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Abstract We demonstrate azimuthally modulated
resonance scalar and vector solitons in self-focusing
and self-defocusing materials. They are constructed
by selecting appropriately self-consistency and reso-
nance conditions in a coupled system of multicompo-
nent nonlinear Schrödinger equations. In the case with
zero modulation depth, it was found that the larger
the topological charge, the smaller the intensity of the
soliton in the self-focusing material, while in the self-
defocusing material the opposite holds. For the soli-
tons with the same parameters, the ones in the self-
focusing material possess larger optical intensity than
the ones in the self-defocusing material. The stabil-
ity of resonance solitons is examined by direct nu-
merical simulation, which demonstrated that a new
class of stable scalar fundamental soliton states with
m = 0 and low-order vector vortex soliton states with
m = 1 can be supported by self-focusing and self-
defocusing materials. Higher-order solitons are found
unstable, however, displaying quasi-stable propaga-
tion over prolonged distances.
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1 Introduction

Spatial soliton is a stable self-trapped wave packet
propagating in a nonlinear (NL) medium, in which
diffraction is exactly balanced by the nonlinearity [1].
One of the most often used models to describe two-
dimensional (2D) optical spatial solitons propagating
in Kerr media is the nonlinear Schrödinger (NLS)
equation [1, 2]. Spatial solitons have been identified in
many physical systems and can self-trap in two trans-
verse dimensions [2]; however, their stability is still an
open problem. It can be improved, for example by em-
ploying soliton management techniques [3] or by in-
cluding nonlocality into the analysis. We have recently
considered two types of strongly nonlocal solitons
with azimuthal symmetry. The first one corresponds
to solitons with maximum intensity at the center, sur-
rounded by dark rings [4, 5] and the second to solitons
with zero intensity in the center, surrounded by bright
rings [6]. In both cases the solitons have been shown
to be unstable in Kerr media with constant diffrac-
tion and nonlinearity coefficients [7]. Depending on
whether their power is above or below a critical point,
Kerr solitons either focus to a zero radius (i.e., undergo
catastrophic collapse) or diffract and broaden [8]. Sat-
uration may suppress this collapse, but the rings still
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suffer from azimuthal instabilities, which grow with
propagation. A bright ring, however, can self-trap in
a stable fashion in a saturable medium [9] if it is a
component of a vector soliton [10]. Another family of
ring solitons comprises the necklace beams [11]—the
beams that become stable by having the intensity az-
imuthally modulated and resemble pearls in a neck-
lace. The construction of various types of robust soli-
ton clusters in both 2D and 3D physical settings has
been considered by a number of authors [12–16]. Re-
cent review work [17] lists a variety of exact solu-
tions of the (2+1)-dimensional nonlinear Schrodinger
equation with the trapping potential, including soliton
clusters having the special form of “dromion lattices”.

Spatial solitons can also be divided into scalar soli-
tons (one-component) and vector solitons (multicom-
ponent), according to the number of field compo-
nents [18]. An important prerequisite for the genera-
tion of vector solitons is the absence of interference
between components. In general, there exist many
ways to generate vector solitons. The first, suggested
by Manakov [19], consist in considering two orthogo-
nally polarized optical field components in a NL Kerr
medium, in which self-phase modulation (SPM) is
equal to cross-phase modulation (XPM). Another ap-
proach is realized by considering two beams of differ-
ent wavelengths in the case of quadratic solitons [20].
Finally, vector solitons can be formed using mutually
incoherent beams which consist of two-component az-
imuthons [17]. In NL optics, the XPM-mediated in-
teraction between mutually incoherent or orthogonally
polarized waves leads to the formation of bound states,
also known as vector solitons. Such sets of vector spa-
tial solitons include vortices [21], dipoles [17], and
multipole-mode solitons [22]. Since azimuthons con-
stitute a link between vortex solitons and other types
of NL localized excitations, it is natural to seek local-
ized coupled bound states with azimuthal modulation
and form directly higher-order vector solitons.

In our previous works [16], we report the localized
dipole solitons which exhibit symmetric shapes, us-
ing the Hirota method. However, Hirota’s method is
mathematically complex; it is hard to follow its phys-
ical consequences and it rarely leads to closed sets
of modes. In this paper, we introduce again the con-
cept of azimuthal modulation but in a simpler setting,
in which two interacting components of the spatially
localized resonance solitons exist in the same model
with self-focusing and self-defocusing NL coefficients

and nontrivial special trapping potential. Specifically,
we demonstrate how to realize resonance solitons in
the physical system consisting of two-component soli-
tons in 2D NL Kerr medium, by selecting appropri-
ately the self-consistency and resonance conditions. It
is noted that the intensity of resonance solitons does
not change with propagation distance; they display the
characteristics of an ideal information carrier. As far
as we know, no other reports exist following this line
of inquiry.

The paper is organized as follows. In Sect. 2, we de-
scribe the model that governs azimuthally modulated
dynamics of a binary beam mixture, by properly se-
lecting the self-consistency conditions. We also intro-
duce a special trapping potential, to help us form the
resonance solitons. The lowest-order scalar resonance
soliton with a single component and different vector
resonance soliton clusters, including vortex and neck-
lace solitons, are described in Sect. 3. The azimuthon-
azimuthon bound states are also discussed in this sec-
tion. The dynamic instabilities of the bound states of
fundamental and other soliton states are studied nu-
merically in Sect. 4. Finally, Sect. 5 concludes the pa-
per.

2 The model and resonance solitons

To construct scalar and vector solitons consisting of
N mutually incoherent optical components propagat-
ing in a self-focusing and self-defocusing Kerr NL
medium, we utilize a system of coupled (2 + 1)D NLS
equations for the evolution of the slowly varying field
envelopes Ej(z, r, ϕ) (j = 1,2, . . . ,N ). Here z is the
propagation coordinate, and r and ϕ are the polar co-
ordinates in the transverse plane. The generalized NLS
equations are of the following dimensionless form [16,
23]:

i
∂Ej

∂z
= −1

2
∇2⊥Ej +g(z, r)

N∑

j=1

|Ej |2Ej +V (z, r)Ej ,

(1)

where all the SPM and XPM contributions are taken
to be equal. The factor g(z, r) stands for the vari-
able nonlinearity coefficient; the diffraction coefficient
in the second term in Eq. (1) has been normalized.

Here, ∇2⊥ = ∂2

∂r2 + 1
r

∂
∂r

+ 1
r2

∂2

∂ϕ2 is the transverse 2D
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Laplacian with the transverse radial coordinate r =√
x2 + y2; ϕ is the azimuthal angle and V (z, r) is a

special trapping potential, to be determined.
We presume the solutions of Eq. (1) in the form

Ej(r,ϕ, z) = u(z, r)Φj (ϕ). Substituting this into Eq. (1),
we find

Φj

[
i
∂u

∂z
+ 1

2

(
∂2u

∂r2
+ 1

r

∂u

∂r

)

− g(z, r)

N∑

j=1

|Φj |2|u|2u − V (z, r)u

]

= − u

2r2

∂2Φj

∂ϕ2
. (2)

We assume that Eq. (2) satisfies the self-consistency
condition

∑N
j=1 |Φj(ϕ)|2 = 1, allowing the separation

of variables in Eq. (2). This leads to the following two
equations:

∂2Φj

∂ϕ2
+ m2Φj = 0, (3a)

i
∂u

∂z
+ 1

2

(
∂2u

∂r2
+ 1

r

∂u

∂r
− m2

r2
u

)

− g(z, r)|u|2u − V (z, r)u = 0, (3b)

where m is the separation constant, also known as
the topological charge (TC); it is assumed to be
an integer [4, 5, 24]. Obvious solutions to Eq. (3a)
are the functions Φj(ϕ) = Aj cosmϕ + Bj sinmϕ,
with the complex coefficients Aj and Bj obeying
conditions

∑N
j=1 Re(AjB

∗
j ) = 0 and

∑N
j=1 |Aj |2 =

∑N
j=1 |Bj |2 = 1. These equations define analytical so-

lutions of Eq. (1) for any integer N . In the particular
case N = 1, they describe a scalar soliton with arbi-
trary TC m, A = 1, and B = i. In general, N is an
integer larger than 1, so the system describes vector
solitons with azimuthal modulation. In this paper, we
focus on the simplest solutions of the two-component
(N = 2) case and choose the corresponding coeffi-
cients as follows: A1 = (1+q)−1/2, B1 = iqA1, A2 =
qA1, B2 = iA1, where the parameter q , 0 ≤ q ≤ 1, de-
termines the modulation depth of the beam. For an
arbitrary q , representing the incoherent superposition
of two components, we obtain two-component vector
solitons.

Let us now deal with Eq. (3b). Our aim is to trans-
form Eq. (3b) into the standard NLS equation [25, 26]
with constant nonlinearity coefficient

μU + 1

2

∂2U

∂R2
+ GU3 = 0, (4)

where U = U(R) depends only on R ≡ R(z, r), both
of them real functions. Here, μ denotes the eigenvalue
of the NLS equation, and G is a constant nonlinearity
coefficient; the choices G = 1 and G = −1 lead to the
bright and dark soliton solutions, respectively. Next,
we construct the bright soliton solution of Eq. (4), for
the case of negative eigenvalue μ < 0 and G = 1,

U(R) = √−2μ sech(
√−2μR), (5A)

and for the case of positive eigenvalue μ > 0 and G =
−1, the dark soliton solution,

U(R) = √
μ tanh(

√
μR). (5B)

To connect solutions of Eq. (3b) with those of Eq. (4),
we use the following similarity transformation:

u(z, r) = ρ(z, r)U
[
R(z, r)

]
eiΩ(z,r), (6)

where the amplitude ρ(z, r) (ρ is positive) and the
phase Ω(z, r) are real functions of z and r . This kind
of transformation has been studied for the generalized
NLS equations in various contexts [25–27]. It should
be emphasized that we require U(R) to satisfy Eq. (4)
and u(z, r) to be a solution of Eq. (3b). The substitu-
tion of Eq. (6) into Eq. (3b) leads to Eq. (4) and in ad-
dition one obtains a system of partial differential equa-
tions to solve:

Rz + RrΩr = 0, (7A)

r
(
ρ2Ωr

)
r
+ ρ2Ωr + 2rρρz = 0, (7B)

−gρ2 − GR2
r = 0, (7C)

r
(
ρ2Rr

)
r
+ ρ2Rr = 0, (7D)

ρrr

ρ
−2Ωz −Ω2

r − m2

r2
+ ρr

rρ
−2V −2μR2

r = 0, (7E)

where the subscripts r and z mean partial derivatives
of the function with respect to r and z. To find ex-
act solutions of Eqs. (7A)–(7E), we introduce another
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self-similar transformation [4, 5] and a few auxiliary
functions:

ρ(z, r) = k

w(z)
F (θ), Ω(z, r) = a(z)r2 + b(z),

(8)

where k is the normalization constant. Here, w(z) is
the beam width, θ(z, r) is the similarity variable to be
determined, a(z) is the wave front curvature, and b(z)

represents the phase offset. These variables are all al-
lowed to vary with propagation distance z. Inserting
Eqs. (8) into Eqs. (7A)–(7E), after some algebra one

obtains the following expressions for θ(z, r) = r2

w2(z)
,

the wave front curvature c(z) = 1
2w

dw
dz

, and

R(z, r) =
∫ r

w

0

1

tF 2(t)
dt, (9A)

g(z, r) = −GR2
r

ρ2
. (9B)

The amplitude ρ(z, r) is found from Eq. (7E), which
is transformed into the following NL differential equa-
tion for F(θ)

θ
d2F

dθ2
+ dF

dθ
− w3

4
θ
d2w

dz2
F − w2

2

db

dz
F

− m2

4θ
F − w2

2

(
V + μR2

r

)
F = 0. (10)

We choose the special trapping potential as follows:

V (z, r) = s2r2 − μR2
r , (11)

where s is a positive constant, and after a variable

transformation F(θ) = θ− 1
2 f (θ), from Eq. (10) we ar-

rive at

d2f

dθ2
+

[
−1

4
+ n

θ
+ 1 − m2

4θ2

]
f = 0, (12A)

with

−m + 1

2
− w2

2
bz = n, (12B)

and

1

2w2
− w

2

d2w

dz2
− s2w2 = 0. (12C)

Here, n (= 0,1,2, . . .) is a non-negative integer. The
differential equation (12A) is known as the Whittaker
differential equation and its solutions are the Whit-
taker functions [28], namely f (θ) = Wnm(θ) with

Wnm(θ) = θne− θ
2

Γ (2m − n + 1/2)

×
∫ ∞

0
τ 2m−n− 1

2

(
1 + τ

θ

)2m−n− 1
2

e−τ dτ,

(13)

where Γ is the Gamma function. Taking w(z)|z=0 =
w0 and dw(z)

dz
|z=0 = 0, where the subscript 0 denotes

the value of the corresponding quantity at z = 0, and
integrating Eq. (12C) yields [4, 5]

w2 = w2
0

[
1 + (λ − 1) sin2(2sw2

0z
)]

, (14A)

where λ = 1
2s2w4

0
. Hence, from Eqs. (14A), (12B) and

from the definition of a(z) = 1
2w

dw
dz

, we obtain

b(z) = b0 − (2n + m + 1) tan−1[√λ tan(2sw2
0z)]

2s
√

λw4
0

,

(14B)

a(z) = sw2
0(λ − 1) sin(4sw2

0z)

1 + λ − (λ − 1) cos(4sw2
0z)

. (14C)

Collecting all these partial solutions together, we fi-
nally obtain the analytical solution of Eq. (1):

Ej(z, r, ϕ) = k(Aj cosmϕ + Bj sinmϕ)

r
Wnm

(
r2

w2

)

× U
[
R(z, r)

]
ei[a(z)r2+b(z)], (15A)

where j = 1,2. Here, w(z), a(z), b(z), U(R), R(z, r),
Wnm(r2/w2) are determined by Eqs. (14A)–(14C),

(5A)–(5B), (9A), (13), and k =
√

n!
Γ (n+m+1)

.

The localized solution in Eq. (15A) has the pulse
width, wave front curvature, phase, and other charac-
teristics changing with the propagation distance. Thus,
it does not represent a shape-invariant spatial soli-
ton. However, from Eq. (14A) we see that for λ = 1
the beam diffraction is exactly balanced by the non-
linearity. Since for λ = 1 it is w(z) = w0, the beam
width is independent of the propagation distance z.
In this case the beam becomes an exact soliton beam
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Fig. 1 Distributions of the nonlinearity coefficient g(r) and
the external potential V (r) for the resonance soliton from
Eq. (15B). Parameters: w0 = 1, n = m = 0. Self-focusing ma-

terial, G = 1, μ = −0.001 (dashed line); self-defocusing mate-
rial, G = −1, μ = 0.008 (solid line) (Color figure online)

that is termed the resonance soliton. The parameter
functions are then simplified as follows: w(z) = w0,
b(z) = b0 − (2n+m+ 1) z

w2
0

, s = 1√
2w2

0
, a(z) = 0, and

Eq. (1) admits the following analytical resonance soli-
ton solutions:

Ej(z, r, ϕ) = k(Aj cosmϕ + Bj sinmϕ)

r
Wnm

(
r2

w2
0

)

× U
[
R(z, r)

]
e
i[b0− 2n

w2
0
z]
. (15B)

From Eq. (15B), it is seen that the novel solitons are
characterized by three parameters: the mode number
n, TC m, and the modulation depth q . Based on the
values of these parameters, we introduce new classes
of 2D resonance scalar and vector solitons. Note that
in this case, the auxiliary function R, the nonlinear-
ity coefficient g, and the trapping potential V depend
only on the radial variable r . Hence, to obtain shape-
invariant solitons by the present method, it is necessary
to have the nonlinearity coefficient that depends only
on the transverse distance.

We first study the case when n and m are differ-
ent non-negative integers. Selecting some specific val-
ues of the parameter q , we present plots of the inten-
sity distributions with an initial condition w0 = 1. It
is easy to see that the solutions in Eq. (15B) are lo-
calized, since lim|r|→∞ Ej(z, r, ϕ) = 0. The distribu-
tions of the nonlinearity coefficient g(r) and the exter-
nal potential V (r) with respect to the radial coordinate
r are shown in Fig. 1. It should be pointed out that
our procedure requires specific well-shaped external
potentials and nonlinearity coefficients. Their forms
are enforced by Eqs. (11) and (9B), which present a
drawback in the procedure and in the applicability of

the method. Thus, to obtain the nice analytical solu-
tion of Eq. (15B), one has to impose certain conditions
on the nonlinearity coefficient and the external poten-
tial, which in principle are not known beforehand. On
the other hand, the knowledge of analytical solutions
presents an asset that can be used in the search of ap-
proximate quasi-stable solutions and of the materials
that may display the required nonlinearity coefficients.
In the same venue, the trapping external potential—
which to leading order is parabolic and contains a term
proportional to g—may be conveniently expanded in
more realistic cases, to mimic the required form.

3 The structure of resonance solitons

The structure of the analytical solution (15B) for res-
onance solitons can be controlled—as mentioned—by
three parameters: n, m and q . We emphasize that the
total angular momentum of the resonance soliton can
be represented as M = ∑N

j=1 Mj = mP (m) Im(A∗
jBj ),

where P (m) = 2π
∫ ∞

0 |u|2r dr is the power of the
resonance soliton with the topological charge m.
The total power is expressed as P = 1

2

∑
j (|Aj |2 +

|Bj |2)P (m) = P (m). The ratio of the total angular mo-
mentum to the total power, M

P
= m Im(A∗

jBj ) = 2mq
1+q

,

can be regarded as an analogue of the spin of the res-
onance soliton (but is not formally equal to the actual
spin of the optical field in question). Thus, the value
of the spin depends on the parameters q and m. The
spin is zero for q = 0 and m = 0, and is nonzero for
0 < q ≤ 1 and m 
= 0.

We begin by analyzing the scalar soliton (N = 1)
and select the lowest order (fundamental) solution of
Eq. (15B) with bell-shaped (self-focusing material) or
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Fig. 2 Intensity profiles of scalar resonance solitons, for the parameters m = 0, n = 0,1,2 from left to right; top row, the self-focusing
material, bottom row, the self-defocusing material (Color figure online)

ring-shaped (self-defocusing material) distributions of
the beams for m = 0 and zero spin. Such a funda-
mental soliton can exist as a spatially localized exci-
tation, that is, a 2D resonance scalar soliton. The solu-
tions of Eq. (15B) are presented in Fig. 2. For μ < 0
and G = 1, the bell-shaped solutions of this type con-
sist of several rings surrounding the central peak, see
the top row in Fig. 2. We plot the intensity distribu-
tions (I = |u|2) for different n with the fixed topolog-
ical charge m = 0. The left panel, corresponding to
n = 0, is a fundamental soliton state. The middle and
the right panels, corresponding to n = 1,2, represent
two excited states. It is seen that the number of rings
increases with increasing n, while at the same time the
optical intensity at the center decreases. For a fixed n

(n > 1), the intensity of rings surrounding the center
peak increases slowly with increasing the radial dis-
tance.

The bottom row in Fig. 2 depicts intensity profiles
of the fundamental vortex solution, with μ > 0 and
G = −1. Now, the optical intensity in the center is
zero, and the intensity of rings surrounding the center
increases with the increasing radial distance.

Next, we discuss the vector resonance solitons from
Eq. (15B) with nonzero TC (m 
= 0) and zero mod-
ulation depth (q = 0), for m = 6, q = 0 and differ-
ent n. The beam represents an incoherent superposi-
tion of two components. Each component of such a lo-
calized solution displays a necklace-type self-trapped

structure, which consists of a large number of “petals”,
and the total intensity distribution exhibits similar vor-
tex profile. We present the dynamics of vector reso-
nance solitons in Figs. 3, 4, 5 for n = 0,1,2. In the
figures, the symbols I = |E1|2 + |E2|2, I1 = |E1|2,
and I2 = |E2|2 stand for the total intensity, as well as
intensities of the constituent components, respectively.

In the top row of panels in Fig. 3, we depict the in-
tensity profiles in the self-focusing material, for G = 1
and μ = −1/2. The bottom row depicts the profiles in
the self-defocusing material, for G = −1 and μ = 1.
In the present work, unlike [16], self-trapped neck-
lace solitons do not expand as they propagate; it is
also different from the slowly expanding necklaces in
Ref. [29]. One of the interesting properties to note
is a wider extent of the resonant solitons in the self-
defocusing materials than those in the self-focusing
materials, under the same conditions, because of the
self-defocusing effect. In Fig. 4 we present the same
results for the vector resonance soliton when n = 1.

To compare the properties of analytical solutions
from (15B), we also display radial structures of the to-
tal optical intensity distributions (I = |u1|2 + |u2|2)
in Fig. 5, by choosing different topological charges
m (m 
= 0) with fixed n = 2. It is seen that the total
optical intensity of the vortex states becomes less lo-
calized with increasing topological charge m, due to
the larger angular momentum of the higher topologi-
cal charge. Vector soliton becomes wider as the topo-
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Fig. 3 Top row: Intensity profiles of the soliton components
and of the total soliton in the self-focusing material with G = 1,
μ = −1/2. Bottom row: The same, but for the self-defocusing

material with G = −1, μ = 1. Solutions correspond to the pa-
rameters q = 0, n = 0, and m = 6 (Color figure online)

Fig. 4 The same as Fig. 3 except for n = 1 (Color figure online)

logical charge is increased and it possesses larger an-
gular momentum. Similar results have been found nu-
merically and have been generated experimentally in
Ref. [30], in an anisotropic photorefractive medium.

Furthermore, we find that the larger the TC m with
zero modulation depth, the smaller the total inten-
sity of solitons for self-focusing materials, while for
self-defocusing materials the opposite holds. The res-
onance soliton with the same parameters has larger op-
tical intensity in the self-focusing material than in the
self-defocusing material (see Fig. 5).

By increasing the modulation depth q from 0,
one finds resonance solitons with changing azimuthal
modulation—the azimuthons. The solitons still pos-
sess the vortex structure and carry nonzero angular
momentum. In Figs. 6 and 7 we demonstrate two ex-
amples of azimuthons with four intensity peaks for
each component of the vector soliton described by
Eq. (15B). Incoherent interaction between the compo-
nents of a vector necklace beam allows for compensa-
tion of the repulsion between beamlets, creating a new
type of self-trapped structure that exhibits the proper-
ties of ring vortex solitons. The physical mechanism
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Fig. 5 Radial distributions
of the total intensity for
different topological
charges. Left: Self-focusing
material; Right:
Self-defocusing material.
The parameters are the
same as Fig. 3, except for
n = 2 (Color figure online)

Fig. 6 Evolution of vector necklace ring resonance solitons with nonzero modulation depth in each component. Top row is the self–
focusing material, bottom row is the self-defocusing material. The parameters are q = 0.75, n = 0, m = 2 (Color figure online)

for creating such a composite vector ring soliton is
similar to the mechanism responsible for the forma-
tion of the so-called solitonic gluons [31] and is ex-
plained by a balance of the forces acting between two
incoherent components of a composite soliton. In that
case, the mutual repulsion of the beamlets in the E2-
component is balanced by the incoherent attraction of
the coupled E1-component.

Finally, we stress that the defocusing nonlinearity
is a necessary ingredient for the existence of multi-
peaked fundamental, low-order and high-order dark
vortex ring solitons. A 2D NLS equation with defo-
cusing nonlinearity was shown to support the funda-
mental vortex soliton solutions whose intensity van-
ishes at the vortex center and asymptotically ap-
proaches a constant value at infinity (see the bottom
row in Fig. 2). Such vortex ring solitons were exper-
imentally observed in a bulk self-defocusing optical
medium [32]. The low-order vortices with m = 1 are

energetically favorable, which implies that instabili-
ties of other families of solutions may result in the
formation of only low-order vortices. In particular,
a 2D vortex ring soliton stripe is unstable to long-
wave symmetry-breaking perturbations, leading to the
generation of low-order vortex soliton pairs with op-
posite vorticities [33, 34]. Higher-order vortices are
also unstable and break down into low-order vortices.
However, in the NLS limit no exponentially grow-
ing modes exist [35] and, as a consequence, multi-TC
vortices are very long-lived objects. Strong instabili-
ties of multi-TC vortices can be triggered by different
mechanisms such as dissipation, nonlinearity satura-
tion, or anisotropy [36]. Vortex beams observed in ex-
periments exhibit some features expected from a dark
vortex soliton, but a comprehensive investigation and
understanding of these important observations is not
yet fully achieved. Thus, the existence of stable dark
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Fig. 7 The same as Fig. 6, except for n = 2 (Color figure online)

vortices in a quadratic NL medium remains an open
problem.

4 Stability analysis

The stability of scalar and vector vortex resonance
solitons, especially for higher topological charges, is
an important problem. The following discussion will
focus on the stability of fundamental scalar and vec-
tor vortex solitons with different n, m, and q values
in the self-focusing and self-defocusing materials. In
this section, we investigate the stability of the analyt-
ical solution (15B) and show that stable fundamental
scalar solitons and only some types of the vortices with
m = 1 can be supported by the azimuthal modulations
in our model.

We perform direct numerical simulations using the
split-step Fourier method [37] and solve Eq. (1) by tak-
ing the analytical solution (15B) at z = 0 as an initial
condition. We first present in Fig. 8 the scalar soliton,
with parameters m = 0, n = 2. It is seen that the scalar
solitons are stable. The comparison of analytical so-
lutions from Fig. 2 with the numerical simulations in
Fig. 8 reveals that the analytical solution is consistent
with the numerical results.

Next, we select different topological charges m

with the same parameters as in Fig. 7, but increase the
modulation depth to q = 0.96. In Fig. 9, we again dis-
play the optical intensity of analytical solution (15B)
with n = 2 and m = 1,2,3 from top to bottom, which

Fig. 8 Contour profiles of intensity distributions (nonzero in
white annuli, zero in orange areas) for the fundamental reso-
nance soliton. Top row is the self-focusing material, bottom row
is the self-defocusing material. Left column is the analytical so-
lution, right column the numerical simulation (Color figure on-
line)

was used as an initial condition, and compare with so-
lutions obtained in the numerical simulation of Eq. (1).
It is seen that only when the topological charge is
m = 1 the numerical solution is stable against pertur-
bation with an initial Gaussian noise level of 5 %. But
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Fig. 9 Comparison of analytical and numerical intensity distri-
bution contour plots. Left two columns are for the self-focusing
material, right two columns are for the self-defocusing material.

The parameters are: q = 0.96, n = 2, and m = 1,2,3 from top
to bottom (Color figure online)

when the topological charge is m ≥ 2, the vector soli-
ton solution (15B) is unstable in propagation and splits
into necklace ring-shaped structures. We furthermore
find that the stability of vector solution (15B) in the
self-defocusing material is better than that in the self-
focusing material. In fact, when q → 1 the stability
of vector resonance soliton solutions of Eq. (15B) im-
proves, in that it propagates with little change for very
long.

5 Conclusions

In summary, we investigated the dynamics of az-
imuthally modulated resonance solitons in self-focu-
sing and self-defocusing materials. Under the same
parameters, the intensity of resonance solitons in the

self-focusing material is larger than that in the self-
defocusing material. The stability of the solitons is
checked by direct numerical simulation. Our results
show that the stability of resonance solitons in defo-
cusing material is better than in the focusing mate-
rial, and that the stability improves as q → 1. We find
that the scalar resonance solitons with zero topolog-
ical charge and low-order vector solitons with m = 1
are stable. But, for higher topological charges (m ≥ 2),
the vector vortex solitons are unstable. Our approach
can be applied to other problems, e.g., Bose–Einstein
condensates and light propagation in plasmas.
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16. Zhong, W.P., Belić, M., Assanto, G., Malomed, B.A.,
Huang, T.: Self-trapping of scalar and vector dipole solitary
waves in kerr media. Phys. Rev. A 83, 043833 (2011)
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35. Aranson, I., Steinberg, V.: Stability of multicharged vor-
tices in a model of superflow. Phys. Rev. B 53, 75–78
(1996)

36. Mamaev, A., Saffman, M., Zozulya, A.: Decay of high or-
der optical vortices in anisotropic nonlinear optical media.
Phys. Rev. Lett. 78, 2108–2111 (1997)
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