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Abstract Kerr oscillators are model systems which
have practical applications in nonlinear optics. Optical
Kerr effect, i.e., interaction of optical waves with non-
linear medium with polarizability χ(3) is the basic phe-
nomenon needed to explain, for example, the process
of light transmission in fibers and optical couplers. In
this paper, we analyze the two Kerr oscillators cou-
pler and we show that there is a possibility to control
the dynamics of this system, especially by switching
its dynamics from periodic to chaotic motion and vice
versa. Moreover, the switching between two different
stable periodic states is investigated. The stability of
the system is described by the so-called maps of Lya-
punov exponents in parametric spaces. Comparison of
basins of attractions between two Kerr couplers and a
single Kerr system is also presented.
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1 Introduction

One of the best known and most intensively stud-
ied optical models is an oscillator with Kerr nonlin-
earity. Different kinds of anharmonic Kerr oscillators
have also been used to study classical and quantum
chaos [1–5]. Mutually coupled Kerr oscillators can
be successfully used for a study of couplers, the sys-
tems consisting of a pair of coupled Kerr fibers. The
first two-mode Kerr coupler has been proposed by
Jensen [6] and investigated in depth in [6, 7]. Kerr
couplers affected by quantization can exhibit various
quantum properties such as squeezing of vacuum fluc-
tuations, sub-Poissonian statistics, collapses, and re-
vivals [8, 9].

In the last two decades since the publication of the
paper by Pecora and Carroll [10], the phenomenon of
synchronization in systems of the coupled oscillators
has become a subject of comprehensive investigation.
The problem of synchronization of two linearly cou-
pled Kerr oscillators has been studied in [11] and the
possibility of synchronization of chaotic motion was
proved numerically. Moreover, the case of synchro-
nization of two kinds of Kerr couplers having a struc-
ture of low-dimensional chains (ring and open) has
been analyzed [12].

This paper is an attempt at using the modern tools
of nonlinear science for numerical investigation of dy-
namics of a system made of two coupled Kerr oscilla-
tors.
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In Sect. 2, the basic equation of motion for the sin-
gle Kerr oscillator is introduced. Simple periodic solu-
tions of equations of motions have been found and the
dynamics of the system as well as basins of attraction
for such solutions are investigated. Moreover, we cal-
culate the Lyapunov maps for the single Kerr oscilla-
tor with external periodic as well as modulated fields.
The second case of the external field is used to gen-
erate the so-called chaotic beats. In Sect. 3, our single
Kerr system analysis is extended over the case of two
coupled Kerr subsystems with nonlinear coupling. We
find the analytic periodic solutions of such a system.
Lyapunov maps and the basins of attraction for this
system are helpful tools in analysis of properties of
these system. We find that it is possible to change the
periodic states of one subsystem by changing the ini-
tial conditions of the other subsystem (switching the
periodic dynamics). Moreover, it is proved that cou-
pled Kerr subsystems are able to generate of chaotic
beats.

2 The single Kerr oscillator

2.1 Equations of motion

We study the dynamical system described by the fol-
lowing Hamiltonian:

H = H0 + H1, (1)

where

H0 = ωa∗a + 1

2
εa∗2a2, (2)

H1 = iF
(
a∗e−iΩpt − aeiΩpt

)
. (3)

The Hamiltonian H0 represents the so-called Kerr os-
cillator (if ε = 0, then H0 refers to the harmonic oscil-
lator), whereas the Hamiltonian H1 describes the in-
teraction of the Kerr oscillator with the periodic ex-
ternal field. The quantities a and a∗ are complex dy-
namical variables describing the amplitudes, ω de-
notes the frequency of the free vibrations of the har-
monic oscillator—basic frequency, ε is the parameter
describing the Kerr nonlinearity in the system (this is
the nonlinearity of the third order), and F is the exter-
nal field amplitude at the frequency Ωp .

The equation of motion for variable a has the form:

da

dt
= −iωa − iεa∗a2 + Fe−iΩpt − γ a. (4)

The term −γ a—added on phenomenological grounds
—describes the mechanism of loss with the damping
constant γ . All the parameters, that is ω, ε, F , Ωp,

and γ are taken to be real. The equation of motion for
a∗ is simply a complex conjugation of (4).

In the autonomous and conservative case, that is
when γ = F = 0, the solution of (4) has a well-known
form:

a(t) = a0e
−i(ω+εa∗

0a0)t , (5)

where a(t) |t=0= a0 is the initial condition.
In the nonautonomous case of (4), we can find the

periodic solution:

a(t) = xe−i(ω+εx∗x)t , (6)

that is in the form of the solution of the autonomous
one. Function (6) satisfies the equation of motion (4)
provided that x = F/γ . As a result, the periodic solu-
tion of (4) has the form:

a(t) = F

γ
e
−i(ω+ε F2

γ 2 )t
. (7)

Formally, the function in the form of (7) is the solu-
tion of the differential equation (4) only if two condi-

tion are fulfilled: (A) Ωp = ω + ε F 2

γ 2 , and (B) the ini-
tial condition has the form a(0) ≡ a0 = F/γ . In other
words, the periodic solution (7) is correct only for spe-
cial choice of the set of parameters ω,Ωp,F,γ . Fi-
nally, it is worth noting that in our nonautonomous
case the period of solution (7) depends on the ini-
tial condition which results from condition (B). In the
phase plane (Rea, Ima), the periodic solution (7) sat-
isfies the phase equation (circle):

(Rea)2 + (Ima)2 = F 2/γ 2 (8)

for any values of frequency ω.
It should be emphasized that the method presented

here is useful to find only the one periodic solution for
a given set of the system parameters. Generally, the (4)
have up to three (not only periodic) solutions.

2.2 The dynamics of the system in the phase space

As a numerical example, let us consider the dynam-
ics of a system described by (4), if ω = 1, γ = 0.5,
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ε = 0.01, F = 5, and Ωp = 2. Then, in compliance
with (7), the periodic solution of (4) has the form:

a(t) = 10e−2it , (9)

and in the phase space it satisfies the following equa-
tion:

(Rea)2 + (Ima)2 = 100. (10)

As a result, for the initial condition a0 = 10, the phase
point draws simply a circle described by (10). But if
the system (4) starts from another initial condition,
we observe the following interesting behavior: after
some time, the phase point tends to one of the two or-
bits: (Rea)2 + (Ima)2 = 100 or (Rea)2 + (Ima)2 =
50. Two examples of such behavior of the phase
point are illustrated in Fig. 1. In Fig. 1(a), the phase
point (marked in pink) starts from the initial condi-
tion Rea = 2, Ima = 0, and after the time t = 50
goes into the orbit of the radius r = √

50. However,
in Fig. 1(b), we can see how the phase point starting
from the initial condition Rea = 10, Ima = 15 goes
into the orbit of the radius r = 10, described by (10).
It should be emphasized that the orbit r = √

50 is also
periodic but it does not fulfill conditions (A) and (B).

Fig. 1 The phase trajectories of the system (4) for ω = 1,
γ = 0.5, ε = 0.01, F = 5, and Ωp = 2 and for the initial condi-
tions: (a) Rea = 2, Ima = 0; (b) Rea = 10, Ima = 15

The solutions for this orbit has the analytical form:
(5 + 5i) exp(−2it).

Both orbits: (Rea)2 + (Ima)2 = 100 and (Rea)2 +
(Ima)2 = 50 are attractors of the system (4). It means
that for the parameters: ω = 1, γ = 0.5, ε = 0.01,
F = 5, and Ωp = 2 the system (4) tends to one of
the two steady states (periodic), represented by these
two orbits. It is easy to show that the orbit described
by equation (Rea)2 + (Ima)2 = 50 is identical to that
generated by (4) in the resonant case if ω = 1, γ = 0.5,
ε = 0.01, F = 5, and Ωp = 1 and for the initial condi-
tion: Rea = 5, Ima = −5. This solution has the form:
a(t) = (5 − 5i) exp(−it).

2.3 Basin of attraction

To illustrate the full influence of the initial condi-
tions on the evolution of the system, we used the so-
called basins of attraction. Basin of attraction is the
set of initial conditions which lead to the system’s at-
tractor. The basins of attraction of the system (4) for
ω = 1, γ = 0.5, ε = 0.01, F = 5, and Ωp = 2 are
presented in Fig. 2. There are two attractors of the
system (limit cycles r = 10 and r ′ = √

50) and their
basins of attraction are marked by different colors; the
yellow area marks the basin of attraction of the at-
tractor (Rea1)

2 + (Ima1)
2 = 100, whereas the blue

one refers to the basin of attraction of the attractor
(Rea1)

2 + (Ima1)
2 = 50. Both basins have interest-

ing geometries. The basin corresponding to the circle
of the radius r ′ = √

50 has a spiral-like form with the
slip and width decreasing when moving away from the

Fig. 2 Basins of attraction for two attractors—limit cycles for
r = 10 and r ′ = √

50. The parameters of the system (7) are:
ω = 1, γ = 0.5, ε = 0.01, F = 5 and Ωp = 2



758 I. Śliwa, K. Grygiel

centre. The remaining area (blue color) refers to the
basin of attraction of the second attractor (the circle
of the radius r = 10). Both attractors have a special
property. They are localized in such a way that each
attractor is located partly in its own basin of attraction
and partly in the basin of attraction of the other attrac-
tor. As a result—if the phase point starts from the part
of the attractor situated in the basin of attraction of the
other one, it escapes to the other attractor. However,
if it starts from the part of the attractor situated in its
own basin of attraction, it does not change the attrac-
tor. In analogy to semistable orbits, these attractors can
be called the semistable attractors. So, the system with
Kerr nonlinearity is tunable: an adequate choice of the
initial condition can result in the transition of the phase
point from the one attractor to the other. This property
seems to be useful in applications in optical switches.

2.4 Parameters detuning

One of the important properties of dynamical systems
is their sensitivity to the change in the system’s param-
eters. A small change in a parameter can lead to radical
changes in the dynamics of the system. This feature
is frequently used to control the dynamical systems.
Globally, the behavior of the system can be shown on
the so-called Lyapunov map in a parametric space. We
used here the well-known procedure[13] for numerical
calculation of Lyapunov exponents (Lyapunov spec-
trum λi, i = 1,2). In Fig. 3, we show the map of max-
imal Lyapunov exponent λ1 for the parameters of the
system ω = 1, ε = 0.01, and for the pump field am-
plitude F = 5. The map is presented in the parameters
space (Ωp , γ ). The highest values of λ1 correspond-
ing to chaotic oscillations are marked by red and blue
colors. The chaotic motion exists only for weak damp-
ing. For higher damping constants, we find only single
islands of chaotic motion in the pump field parametric
space (Ωp , F ) (see Fig. 4).

To control our system of Kerr oscillators, we first
change the value of one of the parameters (γ , F, or
Ωp) of the system (4) at time t1. In such a way, the
phase point being in one of the two orbits (attractors)
shown in Fig. 2 escapes from the attractor to the tran-
sient state and sometimes to the new periodic state.
Then after returning at time t2 > t1 to the initial values
of this parameter, the additional periodic state disap-
pears and the phase point trajectory tends to one of
the two attractors of the system, depending on which

Fig. 3 Lyapunov map—the values of the maximal Lyapunov
exponent λ1 for the parameters of the system (11): ω = 1,
ε = 0.01 and for the pump field amplitude F = 5. The ini-
tial condition is: Rea = 10, Ima = 0. In the parameter space
(Ωp,γ ), the colors correspond to appropriate values of λ1

basin of attraction was the phase point at time t2. So,
through the appropriate choices of times t1 end t2 as
well as the values of the parameters of the system, we
can control its evolution. In particular, we can switch
the system between two stable periodic states. Such
situations are illustrated in Fig. 5(a)–(c). In Fig. 5(a),
the phase point starting from the orbit of the radius
r = 10 (marked in red) after detuning the value of the
damping constant γ in time t1 = 20 from γ = 0.5 to
γ = 0.02 escapes through a transient state to the new
periodic state r = 11.91. After coming back with γ to
the initial value γ = 0.5, it goes into the initial orbit
(of the radius r = 10). In Fig. 5(b), the phase point
starts also from the point lying on the orbit of the ra-
dius r = 10 and after detuning the parameter Ωp from
Ωp = 2 to Ωp = 4 at time t1 = 20 it escapes through
a transient state to the new periodic state r = 1.84.
Then after coming back with the parameter Ωp at time
t2 = 40 to the initial value Ωp = 2 it goes into the or-
bit of the radius r ′ = √

50—the case of switching be-
tween the periodic orbits. Moreover, Fig. 5(c) shows
the phase point starting from the site lying on the or-
bit of the radius r = 10 after detuning the value of the
parameter F from F = 5 to F = 2 at time t1 = 20 also
moves to another periodic orbit r = 1.84, and then af-
ter returning at time t2 = 40 to the initial value of pa-
rameter F (F = 5) it goes into the orbit of the radius
r ′ = √

50. Generally, it is very interesting that if we
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Fig. 4 Lyapunov maps—the values of the maximal Lyapunov
exponent λ1 for the parameters of the system (11): ω = 1,
ε = 0.01, and for the initial condition: Rea = 10, Ima = 0. The
parameter spaces (Ωp , F ) are presented for (a) γ = 0.1 and
(b) γ = 0.5. For higher values of γ , only the periodic behavior
of the system is observed

change the parameters of the system, some extra peri-
odic orbits appear.

2.5 Generation of chaotic beats

Since the publication of [14], the new type of sig-
nals called “chaotic beats” has been investigated [15]
and experimentally generated [16–19]. There are two
basic kinds of chaotic beats: (1) the signals with
chaotic envelopes and a stable fundamental frequency,
and (2) the signals with almost regular collapses and
revivals with small chaotic perturbations. Generally,
when the system is subjected to an external field, we
can generate the chaotic beats in two ways by mod-

Fig. 5 The phase trajectories of the system (5) for the initial
conditions: Rea = 10, Ima = 0 and for the following values of
the system’s parameters: (a) ω = 1, ε = 0.01, F = 5, Ωp = 2,
and γ = 0.5 for 0 < t < 20, γ = 0.02 for 20 < t < 40 and
γ = 0.5 for 40 < t < 60; (b) ω = 1, γ = 0.5, ε = 0.01, F = 5,
and Ωp = 2 for 0 < t < 20, Ωp = 4 for 20 < t < 40 and Ωp = 2
for 40 < t < 100; (c) ω = 1, γ = 0.5, ε = 0.01, Ωp = 2, and
F = 5 for 0 < t < 20, F = 2 for 20 < t < 40 and F = 5 for
40 < t < 250

ulation of the amplitude or frequency of the external
field.

The more effective method of generation of chaotic
beats in system (4) seems to be the frequency modula-
tion, according to the formula:

Ωp → Ωp(1 + �Ωp sin(μt)),

where μ is the frequency of modulation parameter, and
�Ωp is the amplitude of this modulation. Then the
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Fig. 6 The values of maximal Lyapunov exponent λ1 for the
system (11) as a function of the damping parameter γ and the
frequency modulation μ, for ε = 0.01, F = 5, Ωp = 2, and with
the initial condition: Rea = 10, Ima = 0

equation of motion for variable a takes the form:

da

dt
= −iωa − iεa∗a2 − γ a +Fe−iΩp(1+�Ωp sin(μt))t .

(11)

In numerical calculations, we put �Ωp = 0.1.
The global dynamics of system (11) is presented in

Fig. 6 as a Lyapunov map in the parametric space of
(γ,μ), where the values of the first Lyapunov expo-
nent λ1 are marked by appropriate colors. The highest
values of λ1 corresponding to chaotic oscillations are
marked by red and blue colors. As we can see, they
are concentrated in the lower part of the map which
corresponds to the low values of the damping param-
eter γ (mainly for γ < 0.05). For higher γ , the map
is dominated by the black and grey colors correspond-
ing to the periodic states. An example of chaotic beats
generated in the system (11) through frequency mod-
ulation (with γ = 0.02 and μ = 0.15) is presented
in Fig. 7. The spectrum of the Lyapunov exponents
{0.0519,−0.0813} of that system with the positive
value of λ1 indicates chaotic behavior.

Similar results were obtained for the resonance case
(Ωp = ω). The values of maximal Lyapunov exponent
λ1 for system (11) as a function of the damping pa-
rameter γ (0 < γ < 0.5) and the frequency modula-
tion μ (0 < μ < 1) and for Ωp = ω = 1 are presented
in Fig. 8.

Analogically as for the nonresonance case, the
chaotic behavior is obtained only for the low values

Fig. 7 Time dependence of Rea of the system (11), for
γ = 0.02 and μ = 0.15. The other parameters are: ω = 1,
F = 5, ε = 0.01 and Ωp = 2. The system starts from the ini-
tial condition: Rea = 10, Ima = 0. Chaotic beats

Fig. 8 The values of the maximal Lyapunov exponent λ1 of
system (11) as a function of the damping parameter γ and
the frequency of modulation μ, for ε = 0.01, F = 5 and
Ωp = ω = 1 (the resonant case) and with the initial conditions:
Rea = 10, Ima = 0

of the damping parameter γ (mainly for γ < 0.05). In
Fig. 9, we can see the time dependence of Rea of the
system (11), for γ = 0.01, μ = 0.15, and Ωp = ω = 1.

The spectrum of Lyapunov exponents of the beats
shown in Fig. 9 is {0.1085,−0.1230} and contains
positive value of λ1 indicating chaotic behavior.

3 The two coupled Kerr oscillators

3.1 Equations of motion

It is interesting to know what happens to the dynamics
of the single Kerr oscillator after coupling it nonlin-
early to another analogous oscillator but of different
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Fig. 9 Time dependence of Rea of system (11), for γ = 0.01,
μ = 0.15, F = 5, ε = 0.01, and Ωp = ω = 1. The system starts
from the initial condition: Rea = 10, Ima = 0. Chaotic beats

frequency. Such a system of two nonlinearly coupled
Kerr oscillators (nonlinear couplers) is described by
the following Hamiltonian:

H = H0 + H1 + H2, (12)

where:

H0 =
2∑

j=1

ωja
∗
j aj + 1

2

2∑

j=1

εj a
∗2
j a2

j , (13)

H1 = ε12a
∗
1a∗

2a1a2, (14)

H2 = i

2∑

j=1

[
Fj

(
a∗
j e−iΩjpt − aj e

iΩjpt
)]

. (15)

The Hamiltonian H0 represents the two single Kerr
oscillators, H1 is the Hamiltonian of the interaction
between them and H2 describes the interaction of the
two oscillators with the external fields. The values a1

and a2 are complex dynamical variables, ωj denote
the frequencies of the free vibrations of the two single
oscillators; ε1 and ε2 are Kerr parameters describing
nonlinearity in these subsystems (oscillators) and ε12

is the parameter of nonlinear coupling between them.
The equations of motion for variables a1 and a2

have the form:

da1

dt
= −iω1a1 − iε1a

∗
1a2

1 − iε12a
∗
2a1a2

+ F1e
−iΩ1pt − γ1a1, (16)

da2

dt
= −iω2a2 − iε2a

∗
2a2

2 − iε12a
∗
1a1a2

+ F2e
−iΩ2pt − γ2a2, (17)

where the terms γ1a1 and γ2a2, describing the dissi-
pation of energy, with damping constants γ1 and γ2,

are added to the equations of motion on phenomeno-
logical grounds. In the autonomous and conservative
case, that is when γ1 = γ2 = F1 = F2 = 0 the solu-
tions of (16)–(17) have the form:

a1(t) = a10e
−i(ω1+ε1a

∗
10a10+ε12a

∗
20a20)t , (18)

a2(t) = a20e
−i(ω2+ε2a

∗
20a20+ε12a

∗
10a10)t , (19)

where a1(t) |t=0≡ a10 and a2(t) |t=0≡ a20 denote ini-
tial conditions.
In the nonautonomous case (16)–(17), we find peri-
odic solutions in the form of the following functions
(in analogy to the case of the single Kerr oscillator):

a1(t) = x1e
−i(ω1+ε1x

∗
1 x1+ε12x

∗
2 x2)t , (20)

a2(t) = x2e
−i(ω2+ε2x

∗
2 x2+ε12x

∗
1 x1)t , (21)

that is in the form of the solutions of the autonomous
one. Functions (20)–(21) satisfy the equations of mo-
tion (16)–(17) on condition that xj = Fj/γj , j = 1,2.
As a result, these solutions have the form:

a1(t) = F1

γ1
exp

[
−i

(
ω1 + ε1

F 2
1

γ 2
1

+ ε12
F 2

2

γ 2
2

)
t

]
, (22)

a2(t) = F2

γ2
exp

[
−i

(
ω2 + ε2

F 2
2

γ 2
2

+ ε12
F 2

1

γ 2
1

)
t

]
. (23)

Then Ω1p = ω1 + ε1F
2
1 /γ 2

1 + ε12F
2
2 /γ 2

2 and Ω2p =
ω2 + ε2F

2
2 /γ 2

2 + ε12F
2
1 /γ 2

1 .
In the phase plane (Rea1, Ima1, Rea2, Ima2), the

periodic solutions (22)–(23) satisfy the phase equa-
tions (limit cycles–circles):

(Reaj )
2 + (Imaj )

2 = F 2
j

γ 2
j

, where j = 1,2, (24)

for any values of frequencies ω1, ω2.

3.2 The dynamics of the system in the phase space

Coupling the single Kerr oscillator described by (4) to
the other analogous oscillator but with different own
frequency causes distinct changes in its dynamics, as
illustrated by the diagrams in the phase space.

Let us consider two nonlinearly coupled Kerr oscil-
lators (subsystems) described by (16)–(17) if ω1 = 1,
ω2 = 0.5, ε1 = ε2 = 0.01, F1 = F2 = 5, γ1 = γ2 =
0.5, Ω1p = 3.0, Ω2p = 2.5, and ε12 = 0.01. Then, in
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compliance with (22)–(23), the periodic solutions of
(16)–(17) have the form:

a1(t) = 10e−3.0it , (25)

a2(t) = 10e−2.5it , (26)

and in the phase space they satisfy the following equa-
tions:

(Rea1)
2 + (Ima1)

2 = 100, (27)

(Rea2)
2 + (Ima2)

2 = 100. (28)

As a result, for the initial conditions a10 = 10 and
a20 = 10, the phase points of both subsystems draw
the same circle of the radius r = 10 described by
(27)–(28), with frequencies Ω1p = 3.0 and Ω2p = 2.5,
respectively. But if the phase point representing the
first subsystem (at frequency ω1 = 1) starts from an-
other initial condition instead of a10 = 10, and a20

is fixed (a20 = 10), the following behavior is ob-
served: the phase point representing the first sub-
system after some time tends to one of the two or-
bits being attractors of subsystem (16): (Rea1)

2 +
(Ima1)

2 = 100 or (Rea1)
2 + (Ima1)

2 = 6.6987.
The second orbit belongs to the periodic solution:
a1(t) = (10/(1 − i(2 − √

3)) exp(−3.0it) and a2(t) =
(10/(1 − i(2 − √

3)) exp(−2.5it). This situation is il-
lustrated in Fig. 10. In Fig. 10(a), the phase point rep-
resenting the first subsystem starts from the initial con-
dition Rea10 = 0, Ima10 = 15 (the initial condition
for the second subsystem (17) is fixed: Rea20 = 10,
Ima20 = 0) and after the time t = 50 it goes into the
attractor of the radius r = 10, described by (27). How-
ever, Fig. 10(b) shows the phase point starting from
the initial condition Rea10 = 0, Ima10 = 7 and going
into the orbit of the radius r ′ = √

6.6987.
The third solution of (16) and (17) is completely

unstable and has the form: a1(t) = (10/(1 −
i(2 + √

3)) exp(−3.0it) and a2(t) = (10/(1 − i(2 +√
3)) exp(−2.5it).

3.3 Basins of attraction

Figure 11 shows two attractors and their basins of at-
traction of subsystem (16) marked by appropriate col-
ors; the initial condition of subsystem (17) is fixed
(a20 = 10). The yellow area marks the basin of at-
traction of the attractor of the radius r = 10, whereas
the blue one corresponds to the basin of attraction of

Fig. 10 The phase trajectories of subsystem (16) if ω1 = 1,
ω2 = 0.5, ε1 = ε2 = 0.01, F1 = F2 = 5, γ1 = γ2 = 0.5,
Ω1p = 3.0, Ω2p = 2.5, ε12 = 0.01, and for the initial condi-
tions: (a) Rea10 = 0, Ima10 = 15, Rea20 = 10, Ima20 = 0;
(b) Rea10 = 0, Ima10 = 7, Rea20 = 10, Ima20 = 0

Fig. 11 Basins of attraction of two coupled Kerr oscilla-
tors. The parameters of the systems are: ω1 = 1, ω2 = 0.5,
ε1 = ε2 = 0.01, F1 = F2 = 5, γ1 = γ2 = 0.5, Ω1p = 3.0,
Ω2p = 2.5, ε12 = 0.01, and the initial conditions are:
Rea10 = 0, Ima10 = 15, Rea20 = 10, Ima20 = 0. Stable
(r ′ = √

6.6987) and semistable (r = 10) attractors

the attractor of the radius r ′ = √
6.6987. The basin

marked in yellow has a special geometry: it consists
of two separate areas, one of which has a spiral-like
form. Both, the slip of the spiral and its width decrease
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Fig. 12 Basins of attraction of two coupled Kerr oscillators.
The parameters are the same as in Fig. 11, but Rea20 = 0,
Ima20 = 0. Stable (r ′ = √

6.6987) and unstable (r = 10) attrac-
tors

toward moving away from the center, similarly, as for
the single Kerr oscillator. Contrary to the case of the
single Kerr oscillator there is an island in the central
part of the basin. The remaining area (blue color) is
the basin of attraction of the other attractor (the circle
of the radius r ′ = √

6.6987).
The attractor of the radius r ′ = √

6.6987 is stable
(it is fully in its own basin of attraction), however,
the attractor of the radius r = 10 is semistable (it is
partly in its own basin of attraction and partly in the
basin of attraction of the other attractor). As a result,
the transition from the attractor of the radius r = 10
to the attractor of the radius r ′ = √

6.6987 is possible,
but that in opposite direction is impossible, because
the phase point starting from any position on the circle
(Rea)2 + (Ima)2 = 6.6987 always returns to it.

The types of attractors change after changing the
initial condition of the subsystem (17). For example,
Fig. 12 shows the attractors and their basins of at-
tractions of subsystem (16) for a20 = 0. The basin
of attraction corresponding to the circle of the radius
r = 10 is marked by yellow; the remaining area (blue
color) refers to the basin of attraction of the circle of
r ′ = √

6.6987. As we can see, in this case the attractor
with radii (r ′ = √

6.6987) is stable, and the other one
is completely unstable.

3.4 Generation of chaotic beats

Globally, the behavior of system (16)–(17) is pre-
sented in Fig. 13(a) showing the Lyapunov map in the

parameters space (ε12, γ ). We find that strong chaotic
behavior of the system is much common that for the
single Kerr system. We also notice that if we increase
the dumping in the system we must increase the cou-
pling between subsystems to achieve the chaotic be-
havior. The full spectrum of the Lyapunov exponents
{λ1, λ2, λ3, λ4} versus ε12 shows the regions of or-
der or chaos in the cross section of the map for the
damping parameter γ = γ1 = γ2 = 0.5 (Fig. 13(b)). If
λ1 > 0, then the system is chaotic, and if λ1 ≤ 0, it be-
haves periodically. The system with the parameters of
Fig. 13 and for the coupling constant ε12 > 1.6 mani-
fests extremely unstable behavior and its solutions are
divergent to infinity. There is also a region of hyper-
chaotic behavior of the system in which two highest
Lyapunov exponents are positive (for ε12 > 0.44).

Taking from Fig. 13(a)–(b), the appropriate values
of the damping constant γ1 = γ2 = 0.5 and the nonlin-
ear coupling between the Kerr oscillators ε12 = 0.45
we can generate chaotic beats in the system of two
nonlinearly coupled Kerr oscillators (16)–(17), both
being initially in the periodic state. Such chaotic beats
are shown in Fig. 14 illustrating the time dependence
of Rea1 and Rea2. Because the spectrum of Lyapunov
exponents of the beats shown in Fig. 14 is

{0.0708,0.0205,−1.4552,−1.5215}
and contains two positive values we can even call it
hyperchaotic beats [20].

4 Conclusion

The Kerr effect and the Kerr couplers considered in
this paper have great potential in studies and applica-
tions of optical devices like optical fibers or couplers.
From this point of view, the main results of this pa-
per are: (1) Tunneling properties of periodic attractors
(mutual interpenetration of attractors and basins of at-
traction) lead to the possibility of switching of Kerr
oscillator system between different semistable attrac-
tors by changing initial condition (Sect. 2.3). (2) As
shown in Sect. 2.4, the dynamics of the Kerr sys-
tem can be controlled by appropriate switching of the
parameters of the system or the external field. Tem-
porary changes in parameters also switch the sys-
tem between different periodic states. (3) The sys-
tem with Kerr nonlinearity is able to generate chaotic
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Fig. 13 (a) The Lyapunov
map of the system
(16)–(17) in the parametric
space (ε12, γ ) where
γ = γ1 = γ2. (b) The full
spectrum of Lyapunov
exponents {λ1, λ2, λ3, λ4}
of the system (16)–(17) as a
function of the nonlinear
coupling parameter ε12 and
for γ = γ1 = γ2 = 0.5. The
rest of parameters for both
figures are: ω1 = 1,
ω2 = 0.5, ε1 = ε2 = 0.01,
F1 = F2 = 5, Ω1p = 3 and
Ω2p = 2.5. The system
starts from the initial
conditions: Rea1 = 10,
Ima1 = 0, Rea2 = 10,
Ima2 = 0

Fig. 14 Time dependence of Rea1 (a) and Rea2 (b) of the sys-
tem (16)–(17). Parameters are the same as in Fig. 13(b), and
ε12 = 0.45. Chaotic beats

beats (Sect. 2.5). The properties of these beats de-
pend on specific choices of parameters of the system
and the external field. (4) For two coupled Kerr os-
cillators, it is possible to change the stability of at-
tractors of a given subsystem by changing the ini-
tial conditions of the other subsystem and the dy-
namics of one subsystem can be controlled by chang-
ing the initial conditions of the other one (Sect. 3.3).
(5) Moreover, chaotic (or hyperchaotic) beats in the
system of two coupled Kerr oscillators can be gener-
ated (Sect. 3.4).

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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