Skip to main content
Log in

Finite time integral sliding mode control of hypersonic vehicles

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the tracking control problem for the longitudinal model of an airbreathing hypersonic vehicle (AHV) with external disturbances. By introducing finite time integral sliding mode manifolds, a novel finite time control method is designed for the longitudinal model of an AHV. This control method makes the velocity and altitude track the reference signals in finite time. Meanwhile, considering the large chattering phenomenon caused by high switching gains, an improved sliding mode control method based on nonlinear disturbance observer is proposed to reduce chattering. Through disturbance estimation for feedforward compensation, the improved sliding mode controller may take a smaller value for the switching gain without sacrificing disturbance rejection performance. Simulation results are provided to confirm the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fidan, B., Mirmirani, M., Ioannou, P.A.: Flight dynamics and control of air-breathing hypersonic vehicles: review and new direction. In: AIAA International Space Planes and Hypersonic Systems and Technologies, AIAA Paper 2003-7081, Norfolk, Virginia (2003)

    Google Scholar 

  2. Bolender, M.A., Doman, D.B.: Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. J. Spacecr. Rockets 44(2), 374–387 (2007)

    Article  Google Scholar 

  3. Xu, H.J., Mirmirani, M.D., Ioannou, P.A.: Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Control Dyn. 27(5), 829–838 (2004)

    Article  Google Scholar 

  4. Parker, J.T., Serrani, A., Yurkovich, S., Bolender, M.A., Doman, D.B.: Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guid. Control Dyn. 30(3), 856–869 (2007)

    Article  Google Scholar 

  5. Fiorentini, L., Serrani, A., Bolender, M.A., Doman, D.B.: Nonlinear control of non-minimum phase hypersonic vehicle models. In: American Control Conference, St. Louis, MO, USA, pp. 3160–3165 (2009)

    Google Scholar 

  6. Shtessel, Y., McDuffie, J., Jackson, M., et al.: Sliding mode control of the x-33 vehicle in launch and re-entry modes. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 1998-4414 (1998)

    Google Scholar 

  7. Costa, R.R.da., Chu, Q.P., Mulder, J.A.: Reentry flight controller design using nonlinear dynamical inversion. J. Spacecr. Rockets 40(1), 64–71 (2003)

    Article  Google Scholar 

  8. Jiang, B., Gao, Z.F., Shi, P., Xu, Y.F.: Adaptive fault-tolerant tracking control of near-space vehicle using Takagi–Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 18(5), 1000–1007 (2010)

    Article  Google Scholar 

  9. Xu, Y.F., Jiang, B., Tao, G., Gao, Z.F.: Fault tolerant control for a class of nonlinear systems with application to near space vehicle. Circuits Syst. Signal Process. 224(5), 587–598 (2010)

    Google Scholar 

  10. Gao, Z.F., Jiang, B., Shi, P., Xu, Y.F.: Fault-tolerant control for a near space vehicle with a stuck actuator fault based on a Takagi–Sugeno fuzzy model. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 224(5), 587–598 (2010)

    Article  Google Scholar 

  11. Marrison, C.I., Stengel, R.F.: Design of robust control systems for a hypersonic aircraft. J. Guid. Control Dyn. 21(1), 58–63 (1998)

    Article  MATH  Google Scholar 

  12. Gao, H.J., Si, Y.L., Li, H.Y., Hu, X.X., Wang, C.H.: Modeling and control of an air-breathing hypersonic vehicle. In: Proceedings of the 7th Asian Control Conference, Hong Kong, pp. 304–307 (2009)

    Google Scholar 

  13. Li, H.Y., Wu, L.G., Si, Y.L., Gao, H.J., Hu, X.X.: Multi-objective fault-tolerant output tracking control of a flexible air-breathing hypersonic vehicle. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 224(6), 647–667 (2010)

    Article  Google Scholar 

  14. Gibson, T.E., Crespo, L.G., Annaswamy, A.M.: Adaptive control of hypersonic vehicles in the presence of modeling uncertainties. In: American Control Conference, St. Louis, MO, USA, pp. 3178–3183 (2009)

    Google Scholar 

  15. Fiorentini, L., Serrani, A., Bolender, M.A., Doman, D.B.: Nonlinear robust/adaptive controller design for an air breathing hypersonic vehicle model. In: AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 2007-6329, Hilton Head, SC (2007)

    Google Scholar 

  16. Fiorentini, L., Serrani, A., Bolender, M.A., Doman, D.B.: Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. J. Guid. Control Dyn. 32(2), 402–417 (2009)

    Article  Google Scholar 

  17. Wang, Q., Stengel, R.F.: Robust nonlinear control of a hypersonic vehicle. J. Guid. Control Dyn. 23(4), 577–585 (2000)

    Article  Google Scholar 

  18. Marrison, C.I., Stengel, R.F.: Design of robust control systems for a hypersonic aircraft. J. Guid. Control Dyn. 21(1), 58–63 (1998)

    Article  MATH  Google Scholar 

  19. Liu, Y.B., Lu, Y.P.: Longitudinal inversion control based on H optimal control theory for hypersonic vehicle. J. Syst. Eng. Electron. 28(12), 1882–1885 (2006) (in Chinese)

    MATH  Google Scholar 

  20. Li, H.F., Sun, W.C., Li, Z.Y.: Index approach law based sliding control for a hypersonic aircraft. In: International Symposium on Systems and Control in Aerospace and Astronautics, Shenzhen, China, pp. 1–5 (2008)

    Google Scholar 

  21. Li, H.B., Sun, Z.Q., Min, H.B., Deng, J.Q.: Fuzzy dynamic characteristic modeling and adaptive control of nonlinear systems and its application to hypersonic vehicles. Sci. China Ser. F 54(3), 460–468 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, Y.N., Yuan, Y., Min, H.B., Sun, F.C.: Multi-objective robust control based on fuzzy singularly perturbed models for hypersonic vehicles. Sci. China Ser. F 54(3), 563–576 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, H.J., Mirmirani, M.D., Ioannou, P.A.: Robust neural adaptive control of a hypersonic aircraft. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2003-5641, Austin, Texas, USA (2003)

    Google Scholar 

  24. Li, X.D., Xian, B., Diao, C., Yu, Y.P., Yang, K.Y., Zhang, Y.: Output feedback control of hypersonic vehicles based on neural network and high gain observer. Sci. China Ser. F 54(3), 429–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xu, B., Wang, D.W., Sun, F.C., Shi, Z.K.: Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn. 70(1), 269–278 (2012). doi:10.1007/s11071-012-0451-x

    Article  MathSciNet  Google Scholar 

  26. Xia, Y.Q., Zhu, Z., Fu, M.Y.: Back-stepping sliding mode control for missile system based on an extended state observer. IET Control Theory Appl. 5(1), 93–102 (2009)

    Article  MathSciNet  Google Scholar 

  27. Xia, Y.Q., Zhu, Z., Fu, M.Y., Wang, S.: Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans. Ind. Electron. 58(2), 647–659 (2011)

    Article  Google Scholar 

  28. Ding, S.H., Li, S.H.: Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques. Aerosp. Sci. Technol. 13(4–5), 256–265 (2009)

    Article  Google Scholar 

  29. Feng, Y., Yu, X.H., Man, Z.H.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Z., Li, S.H., Fei, S.M.: Finite-time tracking control of bank-to-turn missiles using terminal sliding mode. ICIC Express Lett. 3(48), 1373–1380 (2009)

    Google Scholar 

  31. Zhang, Y.X., Sun, M.W., Chen, Z.Q.: Finite-time convergent guidance law with impact angle constraint based on sliding-mode control. Nonlinear Dyn. 70(1), 619–625 (2012). doi:10.1007/s11071-012-0482-3

    Article  MathSciNet  Google Scholar 

  32. Wu, Y.Q., Yu, X.H., Man, Z.H.: Terminal sliding mode control design for uncertain dynamic systems. Syst. Control Lett. 34(57), 281–288 (1998)

    Article  MathSciNet  Google Scholar 

  33. Zong, Q., Zhao, Z.S., Zhang, J.: Higher order sliding mode control with self-tuning law based on integral sliding mode. IET Control Theory Appl. 4(7), 1282–1289 (2010)

    Article  MathSciNet  Google Scholar 

  34. Ohishi, K., Nakao, M., Ohnishi, K., Miyachi, K.: Microprocessor-controlled DC motor for load-insensitive position servo system. IEEE Trans. Ind. Electron. 31(1), 44–49 (1987)

    Article  Google Scholar 

  35. Chen, W.H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000)

    Article  Google Scholar 

  36. Yang, J., Li, S.H., Chen, X.S., Li, Q.: Disturbance rejection of ball mill grinding circuits using DOB and MPC. Powder Technol. 198(2), 219–228 (2010)

    Article  Google Scholar 

  37. Guo, L., Tomizuka, M.: High-speed and high-precision motion control with an optimal hybrid feedforward controller. J. Process Control 2(2), 110–112 (1997)

    Google Scholar 

  38. Ishikawa, J., Tomizuka, M.: A novel add-on compensator for cancellation of pivot nonlinearities in hard disk drives. IEEE Trans. Magn. 34(4), 1895–1897 (1998)

    Article  Google Scholar 

  39. Yang, J., Zolotas, A., Chen, W.H., Michail, K., Li, S.H.: Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach. ISA Trans. 50(3), 389–396 (2011)

    Article  MATH  Google Scholar 

  40. Chen, W.H.: Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatron. 9(4), 706–710 (2004)

    Article  Google Scholar 

  41. Liu, Z.L., Svoboda, J.: A new control scheme for nonlinear systems with disturbances. IEEE Trans. Control Syst. Technol. 14(1), 176–181 (2004)

    Google Scholar 

  42. Guo, L., Chen, W.H.: Disturbance attenuation and rejection for a class of nonlinear systems via DOBC approach. Int. J. Robust Nonlinear Control 15(3), 109–125 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: Guidance and control of missile interceptor using second-order sliding modes. IEEE Trans. Aerosp. Electron. Syst. 45(1), 110–123 (2009)

    Article  Google Scholar 

  44. Wilcox, Z.D., MacKunis, W., Bhat, S., Lind, R., Dixon, W.E.: Lyapunov-based exponential tracking control of a hypersonic aircraft with aerothermoelastic effects. J. Guid. Control Dyn. 33(4), 1213–1223 (2010)

    Article  Google Scholar 

  45. Wang, Q., Stengel, R.F.: Robust nonlinear control of a hypersonic aircraft. J. Guid. Control Dyn. 23(4), 577–585 (2000)

    Article  Google Scholar 

  46. Xu, B., Sun, F.C., Yang, C.G., Gao, D.X., Ren, J.X.: Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping. Int. J. Control 84(9), 1543–1552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17(2), 101–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Hardy, H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61074013, 91016004, 61125306, 61203011), Program for New Century Excellent Talents in University (NCET-10-0328), and the Natural Science Foundation of Jiangsu Province (BK2012327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihua Li.

Appendix

Appendix

The expressions of ϖ 1, ϖ 2, φ 1, φ 2 are listed as follows.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Li, S. & Sun, C. Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn 73, 229–244 (2013). https://doi.org/10.1007/s11071-013-0780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0780-4

Keywords

Navigation