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Abstract In this paper, one-dimensional self-align-
ment of a rigid object via stick-slip vibrations is stud-
ied. The object is situated on a table, which has a pre-
scribed periodic motion. Friction is exploited as the
mechanism to move the object in a desired direction
and to stop and self-align the mass at a desired end
position with the smallest possible positioning error.
In the modeling and analysis of the system, theory of
discontinuous dynamical systems is used. Analytic so-
lutions can be derived for a model based on Coulomb
friction and an intuitively chosen table acceleration
profile, which allows for a classification of different
possible types of motion. Local stability and conver-
gence is proven for the solutions of the system, if a
constant Coulomb friction coefficient is used. Next,
near the desired end position, the Coulomb friction
coefficient is increased (e.g. by changing the rough-
ness of the table surface) in order to stop the object. In
the transition region from low friction to high friction
coefficient, it is shown that, under certain conditions,
accumulation of the object to a unique end position
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occurs. This behavior can be studied analytically and
a mapping is given for subsequent stick positions.
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1 Introduction

Accurate positioning of objects is very important in in-
dustrial applications, e.g. in printer heads, CD-players,
pick-and-place machines, welding robots, etc. Usu-
ally, the positioning and tracking problem is tackled
using closed-loop control using feedback to asymptot-
ically stabilize the error dynamics. In this paper, the
self-aligning positioning problem will be addressed.
A rigid object is placed on a table which will be
submitted to a periodic motion profile. Friction-based
stick-slip vibrations will be used as a mechanism by
which the rigid object (in this paper also referred to
as: the mass) will move in a desired direction. By lo-
cally increasing the friction the mass will self-align at
a desired end position.

Some (simplified) friction models for dynamics and
control applications have been studied e.g. in [1]. An
extensive treatment of friction modeling can be found
in [2]. In literature, the dry-friction oscillator with
Coulomb friction has received much attention. In this
system, a mass experiencing Coulomb friction is con-
nected to the world by a spring and a viscous damper,
while an external periodic force acts on the mass, see

mailto:R.H.B.Fey@tue.nl


110 B.G.B. Hunnekens et al.

[6, 13], and [21]. As early as 1930, Den Hartog gave
the exact solution of a single degree of freedom har-
monic oscillator with dry friction [6]. Cases where the
static and dynamical friction coefficients are not equal
to each other have been studied in [20]. Also, describ-
ing function approaches have been used to analyze the
behavior of this type of system, see e.g. [7]. In [8], the
method of averaging is used to analyze high-frequency
vibration-induced movements of a mass between two
layers of different friction, while in [23] the method
of direct separation of motion (see [3]) is used to cal-
culate equilibrium speeds (including zero speed) of a
mass on a table vibrating at high frequency. In [24],
analytical approximations for stick-slip vibration am-
plitudes are derived for the classical mass-on-moving-
belt system. For the same system, in [10], bifurcations
are studied, which are non-standard due to the discon-
tinuous behavior of the dry friction force. In [5], the
bifurcations associated with the appearance of stick-
slip vibrations are studied using a state variable fric-
tion law for a mass on a fixed horizontal surface, mov-
ing under the influence of a horizontal force trans-
mitted by a linear spring whose other end is moving
with constant velocity. A method of calculating ex-
act analytic solutions for parts of the oscillation cy-
cles, which are ‘stitched’ together, has been used in
[4]; vibration-induced motions of a mass on a friction
plane are studied, and optimal parameter values, for
which maximum mean velocity is reached, have been
determined.

Self-alignment of microparts is studied in [19],
where the self-alignment is achieved using liquid
surface tension. In [9], resonant magnetic micro-
agents are used to move micro-robots using mag-
netic fields and vision-feedback for positioning ap-
plications. Modeling and closed-loop control of a
2-DOF micro-positioning device, using stick-slip mo-
tion based on piezoelectric materials, is treated in [17].
The work in [18] studies the use of a planar manipula-
tor to position multiple objects on a vibrating surface
using the frictional forces along with feedback control.

An important motivation for using self-alignment
compared to conventional closed-loop control is to re-
duce cost by eliminating the need for feedback con-
trol equipment. Possible practical applications could
include parts feeding, automated assembly, or inspec-
tion of parts. To the best knowledge of the authors,
there is no literature available in which friction is ex-
ploited to move a mass in a desired direction and in

which a mass self-aligns using friction, which moti-
vates this study.

The paper is structured as follows. In Sect. 2, the
two major objectives of this paper will be discussed.
The focus in Sect. 3 will be on the dynamical model.
The stopping regime will be discussed in detail. The
table trajectory design will be studied in Sect. 4. In
Sect. 5, the classification of different types of motion
will be introduced. Local stability and convergence of
solutions will be proven in Sect. 6. The positioning
accuracy obtained, when the mass stops, will be inves-
tigated in Sect. 7. Finally, in Sect. 8, conclusions and
some recommendations for future work will be given.

2 Problem formulation

The basic objective of this paper is to design a self-
positioning method, in which friction is used to move
a mass on a table in a desired direction, using dry fric-
tion and periodic motion of the table. For the table,
a suitable periodic motion profile must be designed
that achieves this as fast as possible, given some actua-
tor constraints. Furthermore, the mass needs to be po-
sitioned/stopped at a desired end position accurately.
Summarizing, the two main objectives of this research
are:

– Design a periodic table displacement signal ỹ(t̃ )

such that the mass travels to a desired end location
x̃d in the smallest possible process time T̃p , where
T̃p = min(W̃ ) and W̃ ∈ {t̃ ≥ 0|x̃(t̃ ) = x̃d}.

– Minimize the positioning error |�x̃d | of the end po-
sition of the mass; in other words, minimize the
interval [x̃d − �x̃d, x̃d + �x̃d ], in which the mass
stops.

In this paper, the ∼ above a quantity means that
the quantity is in SI units, whereas for dimensionless
quantities the ∼ will be omitted.

3 Modeling the system dynamics

3.1 Dynamical model

Consider the system depicted in Fig. 1. For a practi-
cal application, the table displacement signal ỹ(t̃ ) will
have a zero average displacement. Therefore, it is as-
sumed that ỹ(t̃ ) will be periodic. The position of the
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Fig. 1 Schematic of the
system

mass relative to the table is denoted by x̃(t̃ ). Note that
an arbitrary position on the table can be chosen as the
origin of x̃(t̃ ). Between the table and the mass m̃, a
Coulomb friction force F̃f with friction coefficient μ

exists, which mathematically can be described as fol-
lows (see e.g. [11]):

F̃f ∈ μm̃g̃ Sign( ˙̃x) (1)

where g̃ is the acceleration due to gravity, and Sign( ˙̃x)

is the set-valued sign function, defined by:

Sign( ˙̃x) =

⎧
⎪⎨

⎪⎩

{1} if ˙̃x > 0

[−1,1] if ˙̃x = 0

{−1} if ˙̃x < 0

(2)

Note that in case the mass sticks to the table (so
˙̃x = 0), the friction force can take values in the range
[−μm̃g̃,μm̃g̃]. This allows the mass to stick to the ta-
ble as long as the external force acting on the mass
is small enough. Using Newton’s second law it is
straightforward to derive the equation of motion for
the mass:

−F̃f = m̃
( ¨̃x + ¨̃y)

(3)

If the relative velocity of the mass is zero ( ˙̃x = 0)
and the external force acting on the mass is small
enough (i.e. |m̃ ¨̃y| < μm̃g̃), the friction force will bal-
ance this external force (−F̃f = m̃ ¨̃y) resulting in
¨̃x = 0, i.e. in sticking of the mass. If the external
force is larger than the maximum friction force (i.e.
|m̃ ¨̃y| > μm̃g̃), the mass will start to slip, resulting in
˙̃x �= 0 and F̃f = μm̃g̃ Sign( ˙̃x).

3.2 Dimensionless dynamical model

The equation of motion derived in the previous sec-
tion will be made dimensionless to obtain a model
which incorporates a minimum number of parameters.

A characteristic length scale L̃ and a characteristic
time scale T̃ need to be introduced. The dimensionless
length scales x and y and dimensionless time scale t

are defined in the following way:

x = x̃/L̃, y = ỹ/L̃, t = t̃/T̃ (4)

Also, a dimensionless differential operator is de-

fined as ′ = d/dt . If we choose T̃ =
√

L̃/μg̃, the
equation of motion (3) can be written in dimension-
less form as:

−Ff = x′′ + y′′ (5)

where Ff = F̃f /μm̃g̃ ∈ Sign(x′), using (1). Note that
(5) can now be written as:

−Sign(x′) � x′′ + y′′ (6)

The dimensionless condition for sticking of the
mass (x′ = 0) now reduces to |y′′| < 1.

3.3 Stopping region

One of the objectives is to accurately stop the mass
at a desired end location. To achieve this, an increase
in friction coefficient is used near the desired end lo-
cation x = xd of the mass. In essence, the table will
consist of two regions, a low friction region and a high
friction region. The high friction region will start at po-
sition x = xμ, see Fig. 2. The low friction region has a
friction coefficient μ1 = μ and the high friction region
has a friction coefficient μ2 = cμμ, with cμ > 1.

Because the mass has a finite dimensionless width
w = w̃/L̃ (w̃ is the width in SI units), it will not expe-
rience a discontinuous step in the friction coefficient,
when it enters the high friction region. More realis-
tically, in the transition region, the mass will experi-
ence an effective friction coefficient μ̄, depending on
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Fig. 2 Schematic of the
table with two regions, one
region with low friction
coefficient μ1 and another
region with high friction
coefficient μ2

the distribution of the weight of the mass over the low
friction region and the high friction region:

μ̄(z) = w − z

w
μ1 + z

w
μ2 = w + (cμ − 1)z

w
μ (7)

where z is the portion of the mass on the high fric-
tion region, see Fig. 2. Note that z is bounded by
0 ≤ z ≤ w. This constraint can conveniently be for-
mulated using a min-max formulation:

z = min(max(x − xμ,0),w) (8)

The friction coefficient μ̄ that the mass experi-
ences, thus depends on the position x of the mass. Note
that in the transition region, using (7) and (8), the fric-
tion coefficient can be written as follows:

μ̄(x) = μ

(

1 + cμ − 1

w
(x − xμ)

)

if xμ ≤ x ≤ xμ + w (9)

In all simulation results presented throughout this
paper, it is assumed that the mass does not tip over, i.e.
it is assumed that the mass will remain in full contact
with the table, so that the equation of motion (6) re-
mains valid. In general, this will be valid for an object
the height of which is relatively small with respect to
its width w.

4 Table trajectory design

The design of the table motion profile will be dis-
cussed in this section. First, in Sect. 4.1, a simulation
method called the time-stepping method will be dis-
cussed. In Sect. 4.2, an example of a stick-slip mo-
tion of the mass, calculated using the time-stepping

method, will be shown. An objective function will be
introduced in Sect. 4.3, which is used in Sect. 4.4 to
design a suitable table excitation signal.

4.1 Simulation method

The system under study exhibits dry friction, which
makes it a nonlinear system with unilateral con-
straints [12]. There are different methods that can be
used to simulate these kind of systems. Time-stepping
is an efficient method for numerically solving the
equations describing the dynamics of systems with
unilateral constraints. A thorough mathematical de-
scription of time-stepping method can be found in
[11] and [22]. In contrast to, for example, event-driven
techniques, in time-stepping it is not necessary to de-
tect every event (e.g. a stick-slip transition). The so-
lution is computed using fixed time-steps forward in
time. The time-stepping method of Moreau [14] is
used as the integration routine in this paper. A fixed-
point iteration is carried out to solve for the unknown
velocity in the system at every time-step. This veloc-
ity is used to estimate the position at the end of the
time-step.

4.2 Example of stick-slip motion

An example of a simulated response using time-
stepping is shown in Fig. 3. Note that the time-
stepping routine does not explicitly solve for the ac-
celeration x′′(t) of the mass. A periodic excitation
signal consisting of a sequence of second order poly-
nomials was initially used for the table displacement
signal y(t). Intuitively, the table should move slowly
in the desired direction dragging the mass along, and
fast in the opposite direction, resulting in slipping of
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Fig. 3 Simulation of the
system using the
time-stepping approach
(x: object, y: table)

the mass. Figure 3 shows that the principle of moving
a mass in a desired direction using stick-slip vibrations
works. However, the shape of the prescribed table dis-
placement signal y(t) may be far from optimal. There-
fore, the focus will be on the design and optimization
of the actuation signal based on an objective function,
which will be defined in Sect. 4.3.

4.3 Objective function

In order to study the effectiveness of a certain pre-
scribed periodic table trajectory, a sensible choice has
to be made for an objective function. In conformity
with the first objective from Sect. 2, the mass should
move in one direction as fast as possible, meeting cer-
tain actuator constraints related to stroke and excita-
tion frequency. An appropriate quantity to use in an
objective function will therefore be the average ve-
locity v̄ of the mass in steady state (in the μ1 re-
gion). Consequently, transient behavior is not consid-
ered. This average velocity v̄ can be written as:

v̄ = lim
t→∞

x(t + �t) − x(t)

�t
(10)

where �t is the period time of the periodic relative
velocity signal of the mass. Obviously, in the case of
pure stick, which is undesirable in the motion phase,

v̄ will be zero. The following objective function f is
introduced:

f = 1

cv̄2
(11)

where the positive constant c = 10,000 is used for nor-
malizing the objective function values throughout this
paper. Obviously, this constant in principle has no in-
fluence on the optimization process itself. Minimiz-
ing f is equivalent to maximizing the average steady-
state velocity v̄ and to minimizing the process time
Tp = T̃p/T̃ (neglecting transients effects).

4.4 Design of the table motion profile

From (6) it is clear that the trajectory of the table di-
rectly influences the dynamics of the mass through
y′′(t). Because the excitation of the table will be pe-
riodic, the stroke of the table �y = max(y) − min(y)

and the excitation frequency 1/�t will be two impor-
tant parameters that influence the dynamics. In the fol-
lowing, the influence of these two parameters, �y and
�t , is studied and the design of the shape of the tra-
jectory profile of the table (which completely specifies
y′′(t)) is examined.
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Fig. 4 Influence of
excitation frequency,
objective function value f

vs. �t

Fig. 5 Influence of stroke,
objective function value f

vs. �y

4.4.1 Preliminary study of influence of excitation
frequency and stroke

The excitation frequency 1/�t and stroke �y both
have a strong influence on the average steady-state ve-
locity of the mass. Here, again, a sequence of second
order polynomials similar to y(t) in Fig. 3 is used for
the table motion profile along with the time-stepping
simulation routine. In Figs. 4 and 5 the objective func-
tion value f defined by (11) is plotted as a function
of �t (for �y = 0.02) and �y (for �t = 0.05), re-
spectively. It is clear that for this type of table trajecto-
ries and the values given above, a large excitation fre-
quency and a large stroke are both beneficial in obtain-
ing a large average steady-state velocity v̄ of the mass.
Of course, suitable values for �t and �y will depend
on the application in mind and on actuator constraints.

4.4.2 Preliminary analysis of a Fourier-based motion
profile

Once the values of excitation frequency and stroke
are fixed, there is still freedom in designing the pre-
cise shape of the table trajectory. The shape of a table

motion profile parameterized using a Fourier series of
twelfth order has been optimized by minimizing the
objective function value f , see (11), using constrained
gradient based optimization of the Fourier coefficients.
The converged result is shown in Fig. 6. The following
settings have been applied: �t = 0.072, �y = 0.021,
y′

max = 3.2, and y′′
max = 1275.

From Fig. 6 it is clear that the optimization pro-
cedure converged to a table motion profile, which in
approximation has the following nature:

– a time interval with zero acceleration and constant
nonzero velocity;

– a time interval with constant negative acceleration
values;

– a time interval with constant positive acceleration
values.

It seems that the largest part of the time interval
with approximately zero-acceleration in approxima-
tion results in sticking of the mass to the table. This
effect is clearly visible in Fig. 6: in steady state, the
mass (almost) does not slide back, i.e. it does not move
in the undesired direction. These observations are the
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Fig. 6 Converged
optimization of the Fourier
signal using constrained
gradient based
optimization, f = 56

motivation for the design of a table trajectory gener-
ator incorporating these three distinct time intervals
with constant acceleration values. This will be dis-
cussed in detail in the next subsection.

4.4.3 Prescribed table motion with three constant
acceleration time intervals

The prescribed table motion with three constant ac-
celeration time intervals will consist of: a time inter-
val with zero acceleration, a time interval with con-
stant negative acceleration and a time interval with
constant positive acceleration. This is, in approxima-
tion, the signal which was obtained after optimization
in the previous subsection. As stated before, for prac-
tical reasons, the table should return to the same posi-
tion after each excitation period. As indicated in Fig. 7,
the following 9 parameters determine the shape of the
table trajectory: y′′

1 , y′′
2 , y′′

3 , t0, t1, t2, t3, yini, and y′
ini.

There are some constraints to the table motion profile
that need to be satisfied:

1. Minimal table displacement should be 0 (this is a
choice rather than a constraint);

2. t0 = 0 (this is also a choice rather than a constraint);
3. Fix the period time �t ;
4. Fix the stroke �y;

5. The start position should be equal to the end posi-
tion (periodicity requirement, in the second subplot
of Fig. 7 the shaded area below the zero axis should
be equal to the shaded area above the zero axis);

6. The start velocity should be equal to the end veloc-
ity (periodicity requirement, in the third subplot of
Fig. 7 the shaded area below the zero axis should
be equal to the shaded area above the zero axis);

7. y′′
1 = 0.

Thus, two parameters can be chosen freely, for ex-
ample y′′

2 and y′′
3 . Subsequently, the trajectory genera-

tor needs to determine five unknowns: the times t1, t2,
t3, the initial position yini, and the initial velocity y′

ini.
The mathematical description of the constraints and
the trajectory generator algorithm can be found in
Appendix. In general, parameter values will be chosen
such that certain phenomena can be clearly observed
and explained.

5 Analysis of steady-state response

The analytic steady-state solutions of the mass and the
classification of these solutions, using the prescribed
table motion with three acceleration parts, will be ad-
dressed in Sect. 5.1. The results of some parameter
studies will be discussed in Sect. 5.2.
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Fig. 7 Sketch of the table motion profile, which consists of
three time intervals with constant acceleration

5.1 Analytic solutions and classification

Given a prescribed motion profile of the table obtained
in Sect. 4.4.3, the equation of motion (6) can be solved
analytically by splitting the solution into different time
intervals and combining them in one general solution
by requiring continuity of x(t). This allows for a clas-
sification of different types of mass motions. The an-
alytic solution will be discussed in detail here for one
type of motion only.

For the case considered here, y′′
2 > 1 and y′′

3 < 1,
which means that the mass cannot stick in [t1, t2] but
can stick in [t2, t3]. Note that the accelerations are de-
fined in such a way that y′′

2 > 0 and y′′
3 > 0, see Fig. 7.

Every time the table acceleration values change (at
times t1, t2, t3) and when the relative velocity x′ be-
comes zero, a discontinuity occurs in the mass accel-
eration x′′, such that the solution needs to be deter-
mined for all these time spans separately. Starting with
x′

0 = x′
0s = 0 will yield a steady-state trajectory imme-

diately, as will be shown. In the remainder of this pa-
per, if the initial conditions are chosen such that these
yield a steady-state trajectory from the start (corre-
sponding to the correct phase of the table motion), this
will be denoted by the subscript ‘s.’ First, consider the
time span [t0, t1]. The table acceleration is zero in this
time span, so the mass will stick to the table. The rela-
tive velocity and acceleration of the mass will thus be
zero. Assuming that the initial position of the mass is
also zero, gives for t0 ≤ t ≤ t1:

x′′(t) = 0, (12)

x′(t) = 0, (13)

x(t) = 0 (14)

In the second time interval [t1, t2], the mass will
start to slip because y′′

2 > 1. Note that from (6) it fol-
lows that the acceleration of the mass becomes x′′ =
−1 + y′′

2 , so for t1 ≤ t ≤ t2:

x′′(t) = −1 + y′′
2 , (15)

x′(t) = (−1 + y′′
2

)
(t − t1), (16)

x(t) = (−1 + y′′
2

)
(t − t1)

2/2 (17)

At time instance t2, the acceleration changes from
−y′′

2 to y′′
3 . Therefore, the acceleration of the mass

changes to x′′ = −1 − y′′
3 . For t2 ≤ t ≤ tx′=0:

x′′(t) = −1 − y′′
3 , (18)

x′(t) = x′(t2) + (−1 − y′′
3

)
(t − t2), (19)

x(t) = x(t2) + x′(t2)(t − t2)

+ (−1 − y′′
3

)
(t − t2)

2/2 (20)

where tx′=0 is the time at which the relative velocity of
the mass x′ becomes zero because y′′

3 < 1. This time
can be calculated analytically:

tx′=0 = t2 + −x′(t2)
−1 − y′′

3
(21)

The mass will stick until t = t3. Indeed, the ini-
tial condition x′

0s = 0 leads to a steady-state trajec-
tory. Note that in principle only the velocity and ac-
celeration of the mass are in steady state, in con-
trast to the position, because the mass has a net
nonzero displacement every period time �t = t3 − t0.
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For tx′=0 ≤ t ≤ t3:

x′′(t) = 0, (22)

x′(t) = 0, (23)

x(t) = x(tx′=0) (24)

Simulations and solving different cases analytically
point out that in the μ1 region 5 different types of
steady-state responses can occur, depending on the
magnitudes of y′′

2 and y′′
3 , see Table 1.

Note that the analytic solution for case 1 has been
derived above. For cases 1–4, the period of the relative
velocity response is equal to the excitation period �t .

The analytic solutions of cases 2–5 can be derived
in an equivalent manner as was done above for the
case 1 type of motion. Determination of the result-
ing case can be done a priori by following the flow

Table 1 Table showing possible types of steady-state responses

Case Description (Un)desirable?

1 Stick-slip with Desirable

x′(t) ≥ 0,∀t

2 Stick-slip with Undesirable

x′(t) ≤ 0,∀t

3 General stick-slip Acceptable if v̄ > 0

4 Slip-slip Acceptable if v̄ > 0

5 Pure stick Only desirable

(no relative motion) in stopping region

chart displayed in Fig. 8. Figure 9 gives an illustrative
graphical overview of the 5 cases that can occur when
the table motion with three constant acceleration time
intervals is used. In addition, a non-physical, complex
table trajectory may be obtained if, for example, a very
large stroke �y is requested in a very short time span
�t using very small acceleration values y′′

2 and y′′
3 .

This non-physical table trajectory will be denoted by
case 0.

5.2 Parameter studies and objective function
evaluation

The analytic solutions of the mass motion resulting
from the prescribed periodic table motion, can be used
for very fast and exact parameter studies. In this way, it
is possible to make surface plots of the objective func-
tion value f , see (11), as a function of y′′

2 and y′′
3 .

There is a strong analogy between the case of mo-
tion that is occurring and the objective function value.
In Fig. 10, the average steady-state velocity v̄ of the
mass drops dramatically (f dramatically increases),
if the type of motion changes from a general stick-
slip motion to a slip-slip type of motion. As a de-
sign rule, this would mean that slip-slip trajectories
should be avoided. Objective function values are lim-
ited to f = 1.6 × 10−3 for clarity. Figure 11 considers
a range of acceleration values that are much smaller,
such that stick can occur in time intervals of nonzero
acceleration (case 1 or case 2 solutions). Also, there

Fig. 8 Flow chart to
calculate a priori which
case will occur
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Fig. 9 Examples of time
histories of the 5 different
cases that can occur

is a clear relation between the type of motion and the
average steady-state velocity. Case 1 solutions seem
preferable. Objective function values f ≥ 0.8 are set
to f = 0.8 for clarity.

The design rules for making a trajectory, for the
current system and studied parameter ranges, can be
summarized as follows:

– Increase the frequency of excitation (subject to
practical constraints);

– Increase the stroke (subject to practical constraints);
– Use surface plots to make a sensible choice for the

acceleration values y′′
2 and y′′

3 such that the chosen
settings are not too sensitive. The response should
be a case 1 (stick-slip, x′ ≥ 0), a case 3 (general

stick-slip), or a case 4 (slip-slip) response; the lat-
ter two cases are only acceptable if v̄ > 0. Case 2
(stick-slip, x′ ≤ 0) and case 5 (just stick) responses
are prohibited.

6 Local stability and convergence

6.1 Local stability analysis

Using Floquet theory, it can be proven that all steady-
state solutions from Sect. 5.1 are locally stable. Three
different approaches have been used to calculate the
Floquet multipliers: (1) an analytical method based
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Fig. 10 Surface plot and
case plot for the settings
�y = 0.021, �t = 0.072

Fig. 11 Surface plot and
case plot for the settings
�y = 0.064, �t = 1.38

on linearization of the effects of the perturbations of
the analytic steady-state solutions over a complete pe-
riod, (2) a second analytical method, in which the
Monodromy matrix is calculated by coupling smooth
parts of the Fundamental solution matrix using Salta-
tion matrices [11], and (3) a numerical method, which
estimates the Monodromy matrix using a sensitivity
analysis. Here, the first method will be treated. Local
stability is studied using the analytic expressions from
Sect. 5.1, and following the same approach as in [15].
Infinitesimally small perturbations �x0 and �x′

0 on
the initial position (respectively, the initial velocity)
are considered. After linearization, perturbations in the
position and velocity of the mass at the end of one pe-
riod, i.e. at t = t3, �x3 and �x′

3, are linearly related to

the perturbations in initial position �x0 and velocity
�x′

0 as follows:

[
�x3

�x′
3

]

= Φ(t3, t0)

[
�x0

�x′
0

]

(25)

where Φ(t3, t0) is the so-called Monodromy matrix.
Note that the times ti correspond to the notation of
Sect. 4.4.3; see also Fig. 7. For a case 1 response
(stick-slip with x′(t) ≥ 0,∀t) the analytic local sta-
bility analysis will be carried out here. An illustrative
case 1 response is shown in Fig. 12. The mass will be
in steady state at t = t0 if the initial velocity is chosen
as x′

0s = 0.
Using the analytic expressions derived in Sect. 5.1

and applying the initial conditions x(t0) = x0s and
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Fig. 12 Example of an
illustrative case 1 trajectory

x′(t0) = x′
0s , it can be shown that the position and ve-

locity at t = t3 can be written as:

x(t3) = x0s + x′2
0s/2 + c1, (26)

x′(t3) = 0 (27)

where c1 is a constant. Using x0s +�x0 and x′
0s +�x′

0
as initial conditions at t = t0 will result in position
x(t3) + �x3 and velocity x′(t3) + �x′

3 at t = t3. Sub-
stitution of these quantities in (26) and (27) gives:

x(t3) + �x3 = x0s + �x0 + (
x′

0s + �x′
0

)2
/2 + c1,

(28)

x′(t3) + �x′
3 = 0 (29)

By substituting (26)–(27) in (28)–(29), keeping
only the linear terms in �x0 and �x′

0, and applying
the initial condition x′

0s = 0 (to assess the local stabil-
ity of the steady-state solution), the following relation
between perturbations at t = t0 and t = t3 can be de-
rived:
[

�x3

�x′
3

]

=
[

1 0

0 0

][
�x0

�x′
0

]

(30)

The Floquet multipliers, i.e. the eigenvalues of the
Monodromy matrix, are λ1 = 1 and λ2 = 0. The eigen-

value equal to 1 is expected due to the fact that a per-
turbation in the initial position only, will only shift the
end position by the same amount. The corresponding
eigenvector of λ1 = 1 is v1 = [1,0]T , which confirms
that this eigenvalue is purely related to the freedom in
position. The second eigenvalue λ2 = 0 and the cor-
responding eigenvector v2 = [0,1]T , which illustrates
the fact that a small change in initial velocity will not
change the end velocity at all because the mass will
get into stick anyway, despite the small perturbation at
t = t0.

For the cases 2 and 3 a completely equivalent rea-
soning can be used. In both cases, this leads to the
same eigenvalues as for case 1. Case 4, the slip-slip
case, is different, because the mass never sticks. This
means that the end velocity after one period can be in-
fluenced by the initial velocity. It can be shown that
the position and velocity after one period can be writ-
ten as:

x(t3) = x0s + c1x
′2
0s + c2x

′
0s + c3, (31)

x′(t3) = c4x
′
0s + c5 (32)

where the ci for i = 1,2, . . . ,5 are all constants. The
following (linearized) relation describes the evolution
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of small perturbations �x0, �x′
0 on the initial condi-

tions:
[

�x3

�x′
3

]

=
[

1 2c1x
′
0s + c2

0 c4

][
�x0

�x′
0

]

(33)

The Floquet multipliers can be shown to be λ1 = 1,
which again represents the freedom in position, and
λ2 = c4 = ((y′′

2 − 1)(y′′
3 − 1))/((y′′

2 + 1)(y′′
3 + 1)).

Note that this eigenvalue is always positive and
smaller than 1 (so within the unit circle) because
y′′
i > 1 for i = 2,3 in the slip-slip case.

The local stability analysis presented in this sec-
tion has shown that, besides the fact that the response
can be shifted in position, the remaining dynamics are
all locally asymptotically stable. The analysis using
Saltation matrices to compute the Monodromy matrix
gives identical results. The method using numerical es-
timation using a sensitivity analysis gives a good ap-
proximation of the exact analytical results.

6.2 Convergence

In this subsection, convergence of the relative veloc-
ity solutions x′ will be proven, which also proves that
the solution converges to a unique velocity solution
in steady state, independent of the initial conditions.
The (dimensionless) relative velocity is here denoted
by v = x′. In terms of the relative velocity, the dynam-
ics is described by (see (6)):

v′ ∈ −Sign(v) − y′′(t) (34)

Now consider two trajectories, v1(t, t0, v10) and
v2(t, t0, v20), with different initial conditions v10 and
v20 at t = t0, and consider the following Lyapunov
function:

V (v1, v2) = (v1 − v2)
2

2
(35)

The time derivative of this Lyapunov function along
solutions of the system can be written as follows [16]:

V ′(v1, v2) = (v1 − v2)
(
v′

1 − v′
2

)

∈ −(v1 − v2)(Sign(v1) − Sign(v2)) (36)

≤ 0

If v1 and v2 are both positive or both negative, then
V ′ = 0. Therefore, V ′ is only negative semi-definite

and convergence is not proven yet. Let v̂1 ∈ Sign(v1)

and v̂2 ∈ Sign(v2), see (2). Now, it can be shown that
if v̂1 = v̂2 and v1(tA) �= v2(tA) at a certain time t = tA
(otherwise convergence has already occurred), there
will always be a time tB > tA, for which v̂1 �= v̂2, re-
sulting in further decrease of V . Consider the situation
in which v̂1 = v̂2. For both trajectories the accelera-
tion v′

i will be equal, see (34). Both trajectories will
eventually reach zero velocity vi = 0. To see this, con-
sider (34). The excitation signal y′′(t) is periodic and
over a single period �t it has an average acceleration
equal to zero, such that its net effect on the velocity
x′ of the mass over one period time �t is zero. This
is shown by integrating (34) over one period time �t ,
for v �= 0:

v(t + �t) − v(t) = −
∫ t+�t

t

(
Sign(v) + y′′(t)

)
dt

= −
∫ t+�t

t

Sign(v) dt (37)

The term −Sign(v) will force the relative veloc-
ity of the mass to v = 0, which will occur at some
point in time. After the trajectory reaches v = 0, the
mass can stick or slip, depending on the value of the
acceleration y′′ of the table. At the moment, one of
the trajectories reaches v = 0, v̂1 �= v̂2, and V ′ < 0,
which means that v1 and v2 will approach each other.
This will last until a point in time is reached at which
v̂1 = v̂2 again, and the whole process will repeat it-
self. Eventually, for cases 1–3 solutions, in finite time
a point will be reached at which v1 = v2 = 0. From
this time onwards, both velocity signals are fully con-
verged, i.e. are equal to each other. In case of a case
4 solution, the mass will never stick, and v1 = v2 = 0
will be reached in the limit t → ∞.

As an example to illustrate this convergence of the
velocity solutions, consider Fig. 13. The upper plot of
Fig. 13 shows two transients leading to a stick-slip tra-
jectory (case 1). The lower plot of Fig. 13 shows the
corresponding Lyapunov function V as a function of
time. In Fig. 13, time intervals in which v̂1 = v̂2 are in-
dicated by ‘=’-signs. Time intervals in which v̂1 �= v̂2

are indicated by ‘ �=’-signs. Clearly, in the time inter-
vals where v̂1 �= v̂2, the solutions converge to each
other and V ′ < 0. In the time intervals where v̂1 = v̂2,
the solutions ‘run in parallel’ and V ′ = 0. The velocity
solutions become identical in the last time interval in
Fig. 13. The Lyapunov function V therefore becomes
zero.
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Fig. 13 Illustration of
convergence of velocity
solutions

Summarizing, although the time derivative of the
Lyapunov function is only negative semi-definite, it
has been shown that in the time intervals in which
V ′ = 0 the solutions evolve in such a way that always
a time interval in which V ′ < 0 will be reached. This
proves that the two solutions v1 and v2 will converge
to each other. Therefore, the steady-state solution in
terms of velocity is unique and is independent of the
initial velocity of the mass. In other words, depending
on the system parameters, different types of steady-
state motion occur as discussed in Sect. 5.1. However,
each steady-state solution is unique. There are no co-
existing steady-state solutions.

7 Positioning accuracy in the stopping phase

For stopping and accurate positioning of the mass, an
increased friction coefficient μ2, as described earlier
in Sect. 3.3, is used. Depending on the weight dis-
tribution of the mass over the two table regions with
two different Coulomb friction coefficients μ1 and μ2,
the effective friction coefficient μ̄ experienced by the
mass can be calculated using (9). Due to the existence
of a low friction and a high friction region, the system

dynamics in the friction transition region, see (5) and
(9), is given by:

−
(

1 + cμ − 1

w
(x − xμ)

)

Sign(x′) � x′′ + y′′ (38)

As long as y′′
i < 1 + ((cμ − 1)(x − xμ)/w) for i =

2,3, the mass will be able to stick in the high friction
region.

7.1 Definition of positioning accuracy

Before defining and studying the accuracy of the end
position of the mass, first a discussion on the deriva-
tion of the end position itself will be given. Consider
the situation sketches in Figs. 14 and 15. It is assumed
that the mass will enter the high friction region in
a steady-state motion. The end position of the mass
will depend on the state of the mass [x, x′]T (corre-
sponding to a certain phase of the periodic table mo-
tion) when it reaches x = xμ (see Fig. 2) for the first
time. This state will obviously depend on the initial
state [x0s , x

′
0s]T (the subscript ‘s’ stresses the fact that

the initial conditions are chosen corresponding to a
steady-state solution) at t = t0, the phase of the pe-
riodic excitation signal at t = t0, and on xμ − x0s .
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Fig. 14 Situation sketch of when the mass is stopped

Fig. 15 Region of end positions where the mass can stop

The position where the mass stops, is defined by
xμ + �xovershoot. The effective displacement in the
low friction region, during one excitation period in
steady state, can be written as v̄�t (v̄ is the average
velocity during one excitation period). The maximum
displacement in one period is defined as �x. To in-
clude all possible ways of entering the high friction
region in steady state, define xμ = �x and vary the
initial positions corresponding to steady-state x0s in
the range −v̄�t ≤ x0s ≤ 0. Corresponding initial ve-
locities x′

0s are used to assure steady-state motion from
the start. Now, collecting all overshoots �xovershoot ∈
[�xovershoot,min, �xovershoot,max] for all initial con-
ditions corresponding to steady-state responses, will
provide a range of the possible end positions of the
mass. The positioning error is now defined as:

�xd = �xovershoot,max − �xovershoot,min

2
(39)

The desired end position can now be defined as
xd = xμ + �xovershoot,min + �xd , see Fig. 15.

7.2 Results

The positioning accuracy will, next to system prop-
erties, obviously depend on the prescribed table mo-
tion. In Sect. 5, the stroke and frequency of the ta-
ble were fixed and the accelerations y′′

2 and y′′
3 were

varied. For different combinations of y′′
2 and y′′

3 , the
positioning error is calculated and stored. In this sec-
tion and in Sect. 7.3, the stroke and the excitation pe-
riod of the table are set to respectively �y = 0.084
and �t = 1. The dimensionless width is chosen to
be w = 0.05. It is assumed that cμ = 2.5 such that
the friction coefficient in the high friction region is
μ2 = 2.5μ. Hence, the interesting region of acceler-
ations is limited to y′′

i < 1 + (cμ − 1)(x − xμ)/w, so
to accelerations y′′

i < 2.5 (enabling the mass to per-
manently stick to the table). Remarkably, as will be
shown below, a design space for y′′

2 and y′′
3 can be

identified where the positioning error is �xd = 0.
Consider the following two table acceleration set-

tings: (y′′
2 , y′′

3 ) = (2.3,1.3) and (y′′
2 , y′′

3 ) = (1.8,1.1).
In Fig. 16, the two corresponding phase portraits are
shown. For each setting, two responses correspond-
ing to two different initial conditions are shown. The
two dashed vertical lines respectively indicate the po-
sitions, where the high friction region is starting (xμ),
and from where it is possible for the mass to perma-
nently stick to the table (xstick,min). The position on
the table, from where the mass is able to permanently
stick to the table, is determined by the following con-
dition:

max(y′′
i ) = 1 + cμ − 1

w
(x − xμ) (40)

Using this condition, the position xstick,min can be cal-
culated to be:

xstick,min = xμ + w
max(y′′

i ) − 1

cμ − 1
(41)

In the lower plot of Fig. 16, the end positions are
clearly different. In the upper plot of Fig. 16, how-
ever, the mass stops at the same position for both
trajectories, although the initial conditions are differ-
ent: an accumulation position can be identified. A de-
tailed analysis of this accumulation position will be
presented in Sect. 7.3. There, among others, it will be
shown that depending on the parameter values, some-
times for all initial conditions but also sometimes for
only a part of the initial conditions, accumulation re-
sults. When accumulation occurs, the same type of
trajectory repeats itself on smaller and smaller scales
up to the accumulation position. Note that the accu-
mulation position in theory will only be reached for
t → ∞. Interestingly, when accumulation occurs, it
will be shown that the trajectories accumulate to the
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Fig. 16 Phase portraits of
two different settings when
stopping the mass

position from where it is possible for the mass to per-
manently stick, i.e. xstick,min. Figure 17 combines sev-
eral analysis results showing a surface plot (A) of the
objective function value f , see (11), a case-plot (B)
indicating the type of motion, an accumulation identi-
fication plot (C), and a surface plot with the position-
ing accuracy (D). From the function value plot (A) it is
clear that a high value for y′′

2 results in fast movement
of the mass, but y′′

2 should be sufficiently low to allow
sticking in the high friction region. Simultaneously, a
low value for y′′

3 increases the chance of a case 1 type
of motion, see plot (B). Fortunately, this is also the
parameter space in which the lowest positioning error
can be achieved, see plot (D). When plot (C) is com-
pared to the positioning error plot (D), it becomes clear
that, for the current parameter settings and used initial
conditions, the occurrence of accumulation results in
extreme positioning accuracy of the mass (�xd = 0).

7.3 Analysis of the accumulation position

The previous section showed that for some parameter
settings, the mass stops at a unique end position, even
though the initial conditions are different, which leads
to ultimate positioning accuracy of the mass. It is now

assumed that the mass enters the high friction region
with a case 1 steady-state motion without any negative
relative velocity. This corresponds to the lowest values
of f in the region with low acceleration values, see
subplot (A) in Fig. 17. This case 1 motion guarantees
that the mass will stay in the high friction region once
it entered it.

In this section, analytic expressions will be derived
for the subsequent positions where relative velocities
x′ = 0 are found in the region x > xμ. Simulations
based on these expressions indicate that, in case of ac-
cumulation, the distance between these positions will
become shorter and shorter and that accumulation to a
fixed position will occur.

In the transition region (xμ ≤ x ≤ xμ + w), when
the mass is moving, so in forward slip, the equation of
motion (38) can be written as:

x′′(t) + b1x(t) = b3(t) (42)

where b1 = (cμ − 1)/w, b3(t) = b2 − y′′(t), and b2 =
((cμ − 1)xμ/w) − 1. Thus, in essence, the system be-
haves as a forced mass–spring system in the friction
transition region. The general analytic solution to dif-
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Fig. 17 Objective function
value f (A), case-plot (B),
accumulation identification
plot (C), positioning error
�xd (D)

ferential equation (42) can be written as follows:

x(t) = b3

b1
+ d1 cos

(√
b1(t − t∗)

)

+ d2 sin
(√

b1(t − t∗)
)
, (43)

x′(t) = −d1

√
b1 sin

(√
b1(t − t∗)

)

+ d2

√
b1 cos

(√
b1(t − t∗)

)
(44)

where the constants d1 and d2 are determined by the
conditions at the time t = t∗, at which the mass enters
the transition region, i.e. x(t∗) = xμ:

d1 = x(t∗) − b3

b1
, (45)

d2 = x′(t∗)√
b1

(46)

The time at which the velocity reaches zero for the
first time for t > t∗ can be calculated analytically:

tx′=0 = t∗ + 1√
b1

arcsin

(
d2

√

d2
1 + d2

2

)

(47)

Now, our goal is to find expressions for the subse-
quent positions where the mass sticks to the table. By
studying these subsequent stick positions, or actually
the mapping between them, it is possible to explain the
accumulation to a unique end position. The position at
which stick occurs for the nth time, is denoted by xn.
For n = 1, x1 can be calculated by substituting (47)
into (43). To make the notation more compact, a new
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time scale τ is introduced, which is zero at the mo-
ment when the mass gets out of the first stick phase
in the transition region. The mass will stick at the y′′

3
part of the trajectory. The mass therefore starts to slip
at τ = 0 when the acceleration changes from y′′

1 = 0
to −y′′

2 . The following values apply at τ = 0:

b3,1 = b2 + y′′
2 , (48)

d1,1 = xn − b3,1

b1
, (49)

d2,1 = 0√
b1

= 0 (50)

Note that b1 and b2 are constant in the transition re-
gion. The first part of the analytic solution for 0 ≤ τ ≤
t2 − t1 can therefore be written as follows:

x(τ) = b3,1

b1
+ d1,1 cos

(√
b1τ

)
, (51)

x′(τ ) = −d1,1

√
b1 sin

(√
b1τ

)
(52)

At τ = t2 − t1, the acceleration changes from −y′′
2

to y′′
3 . At τ = t2 − t1, the following values apply:

b3,2 = b2 − y′′
3 , (53)

d1,2 = x(t2 − t1) − b3,1

b1
, (54)

d2,2 = x′(t2 − t1)√
b1

(55)

which yields the following analytic solution for time
interval t2 − t1 ≤ τ ≤ τx′=0, where τx′=0 is the time at
which the relative velocity x′ becomes zero again:

x(τ) = b3,2

b1
+ d1,2 cos

(√
b1(τ − (t2 − t1))

)

+ d2,2 sin
(√

b1(τ − (t2 − t1))
)

(56)

x′(τ ) = −d1,2

√
b1 sin

(√
b1(τ − (t2 − t1))

)

+ d2,2

√
b1 cos

(√
b1(τ − (t2 − t1))

)
(57)

Using (47), the mass gets into stick in the transition
region for the second time, at time:

τx′=0 = (t2 − t1) + 1√
b1

arcsin

(
d2,2

√
d2

1,2 + d2
2,2

)

(58)

The displacement at τx′=0 will be denoted by
xn+1 = x(τx′=0). After algebraic manipulation the fol-
lowing mapping between subsequent positions xn and
xn+1 can be found:

xn+1 = b2 − y′′
3

b1

+
{(

y′′
2 + y′′

3

b1
+

(

xn − b2 + y′′
2

b1

)

× cos
(√

b1(t2 − t1)
)
)2

+
((

xn − b2 + y′′
2

b1

)

sin
(√

b1(t2 − t1)
)
)2

} 1
2

(59)

The fixed point of this mapping can be calculated:

xn = xn+1 = b2 + y′′
2

b1
= xstick,min (60)

Recall that b1 = (cμ − 1)/w and b2 = (cμ − 1)xμ/

w − 1, so that in fact the fixed point of the map-
ping is the position xstick,min, from where permanent
stick is possible, see (41). In Fig. 18, mapping (59) is
shown for settings y′′

2 = 2.2, y′′
3 = 0.9, �t = 1.05, and

�y = 0.084. Note that this also specifies t2 − t1 ap-
pearing in (59), see Appendix. The left and the right
dashed vertical lines in Fig. 18 indicate respectively
the starting position of the μ2 friction region (x = xμ),
and from where the mass is able to permanently stick
(x = xstick,min). Indeed, the fixed point of the mapping
is located at the same position as xstick,min.

Note again that in fact the end position, in case
of accumulation to this fixed point, is reached for
t → ∞. In a practical situation, however, the end po-
sition will be reached in finite time. Consider a di-
mensionless scalar p, where 0 ≤ p ≤ 1. For the cases
where accumulation occurs in Fig. 17, the position
xμ + p(xstick,min − xμ) is reached in at most 5 pe-
riod times for p = 0.99, and in at most 7 period times
for p = 0.999. This has been verified by time-stepping
simulations.

The initial conditions that determine the first
stick position x1, can influence the occurrence of accu-
mulation. Consider again Fig. 18, which by means of
the middle dashed vertical line shows that, depending
on the initial conditions, the mass can stick to the table



Vibrational self-alignment of a rigid object exploiting friction 127

Fig. 18 Depending on the
initial conditions,
accumulation to a fixed end
position is possible

at a position x > xstick,min, or can exhibit the accumu-
lating behavior and end up at x = xstick,min. Note that
accumulation to an end position will always occur if
xn+1(xμ) < xstick,min, and is then independent of the
initial conditions.

8 Conclusions and recommendations

In this paper, one-dimensional self-alignment of a
mass via stick-slip vibrations has been studied. Us-
ing a suitable periodic table trajectory, it is possible
to move the mass into a desired direction and using an
increase in the friction coefficient it is possible to stop
the mass at a certain end position.

The first objective of this paper has been to design
a trajectory for the table, such that the mass moves to
a desired end position in the least possible amount of
time, given some table motion constraints. The design
of a table motion profile, consisting of three time in-
tervals with different constant accelerations has been
discussed. For the mass, analytic steady-state solutions
have been derived, and a classification of the types of
steady-state responses of the mass has been given.

Using Floquet theory for discontinuous systems,
the local stability of the solutions has been proven.
Due to the freedom in position, one Floquet multiplier
will always be equal to one. Furthermore, using a Lya-
punov analysis, convergence of the velocity response

has been proven. In other words, different velocity so-
lutions will converge to each other, independent of the
initial velocities. This convergence implies uniqueness
of the velocity response of the mass.

The second objective of this paper has been to
stop the mass at a desired end position with the best
possible positioning accuracy. For certain parameter
settings, an interesting phenomenon is observed in
the transition region from low friction to high fric-
tion, namely accumulation of the mass position to a
unique end position. This accumulation behavior ben-
efits the positioning accuracy in an ultimate manner. In
essence, the system behaves as a forced mass–spring
system in this region, which allows for an analytical
study of the accumulation behavior. Subsequent stick-
positions have been related to each other resulting in
a discrete mapping. It is shown that the fixed point of
this mapping is exactly the position from where per-
manent stick becomes possible. Under certain condi-
tions, accumulation will always occur, independent of
the initial conditions.

Recommendations for future research are: (1) ex-
perimental verification of the analyzed behavior;
(2) analysis of models with resembling, but more re-
alistic, table motion profiles, i.e. finite values for the
jerk should be introduced at times when the table ac-
celeration values change; (3) use of enhanced friction
models; (4) extension to two-dimensional models de-
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scribing general planar motion of the mass; and (5)
extension to self-alignment of multiple masses.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

Appendix: Details of the prescribed table motion
generation using three acceleration parts

In order to calculate a table trajectory that satisfies the
7 constraints formulated in Sect. 4.4.3, it is necessary
to find explicit expressions for the following 5 vari-
ables: t1, t2, t3, yini, and y′

ini. Note that the following
two variables are already explicitly known: y′′

1 = 0 and
t0 = 0. It is therefore only needed to solve 5 constraint
equations, which can be derived from the constraints
formulated in Sect. 4.4.3. Using Fig. 7 the following
5 equations can be derived:

1. yini = 1

2
y′′

3 (t3 − ty′=0,2)
2 (61)

2. t3 − t0 = �t (62)

3.
1

2
y′′

2 (t2 − ty′=0,1)
2 + 1

2
y′′

3 (ty′=0,2 − t2)
2 = �y (63)

4.

y′
ini(t1 − t0) + 1

2
y′′

2 (ty′=0,1 − t1)
2

+ 1

2
y′′

3 (t3 − ty′=0,2)
2

= 1

2
y′′

2 (t2 − ty′=0,1)
2 + 1

2
y′′

3 (ty′=0,2 − t2)
2

(64)

5. y′′
3 (t3 − t2) = y′′

2 (t2 − t1) (65)

For convenience, in these equations two additional
unknowns are introduced, namely ty′=0,1 and ty′=0,2,
which are the times at which the velocity y′ of the ta-
ble becomes zero. Therefore, to solve the set of equa-
tions, two additional equations are needed, which de-
fine these two additional unknowns:

6. y′
ini − y′′

2 (ty′=0,1 − t1) = 0 (66)
7. y′

ini − y′′
3 (t3 − ty′=0,2) = 0 (67)

Now 7 equations are available in the 7 unknowns
t1, t2, t3, yini, y′

ini, ty′=0,1, and ty′=0,2. This set of equa-
tions is solved by the symbolic toolbox of Matlab. The

explicit solutions are not given here because the ex-
pressions are too long to display.

Please note that actually there is a second case that
needs to be considered. If the initial velocity y′

ini ap-
pears to be smaller than 0, then the previously dis-
cussed mathematical description of the constraints is
not valid anymore. However, a completely equivalent
reasoning as for the case y′

ini > 0 can be followed.
Therefore, the second case is not discussed in detail
here. Moreover, note that it is possible that no physi-
cal solutions exist for the above specified equations if,
for example, a large displacement �y is demanded in
a short amount of time �t , using small acceleration
values y′′

2 and y′′
3 . In that case the solutions of some

variables will be complex valued, lacking a physical
interpretation.
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