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Abstract In many practical situations, it is impos-
sible to measure the individual trajectories generated
by an unknown chaotic system, but we can observe
the evolution of probability density functions gener-
ated by such a system. The paper proposes for the
first time a matrix-based approach to solve the gen-
eralized inverse Frobenius–Perron problem, that is, to
reconstruct an unknown one-dimensional chaotic trans-
formation, based on a temporal sequence of proba-
bility density functions generated by the transforma-
tion. Numerical examples are used to demonstrate the
applicability of the proposed approach and evaluate its
robustness with respect to constantly applied stochastic
perturbations.

Keywords Chaotic maps · Inverse Frobenius–Perron
problem · Nonlinear systems · Probability density
functions

1 Introduction

One-dimensional chaotic maps describe many dynam-
ical processes, encountered in engineering, biology,
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physics and economics [1], which generate density of
states. Examples include particle formation in emulsion
polymerization [2], papermaking systems [3], bursty
packet traffic in computer networks [4,5], cellular
uplink load in WCDMA systems [6]. A major chal-
lenge is that of inferring the chaotic map that describes
the evolution of the unknown chaotic system, solely
based on experimental observations.

Starting with seminal papers of Farmer and
Sidorovich [7], Casadgli [8] and Abarbanel et al.
[9], the problem of inferring dynamical models of
chaotic systems directly from time series data has been
addressed by many authors using neural networks [10],
polynomial [11] or wavelet models [12].

In many practical applications, it is more convenient
to observe experimentally the evolution of the prob-
ability density functions, instead of individual point
trajectories, generated by such systems. For example,
the particle image velocimetry (PIV) method of flow
visualization [13] allows identifying individual tracer
particles in each image, but not to track these between
images. In biology, flow cytometry is routinely used to
measure the expression of membrane proteins of indi-
vidual cells in a population [14]. However, it is impos-
sible to track the cells between subsequent analyses.

The problem of inferring an unknown chaotic map
given the invariant density generated by the map
is known as the inverse Frobenius–Perron problem
(IFPP). This inverse problem has been investigated by
Friedman and Boyarsky [15] who treated the inverse
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problem for a very restrictive class of piecewise con-
stant density functions, using graph-theoretical meth-
ods. Ershov and Malinetskii [16] proposed a numeri-
cal algorithm for constructing a one-dimensional uni-
modal transformation which has a given invariant den-
sity. The results were generalized in Góra and Boyarsky
[17], who introduced a matrix method for constructing
a 3-band transformation such that an arbitrary given
piecewise constant density is invariant under the trans-
formation. Diakonos and Schmelcher [18] considered
the inverse problem for a class of symmetric maps that
have invariant symmetric Beta density functions. For
the given symmetry constraints, they show that this
problem has a unique solution. A generalization of this
approach, which deals with a broader class of continu-
ous unimodal maps for which each branch of the map
covers the complete interval and considers asymmet-
ric beta density functions, is proposed in [19]. Huang
presented approaches to constructing smooth chaotic
transformation with closed form [20,21] and multi-
branches complete chaotic map [22] given invariant
densities. Boyarsky and Góra [23] studied the problem
of representing the dynamics of chaotic maps, which
is irreversible by a reversible deterministic process.
Baranovsky and Daems [24] considered the problem of
synthesizing one-dimensional piecewise linear Markov
maps with prescribed autocorrelation function. The
desired invariant density is then obtained by perform-
ing a suitable coordinate transformation. An alterna-
tive stochastic optimization approach is proposed in
[25] to synthesize smooth unimodal maps with given
invariant density and autocorrelation function. An ana-
lytical approach to solving the IFPP for two specific
types of one-dimensional symmetric maps, given an
analytic form of the invariant density, was introduced in
[26]. A method for constructing chaotic maps with arbi-
trary piecewise constant invariant densities and arbi-
trary mixing properties using positive matrix theory
was proposed in [5]. The approach has been exploited
to synthesize dynamical systems with desired charac-
teristics, i.e. Lyapunov exponent and mixing properties
that share the same invariant density [27] and to analyse
and design the communication networks based on TCP-
like congestion control mechanisms [28]. An extension
of this work to randomly switched chaotic maps is stud-
ied in [29]. It is also shown how the method can be
extended to higher dimensions and how the approach
can be used to encode images. In [30], the inverse prob-
lem is formulated as the problem of stabilizing a target

distribution using an open-loop perturbation approach.
In order to characterize the patterns of activity in the
olfactory bulb, an optimization approach was proposed
to infer the elements of the Frobenius–Perron matrices
that encode the invariant density functions of interspike
intervals corresponding to different odours [31].

All existing methods can be used to construct a map
with a given invariant density. A limitation of these
approaches is that the solution to the inverse problem
is not unique. Typically, there are many transforma-
tions, exhibiting a wide variety of dynamical behav-
iours, which share the same invariant density. There-
fore, the reconstructed map does not necessarily exhibit
the same dynamics as the underlying systems even
though it preserves the required invariant density. Addi-
tional constraints and model validity tests have to be
used to ensure that the reconstructed map captures the
dynamical properties of the underlying system (Lya-
punov exponents, fixed points, etc.) and predicts its
evolution. This is of paramount importance in a many
practical applications ranging from modelling and con-
trol of particulate processes [48], characterizing the
formation and evolution of the persistent spatial struc-
tures in chaotic fluid mixing [32], characterizing the
chaotic behaviour of electrical circuits [33], chaotic sig-
nal processing [34,35], analysing and interpreting cel-
lular heterogeneity [36,37] and identification of mole-
cular conformations [38]. Potthast and Roland [39]
solved the Frobenius–Perron equation describing the
evolution of uniform probability distributions under
the action of nonlinear dynamical automata that imple-
ment Turing machines. In this context, the realization of
nonlinear dynamical automata that describe cognitive
processes based on experimental data can be formu-
lated as an inverse Frobenius–Perron problem.

Another major limitation of the existing matrix-
based reconstruction algorithms is the assumption that
the Markov partition is known in advance. In general,
no a priori information about the unknown map is avail-
able, so the partition identification problem has to be
solved as part of the reconstruction method.

This paper proposes a systematic method for deter-
mining an unknown chaotic map given sequences of
density functions estimated from data. In other words,
the inverse problem studied in this paper is that of
determining the map that exhibits the same transient
as well as asymptotic dynamics as the underlying sys-
tem that generated the data. The proposed methodology
involves the identification of the Markov partition, esti-
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Reconstruction of one-dimensional chaotic maps 1375

mation of the Frobenius–Perron matrix and the recon-
struction of the underlying map.

To our knowledge, our approach provides for the
first time a solution to the problem of inferring, from
sequences of density functions, a broad class of one-
dimensional transformations that admit an invariant
density when the Markov partition is not known in
advance.

This paper is organized as follows: in Sect, 2, we
give a brief introduction to the inverse Frobenius–
Perron problem. The methodology for reconstructing
piecewise-linear semi-Markov transformations from
sequences of densities is presented and demonstrated
using a numerical simulation example in Sect. 3. An
extension of the method to continuous nonlinear trans-
formations is introduced and demonstrated numerically
in Sect. 4. Conclusions are presented in Sect. 5.

2 The inverse Frobenius–Perron problem

Let I = [a, b], B be a Borel σ -algebra of subsets
in I , and μ denote the normalized Lebesgue measure
on I . Let S : I → I be a measurable, non-singular
transformation, that is,μ(S−1(A)) ∈ B for any A ∈ B

andμ(S−1(A)) = 0 for all A ∈ B withμ(A) = 0. If xn

is a random variable on I having the probability density
function fn ∈ D(I,B, μ), D = { f ∈ L1(I,B, μ) :
f ≥ 0, ‖ f ‖1 = 1}, such that

Prob{xn ∈ A} =
∫

A

fn dμ, (1)

then xn+1 given by

xn+1 = S(xn), (2)

is distributed according to the probability density func-
tion fn+1 = PS fn , where PS : L1(I ) → L1(I ),
defined by∫

A

PS fn dμ =
∫

S−1(A)

fn dμ, (3)

is the Frobenius–Perron operator [40] associated with
the transformation S. In this case, PS can be written
explicitly as

fn+1(x) = PS fn(x) = d

dx

∫

S−1([a,s])
fn(s) ds, (4)

The Frobenius–Perron operator of a non-singular trans-
formation S is a Markov operator [41].

Definition 1 A linear operator PS : L1 → L1 satisfy-
ing

(a) PS fn ≥ 0 for fn ≥ 0, fn ∈ L1;
(b) ‖PS‖L1 < 1, and ‖PS fn‖L1 = ‖ fn‖L1 , for fn ≥ 0,

fn ∈ L1,

is called a Markov operator.

Definition 2 A Markov operator PS : L1 → L1

is called strongly constrictive if there exists a com-
pact set F ⊂ L1 such that for any fn ∈ D,
limn→∞ dist(Pn f,F) = 0, where dist(Pn f,F) =
inf f ∈F ‖ f − Pn f ‖L1 .

If PS is strongly constrictive, according to the spec-
tral decomposition theorem [40], there exist a sequence
of densities f1, . . . , fr and a sequence of bounded lin-
ear functionals g1, . . . , gr such that

lim
n→∞

∥∥∥∥∥Pn
S

(
f −

r∑
i=1

gi ( f ) fi

)∥∥∥∥∥
L1

= 0,

for any f ∈ L1. (5)

where Pn
S is the nth iteration of P , the densities

f1, . . . , fr have mutually disjoint supports ( fi f j =
0 for i �= j), and PS fi = fα(i), i = 1, . . . , r
and {α(1), . . . , α(r)} is a permutation of the integers
{1, . . . , r}. Furthermore, Pn

S f converges to an invariant
density f ∗, which satisfies f ∗ = PS f ∗.

Let R = {R1, R2, . . . , RN } be a partition of I into
intervals, and int(Ri ) ∩ int(R j ) = ∅ if i �= j . If S is a
piecewise monotonic transformation

PS fn(x)=
N∑

i=1

fn

(
S−1

i (x)
)∣∣∣S′ (

S−1
i (x)

)∣∣∣−1
χS(Ri )(x),

(6)

where Si is the monotonic segment of S on each interval
Ri .

The inverse Frobenius–Perron problem is usually
formulated [17] as the problem of determining the
point transformation S such that the dynamical system
xn+1 = S(xn) has a given invariant probability density
function f ∗. In general, the problem does not have a
unique solution.

The generalized inverse problem addressed in this
paper is that of inferring the point transformation
which generated a sequence of density functions and
has a given invariant density function. Specifically, let
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{x j
0,i }θ,Ki, j=1 and {x j

1,i }θ,Ki, j=1 be two sets of initial and
final states observed in K separate experiments, where
x j

1,i = S(x j
0,i ), i = 1, . . . , θ , j = 1, . . . , K , and

S : I → I is an unknown, non-singular point transfor-
mation. We assume that for practical reasons, we can-
not associate with an initial state x j

0,i the corresponding

image x j
1,i , but we can estimate the probability density

functions f j
0 and f j

1 associated with the initial and final

states, {x j
0,i }θi=1 and {x j

1,i }θi=1, respectively. Moreover,
let f ∗ be the observed invariant density of the system.
The inverse problem is to determine S : I → I such
that f j

1 = PS f j
0 for j = 1, K and f ∗ = PS f ∗.

3 A solution to the IFPP for piecewise-linear
semi-Markov transformations

This section presents a method for solving the IFPP for
a class of piecewise monotonic and expanding trans-
formations called R-semi-Markov [17], where

R = {R1, R2, . . . , RN }
= {[c0, c1], (c1, c2], . . . , (cN−1, cN ]} , (7)

is a partition of I = [a, b], c0 = a, cN = b.

Definition 3 A transformation S : I → I is said to
be semi-Markov with respect to the partition R (or R-
semi-Markov) if there exist disjoint intervals Q(i)

j so

that Ri = ∪p(i)
k=1 Q(i)

k i = 1, . . . , N , the restriction of S

to Q(i)
k , denoted S|

Q(i)
k

, is monotonic and S(Q(i)
k ) ∈ R

[17].
The restriction S|

Q(i)
k

is a homeomorphism from Ri

to a union of intervals of R

Ii =
p(i)⋃
k=1

Rr(i,k) =
p(i)⋃
k=1

S
(

Q(i)
k

)
, (8)

where Rr(i,k) = S(Q(i)
k ) ∈ R, Q(i)

k = [q(i)k−1, q(i)k ],
i = 1, . . . , N , k = 1, . . . , p(i) and p(i) denotes the
number of disjoint subintervals Q(i)

k corresponding to
Ri .

The following theorem [17] establishes an impor-
tant property of such transformation, namely that its
invariant density is piecewise constant over R.

Theorem 1 If S is a R-semi-Markov, piecewise-linear
and expanding transformation, i.e. S|

Q(i)
j

is linear with

slope greater than 1, k = 1, . . . , p(i), i = 1, . . . , N,

then any S-invariant density is constant on intervals of
R.

If f =
N∑

i=1
hiχRi , i.e. f ∈ H(R), where H(R)

denotes the space of piecewise constant functions
defined over the partition R, then the Frobenius–Perron
operator PS associated with the piecewise-linear R-
semi-Markov transformation satisfies PS f = MSh f ,
where MS = (mi, j )1≤i, j≤N (the matrix induced by S)
is given by

mi, j =

⎧⎪⎨
⎪⎩

∣∣∣∣∣
(

S|
Q(i)

j

)′ ∣∣∣∣∣
−1

, if S
(

Q(i)
k

)
= R j ;

0, otherwise,

(9)

and h f = [h1, h2, . . . , hN ]T .
Let S be an unknown piecewise-linear R-semi-

Markov transformation and { ft, i }T, K
t, i=1 be a sequence

of probability density functions generated by the
unknown map S, given a set of initial density func-
tions { f0, i }i=1, K . Assuming that the invariant density
function f ∗ of the Frobenius–Perron operator associ-
ated with the unknown transformation S can be esti-
mated from experimental data, the proposed identifica-
tion approach can be summarized as follows:

a. Given the samples, construct a uniform partition C
and an initial piecewise constant density estimate
f ∗
C of the true invariant density f ∗ which maxi-

mizes a penalized log-likelihood function.
b. Select a sub-partition Cd(l j ) of C .
c. Estimate the matrix representation of the Frobenius–

Perron operator over the partition Cd(l j ) based on
the observed sequences of densities generated by
S.

d. Construct the piecewise-linear map Ŝ(l j ) corre-
sponding to the matrix representation.

e. Compute the piecewise constant invariant density
f ∗
Cd (l j )

associated with the identified transforma-

tion Ŝ(l j ) and evaluate performance criterion.
f. Repeat steps (b) to (e) to identify the partition and

map which minimize the performance criterion.

3.1 Identification of the Markov partition

Let f ∗ ∈ H(R)be the invariant density associated with
a R-semi-Markov transformation S. Let {x∗

i }θi=1 be a
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Reconstruction of one-dimensional chaotic maps 1377

finite number of independent observations of f ∗. The
aim is to determine an orthogonal basis set {χRi (x)}N

i=1
such that

f ∗(x) ≈
N∑

i=1

hiχRi (x), (10)

where χRi (x) is the indicator function and hi are the
expansion coefficients given by

hi = 1

θ · λ(Ri )

θ∑
j=1

χRi

(
x∗

j

)
, (11)

λ(Ri ) denotes the length of the interval Ri .
We start by constructing a uniform partition� with

intervals N
′

that maximizes the following penalized
log-likelihood function [42]

Lθ
(

N
′) − p

(
N

′) =
⎡
⎣ N

′∑
i=1

Di log
(

N
′
Di/θ

)⎤⎦

−
[

N
′ − 1 +

(
log N

′)2.5
]
,

(12)

where 1 ≤ N
′ ≤ θ/log θ , Di =

θ∑
j=1

χ�i (x
∗
j ), and

�i =
{

[a, (b−a)/N
′ ], i =1;

((i−1)(b−a)/N
′
, i(b−a)/N

′ ], i =2, . . . , N
′
.

The coefficients h
′
i for the regular histogram are given

by

h
′
i =

N
′

θ(b − a)

θ∑
j=1

χ�i

(
x∗

j

)
. (13)

Let C = {c1, . . . , cN ′−1} be the strictly increasing
sequence of cut points corresponding to the resulting
uniform partition � = {�i }N ′

i=1. Let L = {l j }N ′−1
j=1 ,

l j = N
′ ·

∣∣∣(h ′
j+1 − h

′
j )

∣∣∣/(b − a) and L = {l j }N
′′

j=1,

0 ≤ N
′′ ≤ N

′ − 1, be the longest strictly increasing
subsequence of L .

The final Markov partition R is determined by solv-
ing

min
l̄ j ∈L̄

⎧⎨
⎩ J (R) =

∫

I

(
f ∗
C (x)− f ∗

Cd
(
l j
)(x)

)2
dx

⎫⎬
⎭ ,

(14)

where Cd(l j ) = {cd1(l j )
, . . . , cdρ(l j )

} is the longest
subsequence of C which, for the selected threshold
l j ∈ L , satisfies d1(l j ) = 1 if l1 > l j and in gen-
eral di+1(l j ) = di (l j ) + 1 if ldi +1 > l j for i =
1, . . . , ρ−1. In Eq. (14), f ∗

Cd (l j )
denotes the piecewise

constant invariant density associated with the transfor-
mation Ŝ(l j ) identified over the partition

R(l j )={[a, cd1(l j )
]︸ ︷︷ ︸

R
(l j )

1

, (cd1(l j )
, cd2(l j )

]︸ ︷︷ ︸
R
(l j )

2

, . . . , (cdρ(l j )
, b]︸ ︷︷ ︸

R
(l j )
ρ

}.

(15)

3.2 Identification of the Frobenius–Perron matrix

Let R = {R1, R2, . . . , RN } = {[a, c1], (c1, c2], . . . ,
(cN−1, b]} be a candidate Markov partition and
{ ft,i }T, K

t, i=1 be the piecewise constant densities on R,
which are estimated from the samples.

Let f0(x) be an initial density function that is piece-
wise constant on the partition R

f0(x) =
N∑

i=1

w0,iχRi (x), (16)

where the coefficients satisfy
N∑

i=1
w0,iλ(Ri ) = 1.

Let X0 = {x0, j }θj=1 be the set of initial conditions
obtained by sampling f0(x) and

Xt = {
xt, j

}θ
j=1 , (17)

be the set of states obtained by applying t times the
transformation S such that xt, j = St (x0, j ) for some
x0, j ∈ X0, j = 1, . . . , θ .

The density function associated with the states Xt is
given by

ft (x) =
N∑

i=1

wt,iχRi (x), (18)

where the coefficients wt, j = 1
λ(R j )·θ

θ∑
j=1

χR j (xt, j ).

Let w ft = [wt,1, . . . , wt,N ] be the vector defining
ft (x), t = 0, . . . , T where typically T ≥ N . In prac-
tice, the observed ft (x), t = 0, . . . , T , are approxima-
tions of the true density functions, which are inferred
from experimental observations.

It follows that
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1378 X. Nie, D. Coca

W1 = W0M, (19)

where

W0 =

⎡
⎢⎢⎢⎣

w f0

w f1

...

w fT −1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

w0,1 w0,2 · · · w0,N

w1,1 w1,2 · · · w1,N
...

...
. . .

...

wT −1,1 wT −1,2 · · · wT −1,N

⎤
⎥⎥⎥⎦ , (20)

and

W1 =

⎡
⎢⎢⎢⎣

w f1

w f2

...

w fT

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

w1,1 w1,2 · · · w1,N

w2,1 w2,2 · · · w2,N
...

...
. . .

...

wT,1 wT,2 · · · wT,N

⎤
⎥⎥⎥⎦ . (21)

The matrix M is obtained as a solution to a constrained
optimization problem

min
{mi, j }N

i, j=1≥0
||W1 − W0M||F , (22)

subject to

N∑
j=1

mi, jλ(R j ) = λ(Ri ), for i = 1, . . . , N , (23)

where || · ||F denotes the Frobenius norm.
The matrix 	 = WT

0 W0 has to be non-singular for
the solution to be unique.

Proposition 1 Given a sequence of piecewise constant
density functions f0, . . . , fT generated by a piecewise-
linear R-semi-Markov transformation S(x), the matrix
	 = WT

0 W0 is non-singular if fN−2(x) �= f ∗(x).

Proof If fN−2(x) = f ∗(x), then ft (x) = f ∗(x) for
t = N − 1, . . . , T ; that is, the matrix W0 has at most
N − 2 rows that are distinct from f ∗(x).

Using Cauchy–Binet formula, the determinant of	
can be written as

det(WT
0 W0)

=
∑

K∈
( [T ]

N

)
det

(
WT

0,K ,[T ]
)

det
(
W0,K ,[T ]

)
,

(24)

where [T ] denotes the set {1, . . . , T },
( [T ]

N

)
denotes

the set of subsets of size N of [T ] and W0,K ,[T ] is a
N ×N matrix whose rows are the rows of W0 at indices
given in K . Since W0 has at most N -2 rows that are
distinct from f ∗(x), it follows that W0,K ,[T ] has at least
two rows that are identical; hence, det(W0,K ,[T ]) = 0

for any K ∈
( [T ]

N

)
. Consequently, det(WT

0 W0) = 0,

which concludes the proof. ��
Proposition 2 A R-semi-Markov, piecewise-linear
and expanding transformation S can be uniquely iden-
tified given N linearly independent, piecewise constant
densities f i

0 ∈ H(R) and their images f i
1 ∈ H(R)

under the transformation.

Proof Let

f i
0 (x) =

N∑
j=1

w0
i, jχR j (x), i = 1, . . . , N , (25)

Since { f i
0 }N

i=1 are linearly independent, {w0
i }N

i=1, w0
i =

[w0
i,1, . . . , w

0
i,N ] are also linearly independent. More-

over, given that S is a R-semi-Markov, piecewise linear
and expanding, we have

f i
1 (x) =

N∑
j=1

w1
i, jχR j (x), i = 1, . . . , N , (26)

where w1
i = [w1

i,1, . . . , w
1
i,N ] = w0

i M, i = 1, . . . , N .
Alternatively, this can be written as

W
′
1 = W

′
0M, (27)

where

W
′
0 =

⎡
⎢⎢⎢⎣

w0
1

w0
2
...

w0
N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

w0
1,1 w0

1,2 · · · w0
1,N

w0
2,1 w0

2,2 · · · w0
2,N

...
...

. . .
...

w0
N ,1 · · · · · · w0

N ,N

⎤
⎥⎥⎥⎦ , (28)

and

W
′
1 =

⎡
⎢⎢⎢⎣

w1
1

w1
2
...

w1
N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

w1
1,1 w1

1,2 · · · w1
1,N

w1
2,1 w1

2,2 · · · w1
2,N

...
...

. . .
...

w1
N ,1 · · · · · · w1

N ,N

⎤
⎥⎥⎥⎦ . (29)
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Reconstruction of one-dimensional chaotic maps 1379

Fig. 1 Construction of 1-D piecewise-linear semi-Markov trans-
formation based on the Frobenius–Perron matrix

Since W
′
0 is non-singular, the Frobenius–Perron matrix

M is given by

M = W
′−1
0 W

′
1. (30)

The derivative of S|
Q(i)

k
is 1/mi, j , and the length of

Q(i)
k is given by

λ
(

Q(i)
k

)
= q(i)k − q(i)k−1 = mi, jλ(R j ), (31)

which allows computing iteratively q(i)k for each inter-

val Ri starting with q(i)0 = ci−1. By assuming
each branch S|Ri

is monotonically increasing, the
piecewise-linear semi-Markov mapping is given by

S|
Q(i)

k
(x) = 1

mi, j

(
x − q(i)k−1

)
+ c j−1, (32)

for k = 1, . . . , p(i), and j is the index of image R j of

Q(i)
k ; i.e. S(Q(i)

k ) = R j , i = 1, . . . , N , j = 1, . . . , N ,
where mi, j �= 0. ��

The map is constructed as depicted in Fig. 1.
In practice, we can choose the piecewise constant

probability density functions f j
0 (x) = 1

λ(R j )
χR j (x).

These are sampled in order to generate N sets of initial
conditions

Xi
0 =

{
xi

0, j

}θ
j=1

, i = 1, . . . , N , (33)

that will be used in the experiments. For each set of
initial conditions Xi

1, we measure a corresponding set
of final states

Xi
1 =

{
xi

1, j

}θ
j=1

, i = 1, . . . , N , (34)

where xi
1, j = S(xi

0,k) for some xi
0,k ∈ Xi

0. The density

function f i
1 associated with the set Xi

1 of final states is
given by

f i
1 (x) =

N∑
j=1

vi jχR j (x), i = 1, . . . , N , (35)

where vi, j = 1
λ(R j )·θ

θ∑
k=1

χR j (x
i
1,k).

Remark We only need to generate initial conditions for
the densities that correspond to the finest uniform parti-
tion N = N

′
. Coarser partitions are obtained by merg-

ing adjacent intervals, for example R j and R j+1, lead-
ing to the new partition {R1, . . . , RN−1}. It follows that
the initial and final states corresponding to the merged

interval R j = R j ∪R j+1 are given by X
j
0 = X j

0 ∪X j+1
0

and X
j
1 = X j

1 ∪ X j+1
1 , respectively. The initial and

final densities corresponding to the merged interval

are given by f
j
0(x) = 1

λ(R̄J )
χR j

(x) and f
j
1(x) =

1
2λ(Ri )·θ

N−1∑
i=1

θ∑
k=1

χRi
(x j

1,k)χRi
(x), respectively.

In general, initial density functions are not piece-
wise constant over the partition R. Let f ∈ L2 ⊃
H(RQ), P NQ : L2 → H(RQ) be the orthogo-
nal projector operator and Z NQ = I − P NQ such
that f = P NQ f + Z NQ f = f p + fz . where RQ

= {Q(1)
1 , . . . , Q p(1)

1 , . . . , Q p(N )
N } = {Q1, . . . , QNQ },

Ri = ∪p(i)
k=1 Q(i)

k , i = 1, . . . , N , H(RQ) =
span{χ

Q(i)
k

} and NQ =
N∑

i=1
p(i).

Theorem 2 A R-semi-Markov, piecewise-linear and
expanding transformation, where Ri = ∪p(i)

k=1 Q(i)
k , i =

1, .., N, can be uniquely identified given a set of initial

densities { f i
0 }NQ

i=1, NQ =
N∑

i=1
p(i), and their images
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{ f i
1 }N

i=1 under the transformation, if {P NQ f i
0 }NQ

i=1 are
linearly independent.

Proof The Frobenius–Perron operator associated with
S is given by

PS f i
0 (x) =

∑
zi = f −1(x)

f i
0 (zi )

| f i ′
0 (zi )|

. (36)

It follows that

f i
1 (x) = PS f i

0 (x) = PS pi
0(x)+ PSqi

0(x)

=
∑

zi = f −1(x)

pi
0(zi )

| f i ′
0 (zi )|

+
∑

zi = f −1(x)

qi
0(zi )

| f i ′
0 (zi )|

,(37)

where | f i ′
0 (S|−1

Q(i)
k

(x))| ∈ {β1, . . . ., βNQ }.

P NQ f i
1 (x)

= P NQ PS pi
0(x)+ P NQ PSqi

0(x)

= P NQ
∑

i, j :x∈S|
Q(i)k

(
Q(i)

k

)
pi

0(S|−1
Q(i)

k

(x))

| f i ′
0 (S|−1

Q(i)
k

(x))|

+ P NQ
∑

i, j :x∈S|
Q(i)k

(
Q(i)

k

)
qi

0(S|−1
Q(i)

k

(x))

| f i ′
0 (S|−1

Q(i)
k

(x))| . (38)

Then,

P NQ
∑

i, j :x∈S|
Q(i)k

(
Q(i)

k

)
qi

0(S|−1
Q(i)

k

(x))

| f i ′
0 (S|−1

Q(i)
k

(x))|

=
∑

i, j :x∈S|
Q(i)k

(
Q(i)

k

)
χ

Q(i)
k
(x)

βi,k

×
∫

Q(i)
k

qi
0

(
S|−1

Q(i)
k

(x)

)
dx = 0. (39)

Hence,

P NQ PS f i
0 (x) = PS pi

0(x) =
NQ∑

j

w1
i, jχQ( j)

k
(x)

=
∑

j,k:x∈S|
Q(i)k

(
Q(i)

k

)
χ

Q( j)
k
(x)

β j,k
w

0, j
i,k .

i = 1, . . . , NQ . (40)

Alternatively, (27) can be written as

W1 = W0M Q, (41)

where M Q = W−1
0 W1 = {mi, j }NQ

i, j=1 is the Frobenius–
Perron matrix that corresponds to a unique piecewise
linear and expanding transformation S given by

S|
Q(i)

k
(x) = 1

ms(i)+1,s( j)+1

(
x − q(i)k−1

)
+ c j−1, (42)

for k = 1, . . . , p(i), j is the index of image R j of

Q(i)
k ; i.e. S(Q(i)

k ) = R j , i = 1, . . . , N , j = 1, . . . , N ,
s(1) = 0 and s(i) = s(i − 1)+ p(i − 1) for i > 1. ��

3.3 Numerical example 1

The applicability of the proposed algorithm is demon-
strated using numerical simulation. Consider the fol-
lowing piecewise-linear and expanding transformation
S : [0, 1] → [0, 1]

S|Ri
(x) = αi, j x + βi, j , (43)

for i = 1, . . . , 4, j = 1, . . . , 4, defined on the parti-
tion R = {Ri }4

i=1 = {[0, 0.4], (0.4, 0.5], (0.5, 0.8],
(0.8, 1]}, where

(αi, j )1≤i, j≤4 =

⎡
⎢⎢⎣

10.00 1.25 2.50 1.25
20.00 3.33 15.00 6.67
2.22 1.67 10.00 6.67

10.00 2.50 3.75 5.00

⎤
⎥⎥⎦ ,

(βi, j )1≤i, j≤4 =

⎡
⎢⎢⎣

0 0.35 0.20 0.50
−8.00 −1.00 −6.25 −2.33
−1.11 −0.73 −6.90 −4.33
−8.00 −1.70 −2.80 −4.00

⎤
⎥⎥⎦ .

The graph of S is shown in Fig. 2.
A set of initial states X0 = {x0, j }θj=1, θ = 5 × 103,

generated by sampling from a uniform probability den-
sity function f0(x) = χ[0,1](x), were iterated using S
to generate a corresponding set of final states XT =
{xT, j }θj=1 where T = 20,000. The data set XT was

used to determine the uniform partition�with N
′
inter-

vals, 1 ≤ N
′ ≤ �θ/ log θ� = 587, which maximizes

the penalized log-likelihood function in equation (10).
In this example, N

′ = 10; i.e. C = {0.1, . . . , 0.9}
and the estimated invariant density f ∗

C (x) with respect
to the 10-interval partition is shown in Fig. 3. The
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Fig. 2 Numerical example 1: original piecewise-linear transfor-
mation S

Fig. 3 Numerical example 1: the invariant density estimated
over the initial uniform partition with N

′ = 10 intervals

sequence L = {l j }9
j=1, l j = 10|h′

j+1 − h′
j | is shown

in Fig. 4.
In this example, L = {l̄ j }9

j=1 = {0.12, 0.18, 0.22,
0.34, 0.40, 0.82, 4.72, 14.32, 15.74} and the mini-
mum of

min
l j ∈L

⎧⎨
⎩J (R) =

∫

I

(
f ∗
C (x)− f ∗

Cd (l j )
(x)

)2
dx

⎫⎬
⎭ , (44)

is obtained for l7 = 4.72, as shown in Fig. 5.
This corresponds to the final Markov partition R =

Fig. 4 Numerical example 1: the L sequence

Fig. 5 Numerical example 1: the value of the cost function given
in equation (14) for each threshold l̄ j , j = 1, . . . , 9.

{R1, R2, R3, R4}, where R1 = [0,0.4], R2 = (0.4,0.5],
R3 = (0.5,0.8] and R4 = (0.8,1]. Figure 6 shows the
initial density functions used to generate the set of the
initial conditions and the final density functions esti-
mated from the corresponding final states for T = 1.

For the identified partition, the estimated Frobenius–
Perron matrix is

M =

⎡
⎢⎢⎣

0.1010 0.7900 0.4000 0.8040
0.0500 0.2980 0.0670 0.1510
0.4480 0.6010 0.1020 0.1510
0.1000 0.4020 0.2660 0.2000

⎤
⎥⎥⎦ . (45)
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Fig. 6 Numerical example 1: the initial and final density func-
tions f i

0 (x) and f i
1 (x) corresponding to the identified four-

interval partition

Fig. 7 Numerical example 1: the identified transformation Ŝ of
the underlying system

The corresponding identified mapping Ŝ is shown in
Fig. 7.

The estimated coefficients of the identified piece-

wise-linear semi-Markov transformation Ŝ
∣∣∣

Ri
(x) =

α̂i, j x + β̂i, j are

(α̂i, j )1≤i, j≤4 =

⎡
⎢⎢⎣

9.90 1.27 2.50 1.24
20.00 3.36 14.93 6.62
2.23 1.66 9.80 6.62

10.00 2.49 3.76 5.00

⎤
⎥⎥⎦ ,

Fig. 8 Numerical example 1: relative error between the original
map S and the identified map Ŝ evaluated for 99 uniformly spaced
points

(β̂i, j )1≤i, j≤4 =

⎡
⎢⎢⎣

0 0.35 0.20 0.50
−8.00 −1.01 −6.21 −2.31
−1.11 −0.73 −6.75 −4.30
−8.00 −1.69 −2.81 −4.00

⎤
⎥⎥⎦ .

To evaluate the performance of the reconstruction
algorithm, we computed the absolute percentage error

δS(x) = 100 ·
∣∣∣∣∣
S(x)− Ŝ(x)

S(x)

∣∣∣∣∣ , (46)

for x ∈ X = {0.01, 0.02, . . . , 0.99}. As shown
in Fig. 8, the relative error between the identified and
original map is less than 2 %. Furthermore, Fig. 9 shows
the true invariant density f ∗ associated with S super-
imposed on the invariant density f̂ ∗ associated with the
identified map Ŝ (Fig. 7).

In practical situations, measurements are corrupted
by noise. Given the process

xn+1 = S(xn)+ ζn, (47)

where S : R → R is a measurable transformation and
{ζn} is a sequence of independent random variables
with density g, it can be shown [41] that the evolution
of densities for this transformation is described by the
Markov operator P̄ : L1 → L1 defined by

P̄ f (x) =
∫

R

f (y)g(x − S(y))dy, (48)
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Fig. 9 Numerical example 1: the true invariant density (solid
line) and the estimated invariant density (dashed line) of the
identified map

Table 1 Reconstruction errors for different noise levels—
example 1

ε = σ 2
ε /σ

2
x 0 (noise free) 0.0335 0.1588 0.8819 2.2234

MAPE (%) 0.45 1.14 1.45 8.48 32.30

Furthermore, if P̄ is constrictive then P̄ has a unique
invariant density f ∗ and the sequence {P̄n f } is asymp-
totically stable for every f ∈ D [41].

To study how noise affects the performance of our
algorithm, we considered the process

xn+1 = S(xn)+ εζn (mod 1), (49)

where S : [0, 1] → [0, 1] is a measurable transfor-
mation that has a unique invariant density f ∗, {ζn}
is i.i.d. with density g and ε is a known noise level.
This leads to an integral operator Pε which has a
unique invariant density f ∗

ε [41]. It can be shown that
lim
ε→0

‖Pε f − P f ‖ = 0 for all f ∈ D and that, for

0 < ε < ε0, if lim
ε→0

f ∗
ε exists, then the limit is f ∗.

To evaluate the performance of the proposed algo-
rithm in the presence of noise, we assumed ζ ∼ N(0, 1)
and reconstructed the map for different values of ε. We
computed the mean absolute percentage error (MAPE)
between S and Ŝ.

δS(x) = 100

θδS

θδS∑
i=1

∣∣∣∣∣
S(xi )− Ŝ(xi )

S(xi )

∣∣∣∣∣, (50)

where {xi }θδS
i=1 = {0.01, . . . , 0.99}, θδS = 99.

The results, summarized in (Table 1), demonstrate
that the algorithm is robust with respect to con-
stantly applied stochastic perturbations. Remarkably,
the approximation errors remain relatively small even
for noise levels that would make it almost impossible to
reconstruct the map based on time series data [11,43].

4 Extension to general nonlinear transformations

The approach to reconstructing piecewise-linear and
expanding transformations from densities can be
extended to more general nonlinear maps. Ulam [44]
conjectured that for one-dimensional systems, the
infinite-dimensional Frobenius–Perron operator can be
approximated arbitrarily well by a finite-dimensional
Markov transformation defined over a uniform partition
of the interval of interest. The conjecture was proven by
Li [45] who also provided a rigorous numerical algo-
rithm for constructing the finite-dimensional operator
when the one-dimensional transformation S is known.
Here, the aim is to construct from data a piecewise-
linear semi-Markov transformation Ŝ which approxi-
mates the original map S.

The main assumptions are that (a) S : I → I is con-
tinuous, I = [a, b]; (b) the Frobenius–Perron operator
PS : L1 → L1 associated with the transformation has
a unique stationary density f ∗ and c) Pn

S f → f ∗ for
every f ∈ D; i.e. the sequence {Pn

S } is asymptotically
stable.

Asymptotic stability of {Pn
S } has been established

for certain classes of piecewise C2 maps. For example,
we have the following result [41].

Theorem 3 If S : [0, 1] → [0, 1] is a piecewise
monotonic transformation satisfying the conditions:

a. There is a partition 0 < c1 < . . . < cN−1 < 1
such that the restriction of S to an interval Ri =
(ci−1, ci ) is a C2 function;

b. S(Ri ) = (0, 1);
c. |S′(x)| > 1 for x �= ci ;
d. There is a finite constant ψ such that

−S
′′
(x)/

[
S

′
(x)

]2 ≤ ψ, x �= ci , i = 1, . . . , N −1,

(51)

then {Pn
S } is asymptotically stable.
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By using a change of variables, it is sometimes pos-
sible to extend the applicability of the above theorem to
more general transformations, such as the logistic map
[41], which do not satisfy the restrictive conditions on
the derivatives of S.

4.1 Identification of the Markov partition

Although, for a nonlinear transformation, the invariant
density f ∗ ∈ D is not piecewise constant, the approach
used to determine the Markov partition for piecewise-
linear transformation in Sect. 3 is also used to determine
the optimal partition for the piecewise-linear approxi-
mation of the unknown nonlinear map.

4.2 Identification of the Frobenius–Perron matrix

For the identified Markov partition R, a tentative
Frobenius–Perron matrix can be identified using the
approaches described in Sect. 3.

Let the obtained Frobenius–Perron matrix be
denoted by M̂ = (m̂i, j )1≤i, j≤N . The indices of
the contiguous nonzero entries on the i-the row are
denoted by r i = {r i

s , r
i
s + 1, . . . , r i

e}. m̂i,r i
m
λ(Rri

m
) =

max{m̂i, jλ(R j )}N
j=1, r i

m ∈ r i . Since S is continuous,

∪p(i)
k=1 Rr(i,k) is a connected interval, where Rr(i,k) =

S(Q(i)
k ) ∈ R, i = 1, . . . , N , k = 1, . . . , p(i); thus,

p(i) = r i
e − r i

s + 1, {r(i, k)}p(i)
k=1 = r i . Here, r(i, k) ∈

{1, . . . , N } are column indices of nonzero entries on the
i-th row of the Frobenius–Perron matrix which satisfy

r(i, j + 1) = r(i, j)+ 1, (52)

for i = 1, . . . , N , j = 1, . . . , p(i) − 1. This means
that mi,r(i,k) > 0 for k = 1, . . . , p(i) such that the
solution to the optimization problem satisfies

p(i)∑
k=1

mi,r(i,1)+k−1λ(Rr(i,1)+k−1) = λ(Ri ), (53)

and mi, j = 0 if j �= r(i, k), k = 1, . . . , p(i).

4.3 Reconstruction of the transformation from the
Frobenius–Perron matrix

The method for constructing a piecewise-linear approx-
imation Ŝ(x) over the partition R is augmented to take

into account the fact that the underlying transformation
is continuous and that on each interval of the partition,
SRi is either monotonically increasing or decreasing.
The entries of the positive Frobenius–Perron matrix
are used to calculate the absolute value of the slope of
Ŝ|

Q(i)
k

as |Ŝ|
Q(i)

k
| = 1/mi, j . A simple algorithm was

derived to decide whether the slope of Ŝ|
Q(i)

k
on the

interval Ri is positive or negative.
Let Ii = [cr(i,1)−1, cr(i,p(i))] for i = 1, . . . , N , be

the image of the interval Ri under the transformation
Ŝ which induce the identified Frobenius–Perron matrix
M. cr(i,1)−1 is the starting point of Rr(i,1) which is the

image of the subinterval Q(i)
1 , and c0 = a if r(i, 1) = 1.

cr(i,p(i)) is the end point of Rr(i,p(i)), the image of the

subinterval Q(i)
p(i). As before, {r(i, k)}p(i)

k=1 denote the
column indices corresponding to the nonzero entries in
the i-th row of M.

Let ci = 1
2 [cr(i,1)−1, cr(i,p(i))] be the midpoint of

the image Ii . The sign σ(i)of { Ŝ
′
(x)

∣∣∣
Q(i)

k

}p(i)
k=1 is given

by

σ(i) =
⎧⎨
⎩

−1, if c̄i − c̄i−1 < 0;
1, if c̄i − c̄i−1 ≥ 0;
σ(i − 1), if c̄i = c̄i−1,

(54)

for i = 2, . . . , N and σ(1) = σ(2).
Given that the derivative of S|

Q(i)
k

is 1/mi, j , the end

point q(i)k of subinterval Q(i)
k within Ri is given by

q(i)k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ci−1 +
k∑

j=1
mi,r(i, j)λ(Rr(i, j)), if σ(i) = +1;

ci−1 +
k∑

j=1
mi,r(i,p(i)−k+1)λ(Rr(i,p(i)−k+1)), if σ(i) = −1.

(55)

where k = 1, . . . , p(i)− 1 and q(i)p(i) = ci .
The piecewise-linear semi-Markov transformation

for each subinterval Q(i)
j is given by

Ŝ
Q(i)

j
(x)=

⎧⎨
⎩

1
mi, j

(
x−a−q(i)k−1

)
+c j−1, if σ(i)=+1;

− 1
mi, j

(
x−a−q(i)k−1

)
+c j , if σ(i)=−1.

(56)

for i = 1, . . . , N , j = 1, . . . , N , k = 1, . . . , p(i)−1,
mi, j �= 0.
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Fig. 10 Construction of a piecewise-linear semi-Markov trans-
formation approximating the original nonlinear map

Fig. 11 Numerical example 2: original continuous nonlinear
transformation

The construction of the piecewise-linear semi-
Markov transformation to approximate the original
continuous nonlinear map is depicted in Fig. 10.

A smooth version of the estimated transformation
can be obtained by fitting a polynomial smoothing
spline.

Fig. 12 Numerical example 2: initial regular histogram based
on a 145-interval uniform partition

Fig. 13 Numerical example 2: the cost function Jl j
, j =

1, . . ., 52

4.4 Numerical example 2

The extended reconstruction algorithm is demonstrated
using the quadratic (logistic) map (Fig. 11)

S(x) = 4x(1 − x). (57)

It can be shown that {Pn
S } associated with this transfor-

mation is asymptotically stable [41].
A set of initial states X0 = {x0, j }θj=1, θ = 5 × 103,

generated by sampling from a uniform probability den-
sity function f0(x) = χ[0,1](x), were iterated using S
to generate a corresponding set of final states XT =
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Fig. 14 Numerical example 2: the invariant density estimated
over on the partition R = {Ri }72

i=1

{xT, j }θj=1 where T = 30,000. The data set XT was

used to search for an uniform partition � with N
′

intervals, 1 ≤ N ′ ≤ �θ/ log θ� = 587, which maxi-
mizes the penalized log-likelihood function in Eq. (12),
which in this case corresponds to N

′ = 145. The esti-
mated invariant density f ∗

C (x) with respect to the 145-
interval partition is shown in Fig. 12. In this exam-
ple, the longest strictly monotone subsequence L of
L = {l j }144

j=1, l j = 145|h′
j+1 − h′

j | has 52 elements
and the minimization of

Fig. 16 Numerical example 2: reconstructed piecewise-linear
semi-Markov map over the irregular partition R

min
l j ∈L

⎧⎨
⎩J (R) =

∫

I

(
f ∗
C (x)− f ∗

Cd (l j )
(x)

)2
dx

⎫⎬
⎭ , (58)

is achieved for l20 = 0.1560, as shown in Fig. 13.
This corresponds to a final Markov partition with 72
intervals. The invariant density on the irregular partition
R with 72 intervals is shown in Fig. 14.

To identify the Frobenius–Perron matrix, 100 den-
sities (see Appendix) were randomly sampled to gen-

Fig. 15 Numerical example 2: examples of initial densities (solid line) and the corresponding densities after one iteration (dashed line)
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Fig. 17 Numerical example 2: identified, smooth map

Fig. 18 Numerical example 2: relative error between the original
map S and the identified map Ŝ evaluated for 99 uniformly spaced
points

erate 100 sets of initial states Xi
0 = {xi

0, j }θj=1, i =
1, . . . , 100, θ = 5 × 103. The initial states Xi

0 and
their images Xi

1 under the transformation S were used
to estimate the initial and final density functions on
R. Examples of initial and final densities are shown in
Fig. 15.

The constructed piecewise-linear semi-Markov
transformation with respect to the partition R is shown
in Fig. 16. The smoothed map, obtained by fitting a
cubic spline (smoothing parameter: 0.999), is shown in
Fig. 17. The relative approximation error is shown in
Fig. 18.

Fig. 19 Numerical example 2: the true invariant density of the
system (dashed line) and the estimated invariant density of the
identified map (solid line) on a uniform partition with 145 inter-
vals

Table 2 Reconstruction errors for different noise levels—
example 2

ε 0 (noise free) 0.0206 0.0978 0.5431 1.3692

MAPE (%) 0.61 1.59 2.10 4.42 79.60

The estimated invariant density on R, obtained by
iterating the smoothed map 20,000 times with the initial
states X0, is shown in Fig. 19, compared with the true
invariant density [41] f ∗(x) = 1/

(
π

√
x(1 − x)

)
.

The performance of the algorithm for different noise
levels was also evaluated, and the results are summa-
rized in Table 2. As it can be seen, the approximation
error remains relatively low (<5 %) for levels of noise
(>50 %) that normally cause severe problems to recon-
struction algorithms that use time series data.

5 Conclusions

This paper has addressed in a systematic manner the
problem of inferring one-dimensional chaotic maps
based on sequences of probability density functions.
Compared with previous solutions to solving the
inverse Frobenius–Perron, we have derived sufficient
conditions and rigorously demonstrated that the pro-
posed approach can uniquely identify the transfor-
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mation that describes the underlying chaotic dynam-
ics. Specifically, the reconstructed maps exhibit the
same dynamics as the original systems and therefore
can be used to carry out stability analysis, determine
invariant sets and manipulate the dynamical behaviour
of the underlying system of interest. The applicabil-
ity to the proposed methodology and its performance
for different levels of noise was demonstrated using
numerical simulations involving a piecewise-linear and
expanding transformations as well as a continuous one-
dimensional nonlinear transformation.

One of the reasons for developing the method pre-
sented in this paper was to characterize the hetero-
geneity of human embryonic stem cell (hESC) cultures
and to develop efficient protocols for controlling their
differentiation. In essence, sorted sub-populations of
stem cells expressing different levels of particular cell-
surface markers can over time reconstitute the equilib-
rium distribution of the parent population [46]. Using
flow cytometry, it is possible to follow the evolution
of the initial density function of the sorted cell frac-
tion, by sampling and re-plating cells, over a number
of days. The sequence of density functions generated
in this process can then be used to infer the under-
lying transformation that governs the process, which
can help elucidate the existence of cellular substates
[47] that, potentially, correspond to the unstable fixed
points of the reconstructed map. We have designed the
experiments and started generating data by using flow
cytometry to sort out cells with different initial densi-
ties. These are re-plated and re-analysed in subsequent
days to generate sequences of density functions that are
required to solve the generalized inverse problem.

The method could be extended to higher-dimensional
maps, but this is not necessarily straightforward. The
main limitation is the lack of rigorous theoretical
results for two- and higher-dimensional maps. While
for one-dimensional maps, we have a complete and
elegant theoretical framework, for higher-dimensional
maps key results are only available for some spe-
cial cases. A possible solution is to convert the N -
dimensional problem to a 1-D problem [29] and esti-
mate the corresponding F–P matrix using the approach
introduced in this paper. The main challenge is solving
the inverse Ulam problem, i.e. construct the transfor-
mation based on the estimated F–P matrix. As noted
in [30], for higher-dimensional systems Ulam’s con-
jecture has been proven only for some special cases
[48–51]. The method we are interested to explore to

construct the transformation which approximates the
original high-dimensional map is that introduced by
Bollt [30].

Acknowledgments X. N. gratefully acknowledges the support
from the Department of Automatic Control and Systems Engi-
neering at the University of Sheffield and China Scholarship
Council. D. C. gratefully acknowledges the support from MRC,
BBSRC and the Human Frontier Science Program.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the orig-
inal author(s) and the source are credited.

6 Appendix: initial states for example 2

The 100 sets of initial states used in example 2 are
obtained by sampling the following density functions:

f β1
0,1(x, β1) = 7

10
· x29(1 − x)β1−1

B(30, β1)

+ 3

10
· xβ1−1(1 − x)29

B(β1, 30)
,

β1 = 1, 2, . . . , 30;
f β2
0,2(x, β2) = xβ2−1(1 − x)29

B(β2, 30)
,

β2 = 1, 2, . . . , 25;
f β3
0,3(x, β3) = x29(1 − x)β3−1

B(30, β3)
,

β3 = 1, 2, . . . , 25;
f β4
0,4(x, β4) = 1

2
· x39(1 − x)β4+19

B(40, β4)

+ 1

2
· x39(1 − x)β4+19

B(40, β4)
,

β4 = 1, 2, . . . , 10;
f β5
0,5(x, β5) = 1

2
· xβ5+19(1 − x)39

B(β5, 40)

+ 1

2
· xβ5+19(1 − x)39

B(β5, 40)
,

β5 = 1, 2, . . . , 10;
where B(·, ·) is beta function.
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