are incorpo-
rated to ensure their fulfilment by the searched approx-
imate solutions. A significant benefit of this modifi-
cation to the regular Galerkin method is the fact that
the choice of trial functions is easier and this approach
reduces the requirement of functions differentiability
to half the order of spatial derivatives present in the
equations of motion. More details regarding the func-
tions (assumed mode shapes) used in the procedure as
well as the modes orthogonality condition are given in
the paper by Latalski et al. [29].

To determine the mode shapes which are used in
the subsequent analysis of the original problem, the
linearised form of governing Eqs. (19)–(23) for a non-
rotating beam is written. Then, an electrical degree of
freedom is eliminated by means of Eq. (23) and input
into Eq. (21). By this simple mathematical operation a
reduced set of governing equations is formulated with
no loss of formulation generality (static condensation
method as the model order reduction—see [33]). Fur-
thermore, to enhance the generality of the considera-
tion it is convenient to transform the original govern-
ing Eqs. (19)–(23) into a dimensionless form by intro-
ducing the spanwise coordinate η = x/ l; η ∈ 〈0, 1〉
and dimensionless time τ = ωt where t is physical
time and ω = √

a33/b1l4 is the first natural frequency
of a non-rotating linear system. Thus, new dimen-
sionless variables W (η, τ ), Y (η, τ ) and �(η, τ) are
introduced representing transverse displacement, shear
deformation and twist angle, respectively. The elec-
tric field E3 is substituted by a dimensionless variable
ε(η) = E3(x)/Ecwhere the Ec is a coercive limit value
for the piezomaterial.

Having found the individual components of the
beam modes shapes, the reduction of the system of
partial differential equations to ordinary ones can be
done. Combining all three beam equations integrated
over the specimen length and considering orthogonal-
ity condition (see [29]), one finally arrives at the system
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of two dimensionless nonlinear equations of the hub–
beam structure

q̈1 + α12ψ̈ + ς1q̇1+
(
α11+α13ψ̇

2
)
q1 + α14ψ̇ q̇1q1

+ α15sgn(q1)q
2
1 + α16q

3
1 = 0(

1+ Ĵh+αh2q1
)
ψ̈ + αh1q̈1 + ςhψ̇ + αh3q̇1ψ̇ = μ

(25)

The first of these relations describes the dynamics
of the beam, where the coordinate q1 involves all three
beam mechanical variables (flexural displacement,
cross-section rotation and twist angle) and electrical
one with different relative importance dependent on
modeorder and composite reinforcingfibre orientation.
The second equation represents the dynamics of the
hub.Designation Ĵh refers to the relative hub inertia, i.e.
the inertia of the hub with respect to the beam inertia.
The right-hand side term in (25)2 is dimensionless driv-
ing torque μ that may be generally represented as an
algebraic sum of steady state and periodic components

μ(τ) = μ0 + ρ sinωτ (26)

where ρ and ω are driving torque amplitude and fre-
quency, respectively. μ0 is the torque constant compo-
nent resulting in the mean value of the system angular
speed.

4 Numerical calculations

4.1 Validation of the analytical model

The accuracy of the present formulation of the rotating
thin-walled beam with integrated piezoelectric active
element is verifiedbyperforming a free vibration analy-
sis for specially orthotropic laminate case (no coupling
between in-plane extensional and shear responses) and
various values of the rotating speed. Next, the compar-
ative study with the available data presented by other
researchers and using different theories and solution
methods is performed. In this analysis the output of the
current model is limited to linear piezoelectric effect
since only this case is reported in the literature on
rotating bladeswith the integrated piezoceramic layers.
Moreover, for the relevance, the impact of hub inertia
on systemdynamics is neglected by imposing J̃h → ∞
since this assumption corresponds to a classical case of
a cantilever beam [29].

For the comparison the graphite–epoxy composite
and piezoceramic PZT-4 material data as well as speci-
men dimensions and laminae reinforcing fibre orienta-
tion used by Chandiramani [11] are employed. Table 1
shows the first two eigenfrequencies corresponding to
flap bendingmodewhen the dimensionless beam angu-
lar speed ψ̇ = �̃ is set to 0, 1, 3 and 6, respectively.
Results of present calculations are referred to the data
given byYokohama andMarkiewicz [34] obtained ana-
lytically using the power series solution method, and
to results reported by Chandiramani [11] and obtained
by the original finite element code. The latter ones are
restricted to specific case of untwisted, untapered beam
and neglecting the tip mass.

The agreement appears to be very good, with error
magnitude limited to 0.25–0.75% (with respect to A
and B) and 1.9–2.2% for the first and the second natu-
ral frequency, respectively. It should be emphasised all
presented results are obtained by approximate meth-
ods. Therefore, discrepancies are related, among other
matters, to the accuracy of spatial discretisation (the
density of finite elements or number of trial functions
used in the extended Galerkin method).

4.2 Free vibration analysis

In the next step free vibrations of the beam with a non-
linear piezoceramic active element are investigated in
detail. Similar to the model validation stage the impact
of hub inertia on system dynamics is neglected by
imposing J̃h → ∞; thus, a separate beam substruc-
ture is considered.

For these calculations, as well as further forced
vibration analysis, a single ply graphite–epoxy master
structure is considered. Material properties and beam
geometry are given in Table 2, where the subscripts
1, 2 and 3 refer to parallel and transverse to the fibre
directions, respectively (the standard Classical Lam-
inate Theory assignment). The embedded active ele-
ment is made of PZT-3203HD ceramic material, and
its properties are collected from the papers by Rao et
al. [25] and by Kapuria et al. [23].

It is assumed the piezoceramic poling direction 3
is oriented thicknesswise. Since for the given mate-
rial components of the fourth-order piezoelectric ten-
sor f32 = f33 are equal to 0, as well as the members
of the third- and the fourth-order electric susceptibil-
ity tensors χ̂1 = χ̂2 = χ̂3, the general formulation
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Table 1 First and second
natural frequencies of the
piezointegrated composite
beam for different
dimensionless angular
speed ψ̇ in comparison with
results presented in
[34]—column A and
[11]—column B

ψ̇ ω1 ω2

A B Present A B Present

0 3.5160 3.5020 3.5116 22.0345 21.4427 21.8585

1 – 3.6787 3.6510 – 22.0611 22.0024

3 4.7973 4.7973 4.7968 23.3203 22.6901 23.2007

6 7.3604 7.3354 7.3423 26.8091 26.0744 26.5493

Table 2 System geometric data and materials as used in numerical simulations

Geometric properties

l = 0.254m c = 0.00508m d = 0.0254m R0 = 0.1 l

hw = 0.001m hf = 0.0005m h p = 0.0005m

Material properties of the laminate

E1 = 206.75GPa E2 = E3 = 5.17GPa G23 = 3.1GPa G12 = G13 = 2.55GPa

ν21 = ν31 = 0.00625 (−) ν32 = 0.25 (−) ρc = 1528.15 kg/m3

Material properties of PZT 3203HD (transverse isotropic piezoceramic)

E1 = E2 = 60.24GPa E3 = 47.62GPa G23=G31=19.084GPa G12 = 24.038GPa

ν12 = 0.253 (−) ν32 = 0.39 (−) ρc = 7800.00 kg/m3

e31 = −25.84N/mV e33 = 39.63N/mV b̂31 = 520.0 × 10−7 N/V2 b̂33 = 520.0 × 10−7 N/V2

f31 = 0.0Nm/V3 f33 = 0.0Nm/V3 ξ33 = 33.63 × 10−9 N/V2 χ̂1= χ̂2= χ̂3=0.0Nm2/V4

of the problem is simplified and restricted to quadratic
nonlinearities only.

Figures 3 and 4 provide results of themodal analysis
of the piezocomposite beam for two different laminae
fibre orientations—i.e. 15◦ and 75◦, respectively. The
first free modes are presented for three dimensionless
angular speed ψ̇ values: 0, 3 and 8. Since these modes
are generally coupled ones, the individual components
of the beam deformation are distinguished by colours:
blue lines correspond to the transverse displacement
W (η), the grey ones to the shear deformation angle
(Timoshenko effect) Y (η), and the red ones are twist
angle �(η). In separate charts the electric field ε(η)

spatial distribution is presented (green colour).
Studying the first modes one can observe the sig-

nificant diversities in electric field distribution as the
angular speed ψ̇ of the beamchanges. For higher speeds
the difference between the electric field values at the
free end and the clamping point increases. Neverthe-
less, the general shape of the mode is preserved, and
independently of the rotation speed and the fibre orien-
tation angle the gradient of the electric field decreases
towards the beam free end. These first mode general
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Fig. 3 Mechanical W (η), Y (η),�(η) and electric ε(η) compo-
nents of free vibration modes for the rotating composite beam
with integrated piezoelement; fibre orientation angle α = 15◦.
Solid lines correspond to non-rotating system ψ̇ = 0, dashed
lines correspond to dimensionless ψ̇ = 3, and dotted ones are
ψ̇ = 8 case
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Fig. 4 Mechanical W (η), Y (η),�(η) and electric ε(η) compo-
nents of free vibration modes for the rotating composite beam
with integrated piezoelement; fibre orientation angle α = 75◦.
Solid lines correspond to non-rotating system ψ̇ = 0, dashed
lines correspond to dimensionless ψ̇ = 3, and dotted ones are
ψ̇ = 8 case

shapes of the electric field distribution are similar to the
ones obtained by, for example, Thornburgh et al. [5],
who derived a coupled filed model and original finite
element code for the specific case of a non-rotating
cantilever plate with piezoceramic outer layers. Also
Kapuria et al. [35] received similar results when study-
ing the peak voltage spanwise distribution in the seg-
mented sensors bonded on cantilever plates.

The direct comparison of both α = 15◦ and 75◦
cases shows that the overall magnitude of the discussed
difference is higher for the lower value of fibre ori-
entation angle α. This observation is related to the
mechanical deformation of the structure—the second
case (α = 75◦) includes a markedly stronger twist-
ing component if compared to the first case. There-
fore, proportionally less energy is stored in shear defor-
mation; thus, the spatial distribution of the electric
field is smoother (more homogenous). To some extent
this comment is confirmed by the third natural mode
analysis—see comment below.

Regarding the second modes it can be noticed the
change in angular speed ψ̇ does not influence the elec-
tric field distribution significantly. Only slight differ-
ences are observed for the mid-span zone and the

Table 3 Dimensionless coefficients for Eq. (25) used for forced
vibration calculations

α11 = 10.863623003475 αh1 = −0.532327965675

α12 = 1.772331392836 αh2 = −0.404258576820

α13 = 0.348486114407 αh3 = −0.404258576820

α14 = −1.549858192303

α15 = −2.326890791362

α16 = 0.0

ζ1 = 0.01
√

α11 ζh = 0.1

α = 75◦ case. This comes from the fact that the
increase in rotating speed increases the participation
of the twisting component in the deformation mode
just for this fibre orientation case. The further analysis
leads to the conclusion, similar as for the first mode dis-
cussed above, that the overall magnitude on the differ-
ence between extreme values of electric field is higher
for lower value of fibre orientation angle α.

The third modes for both laminae orientation cases
are twist dominated ones with a negligible bend-
ing/shear component. Therefore, the spatial distribu-
tion of electric field potential is almost uniform with
the magnitude close to zero (mind different scales on
ordinate axes).

4.3 Forced vibrations

In the next step the forced vibrations of the full hub–
beam system as governed by Eq. (25) are examined.
The fibre orientation angle is set to α = 75◦ and the
relative hub inertia J̃h is equal to 1. Numerical values of
αi j coefficients corresponding to this configuration are
given inTable 3.Moreover, damping coefficients for the
beam and for the hub are introduced. The beam damp-
ing coefficient ζ1 is expressed as 1% of the first dimen-
sionless frequency of the non-rotating beam clamped
to an infinite heavy hub. The hub damping coefficient
ζh is fixed at 0.1 value.

For the initial studies the system forcing is repre-
sented by a zero mean value periodic torque μ(τ) =
ρ sinωτ imposed to the hub—see Eq. (26). The
dynamic response of the structure is examined around
the first resonance of the combined beam–hub structure
and considering different magnitudes of driving torque
amplitude ρ. The results are presented in Fig. 5, where
plots (a) and (b) correspond to responses of the beam
and the hub, respectively. The plots are obtained by the
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Fig. 5 Resonance curves for the beam (a) and the hub (b) sub-
systems around the first natural frequency with respect to exci-
tation amplitude ρ. The solid (dashed) curves represent stable
(unstable) solutions

continuation method treating excitation frequencyω as
a bifurcation parameter.

Both resonance curves are bent to the left denoting a
softening effect with stable and unstable regions high-
lighted by solid and dashed lines, respectively. It can
be seen that the steady state generalised displacement
q1 amplitude of the beam increases as the magnitude ρ

of the periodic driving torque amplitude is increased.
The same comment refers to the hub response ψ̇ . The
observed relation betweenmaximum system responses
and excitation amplitudes is nonlinear.However,within
the tested range of excitation amplitudes no internal
solutions inside the resonance curves have been found.

Similar frequency response softening effects were
also reported by other researches who considered the
nonlinear piezoceramicmaterial constitutive relation—
see, for example, [17,20].

For the studied fixed values of excitation frequency
and varied amplitude ρ, the jump phenomena appear
clearly due to the domination of the nonlinearity. The
details are presented in Fig. 6 by bifurcation dia-
grams showing both upsweep and downsweep system
responses. The amplitudes of beam generalised dis-
placement q1 (a) as well as hub speed ψ̇ (b) for the
exemplary excitation frequency ω = 2.68 are shown
for situations before and after jumps depending on the
forcing torque amplitude ρ. It is clearly seen that at
this frequency two stable solutions are possible for the
range of ρ ∈ 〈0.004, 0.0125〉. Below and above this
range, just one solution is present.

To confirm the results given in these frequency
response diagrams, two sets of time series plots are pre-
pared. The results are obtained for the excitation ampli-
tude ρ = 0.01 and frequency ω = 2.68 and for two
different initial conditions sets. In Fig. 7 (grey colour)
the envelopes of transient and steady state responses for
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Fig. 6 Bifurcation diagrams showing the amplitudes of beam
(a) and hub (b) responses with respect to excitation amplitude ρ

for the excitation frequency ω = 2.68
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Fig. 7 Envelopes of linear and nonlinear transient and steady
state responses of the beam and the hub for excitation frequency
ω = 2.68 and amplitude ρ = 0.01 (Fig. 5 black line); initial con-
ditions: q|τ=0 = 0.04, q̇|τ=0 = 0,�|τ=0 = 0.005. Colour code:
grey—nonlinear piezoelectric effect, blue – linear piezoelectric
effect

the data q|τ=0 = 0.04, q̇|τ=0 = 0, �|τ=0 = 0.005 are
shown. The steady state amplitudes for the beam and
the hub are 0.041 and 0.031, respectively. These match
lower branches of frequency response curves in Fig. 5.
In the second case (Fig. 8, grey colour) the initial data
set q|τ=0 = 0.14, q̇|τ=0 = 0, �|τ=0 = 0.085 is exam-
ined. Beam response 0.165 and 0.116 value for the hub
corresponds to upper branches of response curves.

Next, studies regarding the impact of the piezoelec-
tric nonlinearity on the system performance are pre-
sented. The reported above calculations referring to the
nonlinear piezoelectric effect are repeated for the case
of a linearmaterialmodel by settingα15 coefficient [see
Table 3 and Eq. (25)] to zero. The results obtained for
the linearised system are presented in Figs. 7 and 8 and
marked in blue colour.

Comparing the system responses one observes sig-
nificant differences in vibrations attenuations and set-
tling time. Regarding the lower frequency resonance
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Fig. 8 Envelopes of linear and nonlinear transient and steady
state responses of the beam and the hub for excitation frequency
ω = 2.68 and amplitude ρ = 0.01 (Fig. 5 black line); initial con-
ditions: q|τ=0 = 0.14, q̇|τ=0 = 0,�|τ=0 = 0.085. Colour code:
grey—nonlinear piezoelectric effect, blue—linear piezoelectric
effect

curve solutions (Fig. 7), the nonlinear model of the
piezoceramic material yields higher amplitudes both
in transient and in the steady state zones and the longer
structure settling time. For the upper frequency curve
points (Fig. 8), the settling time relation is differ-
ent and the nonlinear piezoceramic model yields sig-
nificantly shorter duration of the transition to steady
state response. In both cases the system softening
effect is confirmed as higher amplitudes are recorded
in the case of the nonlinear constitutive model. This
phenomenon is crucial for a controller design since
it reduces the actual maximum voltage and power
required by the controller if compared to the linear
piezoceramic model. Thus, a nonlinear active element
behaviour should be included in the control system
design, especially for high-power systems and close
to resonance operation.

Similar comparisons of the system responses for
the linear and nonlinear models of piezoceramic mate-
rial have been conducted also for other excitation
scenarios—i.e. a rectangular pulse and an impulse ones.
However, in these cases no marked differences have
beennoticed.Thus, reported abovedifferences between
responses of linear and nonlinear models depend on the
type of system excitation and they get diminishedwhen
the excitation is of limited duration as in the case of the
rectangular pulse or the impulse. This observation con-
forms to the conclusions reported by Shete et al. [31]
and dealing with a smart composite beam with a lin-
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Fig. 9 Envelopes of transient and steady state responses of the
beam and the hub for excitation frequency ω = 2.68, ampli-
tude ρ = 0.005 and mean value μ0 = 0.001; initial conditions:
q|τ=0 = 0.04, q̇|τ=0 = 0, �|τ=0 = 0.005. Colour code: grey—
nonlinear piezoelectric effect, blue—linear piezoelectric effect
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beam and the hub for excitation frequency ω = 2.68, ampli-
tude ρ = 0.005 and mean value μ0 = 0.002; initial conditions:
q|τ=0 = 0.04, q̇|τ=0 = 0, �|τ=0 = 0.005. Colour code: grey—
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ear piezoelectric layer but combined with a quadratic
control subsystem.

Finally, let’s consider a rotating system. To this aim
the component μ0 of the driving torque μ(τ)—see
(26)—is set to nonzero value. Two simulations have
been performed. In Fig. 9 the results for the excitation
scenario μ = 0.001+ 0.005 cos(2.68τ) are presented,
while in Fig. 10 for the μ = 0.002+ 0.005 cos(2.68τ)

case. Again, the outputs for the quadratic nonlinearity
in piezoceramic material and for the linear constitutive
formulation are compared. The appropriate envelopes
are marked in grey and blue colours, respectively.

Similar to the previous simulations one observes sig-
nificant differences in vibrations attenuation and the
settling time. The smaller excitationmagnitude (Fig. 9)
yields the lower peaks in the transient response as well
as the significantly shorter settling time than for the
second case (Fig. 10). However, independently of the
excitation magnitude, the linear material model pre-
dicts a shorter settling time and lower transient and
steady state amplitudes as the nonlinear one. This con-
clusion conforms to the corresponding initial condition
and results presented in Fig. 7.

The calculated amplitudes of the steady state
responses for the lower excitation torque are 0.017
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for the beam and 0.013 for the hub angular velocity
and its mean value 0.015 considering the nonlinear
piezoceramic material model. If the problem is sim-
plified to the linear constitutive relationship the appro-
priate responses are 0.015 and 0.0115 with the mean
value 0.015. For the second driving torque formula the
amplitude of beam response is 0.0135 and the ampli-
tude 0.013 for the hub angular velocity with the mean
value 0.0295 considering the nonlinear piezoceramic
material model. If the linear constitutive relationship
is assumed, the appropriate responses are 0.0125 and
0.0115 with the mean value 0.0295 (Fig. 10).

The direct comparison of beam responses reveals the
lower amplitudes in the second case. This results from
the overall higher system rotating speed and the cen-
trifugal stiffening effect. As expected the torque mean
value μ0 impacts the hub mean angular velocity, but
not the amplitude of hub oscillations.

As observed in given examples, strong dynamic
interaction between the hub and the beam comes form
the relatively low inertia ratio (hub to beam inertia is
1:1). For higher ratios beam responses are expected to
be less pronounced.

5 Final conclusions

The fully coupled analytical model of a rotating rigid
hub and a flexible piezolaminated composite beam
has been developed. In the mathematical formulation
the reversible nonlinear behaviour of piezoceramic
layer is considered. This nonlinearity is modelled by
a third-order constitutive relationship with respect to
electric field. In the mathematical formulation of the
problem the full two-way coupling piezoelectric effect
is considered by adopting the assumption of span-
wise electric field variation. The general nonlinear
system of mutually coupled partial differential equa-
tions is derived using the Hamilton’s principle, and the
Galerkin method is applied to reduce these governing
equations to the ordinary differential ones. The specific
case of CAS lamination scheme that exhibits flapwise
bending and twist mode elastic coupling is discussed.

Free vibration tests and analysis of individual com-
ponents of mode shapes showed the significant diversi-
ties in the electric field distribution regarding the angu-
lar speed of the system and the type of master struc-
ture deformation. The most prominent effects were
observed for first modes, where for higher speeds the

difference between the electric field magnitudes at free
end and the clamping point increases. For highermodes
with a negligible bending/shear component the elec-
tric field spanwise distribution was almost uniform and
close to zero on the full specimen span.

The forced vibration analysis confirmed the pres-
ence of the softening effect in systems with nonlin-
ear piezoceramic material. The expected presence of
multiple different solutions for a given excitation fre-
quency was confirmed by time series plots. The further
comparison of results for the nonlinear piezoceramic
material and a classical linear one revealed significant
differences in structural responses and settling time. In
particular, the nonlinear piezoceramic material showed
higher transient and steady states response amplitudes
as the linear one. This fact suggests the actual power
required by the active control unit might be lower for
the systems where the nonlinear piezoelement is used.

The presentedmodelling approach and the nonlinear
effects discussed in this paper may help in studying the
existing applications of rotating piezolaminated com-
posite beams and in developing new structural designs.

A further research on this topic may involve tapered
and pre-twisted smart blades. These models may bet-
ter represent advanced future structural elements like
aircraft wings, turbine blades designed to obtain cer-
tain intended mechanical properties and made up of
smart composite materials. Studies concerning ini-
tially curved and/or pre-twisted smart beam have been
already initiated by other researchers—see, for exam-
ple, Chandiramani [11] and Valliappan et al. [13].
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Appendix A: Constitutive equations for composite
material

Constitutive equations for individual layers of com-
posite plant may be formulated by modelling them as
orthotropic material layers in plane stress condition
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with its principal axis out of the structure reference
system
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σxn(c) = �C44γxn σsn(c) = �C45γxn

where

�Qi j = �Ci j − �Ci3�C j3

�C33
for i, j = 1, 2, 6

and �Ci j denotes members of the laminae elasticity ten-
sor. More details and step-by-step derivation of the
above expressions can be found in [26].

Appendix B

General expressions for 2-D stress resultants and stress
couples as shown in Fig. 2
– membrane
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– stress couples
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In the above formulas the used (�)k superscript index
refers to the subsequent laminate layers numbers n and
hp denotes the piezoceramic layer thickness. It’s worth
commenting here that second components of right-
hand side summation are coming from piezoelectric

material so these are present only for terms related to
cross-section flanges.

The above expressions can be transformed from
the local (0, x, s, n) coordinate system to global one
(0, x, y, z) resulting in terms Nxx , Nxn , Nxs , Lxx , Lxs .
After integration over the cross-section perimeter one
arrives at 1-D stress measures Tx , Qy , Qz , Mx , My ,
Mz , Bω. Finally, substituting for stresses and strains
these may be expressed in terms of problem unknowns:
mechanical u0, v0, w0, ϑy , ϑz , ϕ and electric one E3

as follows:

Tx = a11u
′
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2
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