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Abstract Many dynamical systems are subject to

some form of non-smooth or discontinuous nonlinear-

ity. One eminent example of such a nonlinearity is fric-

tion. This is caused by the fact that friction always op-

poses the direction of movement, thus changing sign

when the sliding velocity changes sign. In this paper,

a structure with friction-based seismic base isolation

is regarded. Seismic base isolation can be employed

to decouple a superstructure from the potentially haz-

ardous surrounding ground motion. As a result, the seis-

mic resistance of the superstructure can be improved.

In this case study, the base isolation system is com-

posed of linear laminated rubber bearings and viscous

dampers and nonlinear friction elements. The nonlinear

dynamic modelling of the base-isolated structure with

the aid of constraint equations, is elaborated. Further-

more, the influence of the dynamic characteristics of the

superstructure and the nonlinear modelling of the iso-
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lation system, on the total system’s dynamic response,

is examined. Hereto, the effects of various modelling

approaches are considered. Furthermore, the dynamic

performance of the system is studied in both nonlinear

transient and steady-state analyses. It is shown that,

next to (and in correlation with) transient analyses,

steady-state analyses can provide valuable insight in

the discontinuous dynamic behaviour of the system.

This case study illustrates the importance and devel-

opment of nonlinear modelling and nonlinear analysis

tools for non-smooth dynamical systems.

Keywords Nonlinear analysis . Periodic solutions .

Friction . Stick-slip motion . Seismic base isolation

1 Introduction

In the past decades, the field of nonlinear dynamics

has received a lot of attention. Many scientists have

contributed to the development of new theory as well

as numerical and experimental methods for modelling

and analysis of nonlinear dynamical systems. In re-

cent years, an increasing amount of papers and books

have been dedicated to several aspects (e.g. modelling,

existence and calculation of solutions, stability, bifur-

cations) of non-smooth dynamical systems [1–5]. Ex-

amples of mechanical systems with non-smooth dy-

namic behaviour are typically systems with backlash,

systems with dry friction elements and systems with

contact. The dynamical behaviour of these systems is
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not completely understood yet. Moreover, the numer-

ical analysis of the dynamic behaviour of such sys-

tems is often cumbersome, especially for systems with

many degrees of freedom. New theory of non-smooth

dynamical systems and new numerical methods are

thus needed and developed. The subject of this paper is

an emerging application of non-smooth dynamics the-

ory in the field of civil engineering. The dynamic be-

haviour of a system which is protected against seismic

excitation via a friction-based base isolation system,

will be investigated.

Earthquakes have a large potential for disastrous

consequences. Apart from the loss of life, they can

cause great economic losses through structural damage.

Therefore, in earthquake-prone regions, the seismic re-

sistance of structures is often carefully studied. The

conventional design approach of structures in regions

where seismicity is insignificant, aims at the design of

structural members in such a way that they can with-

stand all static and dynamic loads elastically. However,

in regions where seismic excitation should be taken into

account, this design approach might lead to economi-

cally unacceptable design solutions, because structural

members might become too large. To prevent this, two

alternative design concepts can be employed.

In the first alternative design concept, plastic de-

formation is allowed in special parts of the structure.

This strategy is often referred to as the capacity design

method [6, 7]. The parts where plastic deformation oc-

curs (frequently called plastic hinges) are designed for

high ductility to ensure global stability of the structure.

However, plastic deformation still results in damage of

the structure and, possibly, its contents.

In the second alternative design approach, mechani-

cal devices are added to the conventional superstructure

to enhance its seismic response. These mechanical de-

vices are part of a system that can be either passive,

active or hybrid [7, 8]. Passive systems dissipate (part

of) the earthquake energy input and are activated by

the earthquake input itself, without the use of an ad-

ditional power source. Active systems impose forces

on the structure to counteract the seismically induced

forces. Here, an additional power source is used in com-

bination with a controller to calculate the actuator out-

put. Finally, hybrid systems combine features of both

passive and active control systems.

In this study, one special type of passive system is

considered, namely friction-based base isolation sys-

tems. These systems consist of mechanical devices with

non-smooth friction elements that are placed under-

neath the superstructure to decouple it from the poten-

tially hazardous surrounding ground motion. Although

it is well-known that these base isolation systems may

exhibit (highly) nonlinear behaviour, they are often

modelled linearly in engineering practice, as prescribed

in recent building codes [6]. This assumption might

lead to an unrealistic representation of the actual dy-

namic behaviour of the system. With the aid of nonlin-

ear dynamics, models can be developed and analysed

that can accurately describe certain phenomena, which,

principally, can not be represented by linear models.

Here, in this paper, the influence of the nonlin-

ear modelling of a base isolation system and the dy-

namic characteristics of a superstructure on the total

system’s dynamic response, is examined. Furthermore,

the dynamic performance of a base-isolated structure

is evaluated, based on additional insight in its nonlin-

ear dynamic behaviour, obtained by nonlinear dynamic

analyses. These analyses can be divided into transient

analyses, in which the response to earthquakes is con-

sidered and steady-state analyses, in which periodic

excitation is regarded. Although, obviously, the super-

position principle does not hold for nonlinear dynam-

ical systems, steady-state analyses may help to detect

potential nonlinear resonance frequencies, which may

lead to damage of the structure if these frequencies are

excited by the earthquake excitation signal.

This paper is organised as follows. In Section 2, a

superstructure will be chosen and its dynamic model

will be derived with finite element techniques. Further-

more, a modal analysis and dynamic model reduction

will be carried out. Next, in Section 3, seismic base iso-

lation will be introduced and a friction-based isolation

system, with discontinuous dynamic behaviour, will

be chosen. The derivation of the equations of motion

of the total base-isolated system will be elucidated in

Section 4. With the obtained dynamic model, transient

analyses will be considered in Section 5, followed by

steady-state analyses in Section 6. Finally, conclusions

will be presented in Section 7.

2 Dynamic modelling of the superstructure

As a part of the case study, a superstructure has to be

chosen. An existing structure is selected, so that the lay-

out and dimensions of the structural elements can easily

be adopted. Furthermore, to facilitate the modelling of
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Fig. 1 Overview of the (former) European head office of Nissan, located in Amsterdam

the superstructure, a steel structure without concrete

structural members, such as concrete cores and walls,

is chosen. Moreover, buildings with steel frames are

frequently encountered in regions with large seismic

activity, such as Japan and the USA, because of the

high ductility and strength of steel. In this study, it is

assumed that the structure will always remain in its

elastic range (with or without base isolation1).

The selected superstructure is shown in Fig. 1. This

building is the former European head office of Nis-

san, located in the Netherlands, which has recently

been taken over by Mexx International to become their

global head office. The fact that this structure is located

in a region without seismic activity, is of no importance

here, as it is merely used as a part of the case study. It

is emphasised that it is our intention to show the influ-

ence of nonlinear dynamic modelling and analyses for

structures with friction-based base isolation systems,

and not to study or improve the seismic resistance of

this specific structure. The office is an unbraced high-

rise steel building of 11 construction levels (10 stories)

with a total height of 53 m, measured from ground level

[9]. It consists of a Moment Resisting Frame without di-

agonal bracing members and concrete structural mem-

bers. Each floor surface measures 15 by 80 m and is

formed by concrete floor slabs that do not contribute to

the structural stiffness. In addition, the structural stiff-

ness is not significantly influenced by the pre-fabricated

concrete wall elements that are attached to the steel

frame. Their mass contributions, however, are taken

into account in this study.

1 The validity of this assumption is verified in the numerical
simulations, as presented later in this paper.

Finite element method (FEM) modelling is applied

to derive the inertial and stiffness characteristics of this

superstructure. The two components of the horizontal

ground motion are often not correlated and have their

maximum values at different instants. The effect of the

vector sum of the two components on the magnitude
of the total horizontal motion, can therefore be dis-

regarded [10]. Moreover, rotational excitation can be

neglected for a structure of this size and with this sym-

metric layout [10]. Therefore, only lateral excitation of

the building is regarded, as this is the most vulnerable

excitation direction of this structure. In this research,

both horizontal and vertical excitation will be taken into

consideration.

In the FEM-model, each construction level is

meshed into nv and nh vertical and horizontal beam

elements, respectively. For the FEM-modelling of this

frame, Bernoulli–Euler beam elements are employed.

Sufficiently accurate results are obtained for meshing

parameters nv = 5 and nh = 4, as presented in Fig. 2a.

Unlike inertial and stiffness characteristics, it is al-

most impossible to model the damping of a struc-

ture with finite element techniques. Therefore, it is

chosen to assign damping ratios to fixed-base eigen-

modes of the superstructure. The numerical values of

these damping ratios are based on an experimentally

determined damping ratio of the fundamental eigen-

mode of the building under consideration [11] and on

the fact that higher modes are more likely to exhibit

higher damping, due to larger flexural and shear de-

formation of the structure [12–14]. The damping ra-

tios of the first four (fixed-base) eigenmodes, as pre-

sented in Fig. 2b, are chosen equal to 3, 4, 5 and 6%,

respectively.
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Fig. 2 FEM-model of the superstructure, with mesh parameters nv = 5 and nh = 4 (a). First four eigenmodes and eigenfrequencies of
the fixed-base superstructure (b)

With the dynamic model of the superstructure, an ex-

ploratory modal analysis is carried out, to evaluate the

undamped fixed-base eigenmodes and eigenfrequen-

cies. In the fixed-base situation, the degrees of free-

dom (dof’s) of the two nodes that are located at ground

level, are suppressed. In this case, each of these two

nodes has three dof’s (horizontal and vertical displace-

ment and rotation). These six dof’s are called bound-

ary dof’s and are, in a later stadium, needed for the

coupling of the superstructure to the base isolation sys-

tem. The remaining dof’s of the structure are called

internal dof’s. The four lowest fixed-base (or fixed-

interface) eigenfrequencies equal 0.46, 1.27, 1.98 and

2.98 Hz. The corresponding eigenmodes are shown in

Fig. 2b.

The meshing of Fig. 2a results in a model with 435

dof’s (including the six boundary dof’s). Because such

a large number of dof’s may lead to a computation-

ally inefficient nonlinear dynamic analysis in Sects. 5

and 6, model reduction is applied. In model reduction,

the original set of dof’s is transformed into a much

smaller set of ng new generalised dof’s. In this re-

search, Craig–Bampton reduction [15] is applied to the

linear superstructure model. In this method, the dis-

placement field is approximated by a linear combina-

tion of static and dynamic modes. The static modes

consist of the displacement columns that result when,

successively, a unit displacement/rotation is prescribed

to one of the boundary dof’s, while the other boundary

dof’s are fixed. These displacement columns are also

referred to as constraint modes. The dynamic modes

of the Craig–Bampton reduction method consist of the

fixed-interface eigenmodes, with eigenfrequencies fi

[Hz], that are within a user-specified frequency band

[0 < fi ≤ fmax], with cut-off frequency fmax [Hz]. The

modes that are outside this frequency band are left out

of the transformation matrix. Here, a cut-off frequency

of 5 Hz is taken. This frequency is chosen such that (the

largest part of) the dominant frequency range of most

earthquakes (between 0.1 and 10 Hz [10, 16]) is cov-

ered. It has been verified with cut-off frequencies of 10,

15 and 20 Hz that the use of a larger cut-off frequency

does not significantly influence the analysis results, as

presented later in the paper, while the number of dof’s

would be unnecessarily increased (27, 31 and 40 dof’s,

respectively). This is due to the fact that the majority of

the eigenmodes between 5 and 20 Hz consists of modes

with only vertical floor resonance. Compared to lateral

eigenmodes (e.g. f1 to f4 in Fig. 2b), these vertical

modes do not significantly contribute to the structure’s

seismic response.

Using the Craig–Bampton reduction method with a

cut-off frequency of fmax = 5 Hz, the number of dof’s

of the superstructure is eventually decreased from 435

to 13. It is noted that, in the set of 13 generalised dof’s

of the reduced model, the set of six boundary dof’s

is included, to enable coupling of the superstructure to

the isolation system. In the remainder of this paper, this

reduced superstructure model with ng = 13 dof’s will

be used.
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3 Seismic base isolation

As mentioned in the introduction, use of a seismic base

isolation system may prevent damage to the superstruc-

ture in case of an earthquake. In this type of isolation,

mechanical devices are placed underneath the super-

structure [7, 16, 17]. To ensure that these mechanical

devices are deformed uniformly, the superstructure is

equipped with a relatively rigid diaphragm at the iso-

lation level. The base isolation system should com-

ply with various characteristics, such as a large de-

gree of lateral flexibility for decoupling of the super-

structure from the surrounding ground, vertical load

carrying capacity, rigidity to lateral nonseismic ser-

vice loads and energy dissipation. Therefore, multiple

devices are often combined into one system. In this

research, a base isolation system is chosen that con-

sists of linear laminated rubber bearings, linear viscous

dampers and nonlinear friction elements with rectilin-

ear sliding surfaces [16–18]. In this paper, we will fo-

cus on the effect of the latter elements on the system’s

response.

The laminated rubber bearings consist of alternating

layers of natural rubber and steel plates or steel shims

that are bonded together. In lateral direction, these iso-

lation devices show a linear behaviour up to moder-

ate shear strains of approximately 100%. The damp-

ing of laminated rubber bearings is relatively low (in

the order of 3%) and, therefore, viscous dampers are

added. These dampers typically consist of a piston in-

side an enclosed cylinder, which forces a viscous fluid

through or past an orifice. These devices also have a

linear characteristic. Finally, the rigidity to nonseismic

service loads and the vertical load-carrying capacity

of the isolation system are provided by friction ele-

ments. These elements consist of two parallel horizon-

tal surfaces, which may slide relative to each other. As

friction forces always oppose the relative direction of

motion, its behaviour is discontinuous. In literature,

various friction models exist that can represent this

nonlinear behaviour. In this paper, it is assumed that

the friction can be represented by the Coulomb friction

model, of which a schematic representation is given

in Fig. 3. In this model, the maximum friction force

during stiction (Fw,max in Fig. 3), in which case the rel-

ative sliding velocity (ẋ) is zero, is equal to the friction

force during slip (ẋ �= 0). During stiction, the friction

force is bounded by
[−Fw,max, Fw,max

]
, counteracting

all other external forces, resulting in zero acceleration.

Fig. 3 Schematic representation of the Coulomb friction model

When the external forces exceed the maximum friction

force, slip occurs and the friction force equals ±Fw,max

(the sign depending on the sign of ẋ).

4 Derivation of the equations of motion

In order to derive the dynamic model of the base-

isolated superstructure including Coulomb friction el-

ements, first, the kinematics of the model are elabo-

rated. For this purpose, Fig. 4 is regarded. The two

bottom boundary nodes of the superstructure are lo-

cated at ground level GL and are labelled 1 and 2.

In Fig. 4, the column of dof’s of the superstructure,

q, is measured relative to the righthanded coordi-

nate system (X, Y, Z ) with origin O , which is con-

nected to the surrounding ground. This dof column is

given by q = [qT
b

qT
r

]T = [x1 y1 θ1 x2 y2 θ2 qT
r

]T ,

with xi , yi and θi the horizontal, vertical and rotational

displacement of boundary nodes i = 1, 2, respectively.

Here, nb equals the number of boundary dof’s q
b

(six),

whereas q
r

denotes the column of nr remaining internal

generalised dof’s (seven).

The horizontal and vertical ground acceleration,

relative to inertial space, and the gravitational exci-

tation (g), are given by the excitation column ü =
[ühor (üver + g)]T . To each of the boundary nodes 1

and 2, a base isolation system is attached. This isolation

system consists of a linear spring, a linear damper and

a nonlinear friction element. The horizontal displace-

ment of the isolation system is also measured relative

to (X, Y, Z ) and equals xiso. Due to the presence of the

relatively rigid diaphragm it holds that: xiso = x1 ≈ x2.

Finally, during numerical simulations, the vertical dis-

placements of the nodes 1 and 2, relative to the sur-
rounding ground, y1 and y2, are set to zero. The sur-

faces of the friction elements are thus assumed to re-

main in contact (with no uplift). The correctness of this
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Fig. 4 Kinematics of the
model of the base-isolated
structure

assumption is permanently verified during simulations,

as will be explained in Sections 5 and 6.

The dynamic modelling of the linear elements is

straightforward and is carried out as follows. At each

of the nodes 1 and 2, the combination of one laminated

rubber bearing and one viscous damper exerts a hori-

zontal force of

Flinear = Klamxiso + c ẋiso. (1)

Herein, Klam [N/m] is the lateral stiffness of a lami-

nated rubber bearing and c [Ns/m] denotes the damping

constant of this combination. The contribution of the

laminated rubber bearings and viscous dampers can

be added to the superstructure’s (Craig–Bampton re-

duced) stiffness and damping matrix K and C , respec-

tively:

K ∗q = K q+Klam

[
xiso0 0 xiso 0 0 zeros(1, nr )

]T
,

C∗q̇ = Cq̇ + c
[
ẋiso 0 0 ẋiso 0 0 zeros(1, nr )

]T
.(2)

Here, zeros(1, nr ) represents a row of zeros with di-

mensions (1 × nr ). Using Lagrange’s equations, the

following equations of motion of the base-isolated su-

perstructure without friction elements can be derived:

Mq̈ + C∗q̇ + K ∗q = −M�ü. (3)

The (reduced) mass matrix of the superstruc-

ture is given by M , while � denotes the ex-

citation influence matrix [10]: � = [�hor �ver]

with �hor = [1 0 0 1 0 0 �T
r,hor]

T and

�ver = [0 1 0 0 1 0 �T
r,ver]

T . The excitation

matrix � has also undergone the Craig-Bampton

reduction from the original set of dof’s to the new

set of generalised dof’s, resulting in the influence

columns �r,hor and �r,ver for the internal generalised

dof’s with size (nr × 1). Next, the friction elements

with Coulomb friction are considered and included in

these equations of motion.

A possible mathematical formulation of the

Coulomb friction model of Fig. 3 equals [4]:

Fw = Fw,maxSign (ẋ) = μFnSign (ẋ), (4)

where μ [-] denotes the friction coefficient, Fn [N] is

equal to the normal force between the two friction sur-

faces, and Sign(ẋ) represents the following set-valued

function:

Sign(ẋ) ∈
⎧⎨⎩

1, if ẋ > 0,

−1, if ẋ < 0,

[−1, 1], if ẋ = 0.

(5)

Consequently, when the relative velocity ẋ is zero, the

friction force counteracts all other external forces, and

is bounded by its range [−Fw,max, Fw,max].
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To numerically tackle the change of state between

stick and slip (or vice versa), a transition phase can

be introduced. This so-called switch-model captures

the actual non-smooth dynamics of the Coulomb fric-

tion model [4]. In the switch-model, the transition

state is composed of a narrow band or boundary

layer around the hypersurface of the stick phase: � =
{x ∈ R2ng |ẋ1 = 0 ∨ ẋ2 = 0}, where R2ng represents

the 2ng-dimensional state space x = [qT q̇T ]T . The

switch band forms a subspace, in which the vector field

is such that the solution is forced towards its middle,

the hypersurface. The switch band is given by:

|ẋi=1,2| ≤ η, (6)

with η [m/s] the width of the switch band. This width

has to be chosen small enough to yield a good approxi-

mation. Here, a value of η = 10−5 m/s is used. For de-

tailed information about the switch-model, the reader

is referred to [4].

Alternatively, the Coulomb friction force can be ap-

proximated by the following smooth, but strongly non-

linear model:

Fw = μFn
2

π
arctan (ε ẋiso). (7)

The dimensionless parameter ε determines the slope of

the function near ẋiso = 0. The value of ε should be as

large as possible to preserve the non-smooth character

of the switch-model (4). However, this will make the

equations of motion very stiff, resulting in integration

problems. In this study, the value ε = 7500 appeared

to be a good compromise.

After implementation of both the switch-model (4)

and the smoothened friction model (7) in the system’s

equations of motion, only negligible differences were

found between the response of the base-isolated build-

ing for the two different friction models. This is demon-

strated in Fig. 5, where the isolator displacement xiso

is depicted as a function of time. This figure shows the

response to a recording of the 1995 Kobe earthquake.

More information on transient analyses can be found

in Section 5. The derivation of the equations of motion

including friction model (7) will be presented now. In

this derivation, the method of Lagrangian constraints

is used.

The normal forces in the nodes 1 and 2 of Fig. 4

depend on the dynamic response of the superstructure.

0 5 10 15 20 25 30 35 40

0

0.02

0.04

0.06

0.08

Smooth arctangens approximation

Fig. 5 Isolator displacement xiso of the base-isolated system as
a function of time for a recording of the 1995 Kobe earthquake,
for the switch-model (4) and smoothened friction model (7)

These normal forces can be considered as constraint

forces, which can be used to check whether the friction

surfaces always remain in contact and the vertical dis-

placements of nodes 1 and 2, relative to the surround-
ing ground, equal zero: y1 = y2 = 0. This is the case

as long as the normal forces are compressive forces.

Because the normal forces are constraint forces, the

following formulation is employed, to implement the

friction elements in the equations of motion [19]:

Mq̈ − h(q, q̇, ü) + Sλ = RT λ, (8a)

Rq̈ = 0. (8b)

These equations can be derived from Lagrange’s Equa-
tions for Systems with Constraints. In (8a), h(q, q̇, ü)

expresses the stiffness and damping characteristics of

the superstructure with laminated rubber bearings and

viscous dampers and the ground excitation:

h(q, q̇, ü) = −C∗q̇ − K ∗q − M�ü. (9)

The column λ denotes the column of constraint forces,

which consist of the normal forces in nodes 1 and 2

(see Fig. 4):

λ =
[

Fn1

Fn2

]
. (10)
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The constraint forces are introduced in the equations

of motion through:

RT λ =
[

0 1 0 0 0 0 zeros(1, nr )

0 0 0 0 1 0 zeros(1, nr )

]T

λ,

(11)

with zeros(1, nr ) a row of zeros with dimensions (1 ×
nr ). The friction forces (which depend on the constraint

forces) are introduced via:

Sλ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ
2

π
arctan(ε ẋiso) 0

0 0

0 0

0 μ
2

π
arctan(ε ẋiso)

0 0

0 0

zeros(nr , 1) zeros(nr , 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

Fn1

Fn2

]
.

(12)

As stated before, the (reduced) column of dof’s q
has been partitioned in the form q = [qT

b
qT

r
]T , with

nb = 6 boundary dof’s q
b

(containing the dof’s of

nodes 1 and 2) and nr = 7 internal generalised dof’s

q
r
. Moreover, it is assumed that the coefficient of fric-

tion μ is the same for both friction elements. Finally,

it is emphasised that for the switch-model implemen-

tation, the expressions for R, S and λ depend on the

system state (stick, slip or transition) and are unequal

to the ones mentioned above. For instance, in stick, the

friction force is also a constraint force, together with

the normal forces.

Equation (8b) represents a formulation of the con-

straint equation y1 = y2 = 0 at acceleration level:

Rq̈ = [ÿ1 ÿ2]T = 0. This is done to enable calculation

of the unknown accelerations q̈ and constraint forces

λ. However, this constraint equation is marginally sta-

ble with two poles at zero. Small numerical errors may

result in Rq̈ ≈ 0. When this equation is integrated in

time, drift of the constraint equation at displacement

level may occur. To prevent this, constraint stabilisa-

tion is applied [19, 20]. In constraint stabilisation, (8b)

is redefined as:

Rq̈ + r stab = 0, (13)

where:

r stab = 2αstabβstab Rq̇ + α2
stab Rq, (14)

with initial conditions Rq̇
0

= 0 and Rq
0

= 0. The pa-

rameters αstab [1/s] and βstab [-] are stabilisation pa-

rameters. When both parameters are chosen larger than

zero, (13) is globally asymptotically stable. Here, βstab

is chosen equal to 1, while αstab = 2π , so that (13) is

supercritically damped, and the time-steps of the nu-

merical integration are not unnecessarily decreased due

to the stabilisation. Combination of (8a) and (13) yields

the unknown constraint forces and accelerations:

λ = −[RM−1(RT − S)]−1{RM−1h(q, q̇, ü) + r stab},
(15a)

q̈ = M−1{h(q, q̇, ü) + (RT − S)λ}. (15b)

With this dynamic model of the base-isolated super-

structure, transient and steady-state analyses will be

performed in Sections 5 and 6, respectively.

5 Transient analysis

In this section, time simulations will be carried out for

both the fixed-base and isolated-base structure under

earthquake ground motion excitation. This excitation

is assumed to act simultaneously at both support points

of the system, thus neglecting soil-amplification, soil-

structure-interaction and rotational excitation [10].

Before time simulations can be carried out, suitable

values of the design variables of the isolation system

should be obtained. In this case, the design variables

are the lateral stiffness of the laminated rubber bearing

Klam [N/m], the damping constant of the combination

of the laminated rubber bearing and the viscous damper

c [Ns/m], and the friction coefficient of the friction

elements μ [-]. Here, it is assumed that both isolation

systems at nodes 1 and 2 are identical.

Base isolation design values are found in an iterative

line-search, in which two objective functions are min-

imised, subject to a certain constraint. This so-called

parameter line-search is executed for four recordings

at different locations of the 1995 Kobe earthquake (all

scaled to a horizontal peak ground acceleration (PGA)
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of 3 m/s2) 2 to ensure that a broadbanded excitation

spectrum is covered [21]. Two seismic performance in-

dicators of structures are chosen as objective functions.

These indicators are the interstory drift ratio IDR [-]

and the absolute horizontal floor acceleration a [m/s2].

The interstory drift ratio is defined as the quotient of

the relative horizontal displacement between two con-

struction levels, and the construction level height. The

absolute horizontal floor acceleration, however, is mea-

sured relative to inertial space. These two parameters

can be related to the amount of (non)structural damage

and should, consequently, be minimised [22].

In addition, the isolator displacement amplitude x̄iso

[m] is selected as a constraint function. The isolator

displacement may not exceed the seismic gap available

between the superstructure’s base and the surrounding

ground. In our case, the seismic gap is restricted to a

maximum width of 400 mm [7].

The set of design variables which results from the

parameter line-search finally equals:

Klam = 5.0 × 104 N/m,

c = 1.0 × 104 Ns/m, (16)

μ = 0.03.

Subsequently, a comparison is made between the sim-

ulation results of the fixed-base situation and the

isolated-base situation with design values according to

(16). As mentioned before, four recordings (measured

at four different seismic stations) of the 1995 Kobe

earthquake (all scaled to a horizontal PGA of 3 m/s2)

are used as excitation signals. An example of the re-

sults for the I DR and a (both defined as the maximum

absolute value over the entire time response) as a func-

tion of the construction level, is given in Fig. 6a for the

Shin–Osaka station record.

Clearly, seismic base isolation greatly benefits the

superstructure’s seismic performance. This is also

demonstrated in Fig. 7a, where the displacement of the

top of the building, relative to its base, is given. This

displacement is defined as:

x̃top = xtop − xiso, (17)

2 This PGA is chosen such that the fixed-base structure remains
in its elastic range for each record. This is done to enable a
comparison between the fixed-base and isolated-base situation,
later in this section.

where xtop and xiso denote the horizontal displacements

of the top of the building and the isolator, relative to

the coordinate system (X, Y, Z ) of Fig. 4.

The benefit of base isolation depends on the input

excitation spectrum. The benefit of base isolation is, in

other words, larger for some excitation records com-

pared to others. This can be observed when Figs. 6b

and 7b, which present the results for the KJMA station

record, are compared to Figs. 6a and 7a resulting from

the Shin–Osaka record. The benefit of isolation is far

less for the KJMA input record than for the Shin–Osaka

record. With the aid of steady-state nonlinear dynamic

analyses, which will be presented in Section 6, this

dependency on the input excitation spectrum will be

qualitatively clarified.

As mentioned in the introduction, various modelling

approximations are used in engineering practice, as pre-

scribed in recent building codes [6]. To study the ef-

fect of some of these modelling approaches, earthquake

time simulations are again employed. First of all, the

effect of taking into account vertical ground excitation

is considered. Next, the effect of the varying normal

force (constraint force) is investigated. This is done by

comparing the results of the original model (where the

normal force is calculated as a constraint force to de-

termine the friction force), to the results of a modified

model. In this modified model, the normal force in the

Coulomb friction model is fixed at its static equiva-

lent, caused by gravitational loading. This implies that,

in the case of the modified model, the friction force

does not depend on the dynamic response of the su-

perstructure, but is a function of sliding velocity only.

Finally, the effect of the dynamics of the superstructure

is studied. This is done by comparing the results of the

original model with the results of a model where the

superstructure is regarded as a rigid body (see Fig. 8).

From these analyses, which will not be discussed in

detail here, it can be concluded that the superstructure

flexibility greatly affects the total system’s response,

as it influences the shear forces that are exerted on the

isolation system. The other two effects (vertical exci-

tation and varying normal force) have relatively little

influence on the response of the isolation system and

superstructure.

6 Periodic solution analysis

The steady-state behaviour of a periodically excited

nonlinear dynamical system is often studied to detect
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Fig. 6 Performance indicators IDR and a, for the fixed-base and isolated-base system, as a function of the construction level, for the
Shin–Osaka (a) and KJMA (b) station record
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Fig. 7 Horizontal displacement of the top of the building relative to its base, x̃top, for the fixed-base and isolated-base system, as a
function of time, for the Shin–Osaka (a) and KJMA (b) station record

Springer



Nonlinear Dyn (2007) 50:523–538 533

Fig. 8 Isolator displacement xiso as a function of time for a
recording of the 1995 Kobe earthquake, for the case with and
without superstructure flexibility

resonance frequencies or bifurcation points which may

give rise to undesired dynamic behaviour. The result-

ing vibrations may have a periodic, quasi-periodic or

chaotic nature [23]. Periodic oscillations are charac-

terised by a fixed period time, whereas quasi-periodic

solutions can be considered as a countable sum of peri-

odic solutions with incommensurate base-frequencies.

A chaotic response exhibits extreme dependence on

the initial conditions. In this paper, we focus on finding

periodic solutions of the system for excitation frequen-

cies between 0.01 and 10 Hz. The somewhat smaller

frequency range of 0.1 to 10 Hz covers the most im-

portant frequencies in an earthquake excitation signal

[10, 16]. Various numerical algorithms exist for effi-

cient calculation of periodic solutions. In this research,

the Shooting method is used [23, 24].

Here, for periodic solution analysis, unidirectional

excitation is regarded with üver = 0 and:

ühor = Ahor sin(2π fhort). (18)

Unidirectional excitation is regarded since the horizon-

tal excitation component of an earthquake signal is usu-

ally dominant over the vertical one, and structures are

more vulnerable to horizontal ground motion than to

vertical ground motion [25]. In (18), Ahor denotes the

excitation amplitude [m/s2], while fhor [Hz] equals the

excitation frequency. In the Shooting method, periodic

solutions are found by solving a two-point boundary-

value problem. Herein, solutions of the function:

H (x0, T ) ≡ xT − x0 = 0, (19)

are sought. The column x follows from the state-

space formulation of the equations of motion (8b):

x = [qT q̇T ]T . Furthermore, xT denotes the solution

of the system after a time-lapse T , starting from the

initial condition x0 at t = t0. The period time of the

periodic solution is then given by T .

Next, a zero of H (x0, T ) is (iteratively) found by a

Newton–Raphson procedure [23, 24]:

∂ H

∂x0

�x0 = −H (x0, T ). (20)

Evaluation of the Jacobian yields:

∂ H

∂x0

= 
T (x0) − I, (21)

with 
T the monodromy matrix. This matrix can be

related to the evolution of solutions of perturbed initial

conditions after a period time T . The reader is referred

to [24] for more information about the monodromy

matrix.

Finally, in each iteration i , (20) is solved for �x0

and the following update is carried out:

xi+1
0 = xi

0 + �xi
0. (22)

During the iterations, the norm of the residual ε =
‖xi

T − xi
0‖ is evaluated. Convergence of the Shooting

method is attained, when the residual reaches a value

lower than a certain tolerance εshoot.

To enable application of the Shooting method to the

equations of motion (8), a transformation should be

applied from constrained to unconstrained dynamics.

Hereto, the following transformation is applied [5]:

q = Qz, (23)

with z = [x1 θ1 x2 θ2 qT
r

]T the column of nmin = 11

independent or minimal dof’s, and transformation ma-

trix Q (ng × nmin), with ng the number of dof’s of gen-

eralised dof column q. The transformation matrix is

chosen such that:

QT RT = O, (24)
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where O equals a zero-matrix with dimensions nmin ×
nc, with nc the number of constraints (in this case two).

With this transformation, the equations of motion (8b)

are changed into:

QT M Qz̈−QT h(Qz, Qż, ü)+QT Sλ = QT RT λ = 0.

(25)

When (8a) and (8b) are combined, the column of con-

straint forces can be obtained. With (23), this results

in:

λ = −[RM−1(RT − S)]−1 RM−1h(Qz, Qż, ü). (26)

It is noted that, due to the transformation, constraint

stabilisation (13) and (14) has become obsolete. By

combining (25) and (26), the column of accelerations

of the minimal dof’s then equals:

z̈ = M̄−1 QT {I + S[RM−1(RT − S)]−1 RM−1}
×h(Qz, Qż, ü), (27)

with M̄ = QT M Q. By numerical integration of (27),

the value of x (which has now become x = [zT żT ]T )

after a time-lapse T , xT , can be evaluated and a periodic

solution can be found with the Shooting method.

With the aid of path following techniques, periodic

solutions can be tracked for a changing system pa-

rameter, yielding a branch of periodic solutions. Here,

sequential continuation is used to calculate the peri-

odic solutions as a function of the horizontal excitation

frequency fhor. In sequential continuation, the periodic

solution at some value fhor is used to find a periodic

solution at f ∗
hor = fhor + � f with the aid of the Shoot-

ing method, which is likely to converge for small � f .

However, in this research, in some frequency regions

the convergence of the Shooting method is poor. In

these regions stepped frequency sweeping based on

standard numerical integration is applied. The length

of this time simulation is chosen long enough to ensure

that transients have died out and a steady-state solution

is reached. A disadvantage of this method is that it is a

relatively time-consuming procedure.

The results of the sequential continuation are given

in Fig. 9. Herein, the interstory drift ratio I DR, abso-

lute horizontal floor acceleration a (both defined as the

maximum value over the entire excitation period and

all construction levels), and isolator displacement am-
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Fig. 9 Frequency amplitude diagram of IDR, a and x̄iso, as a
function of fhor, for various excitation amplitudes Ahor, with
Klam = 5.0 × 104 N/m, c = 1.0 × 104 Ns/m, and μ = 0.03

plitude x̄iso, are shown as a function of fhor for various

acceleration excitation amplitudes Ahor. These excita-

tion amplitudes are based on the magnitudes of order

of the PGA of most earthquakes [21].
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In the lower graph of Fig. 9, a distinction can

be made between frequency regions where x̄iso = 0

(consequently, the isolator displacement amplitude is

not indicated in the double-logarithmic graph) and fre-

quency regions where the isolator exhibits stick-slip

motion with x̄iso �= 0. In the frequency range above 2.5

Hz, for all values of Ahor considered, the system is in

stick during the entire period.3 Hence, in this frequency

range, the system can be regarded as a fixed-base super-

structure and fixed-base eigenfrequencies can be dis-

tinguished in the results for I DR and a.

When the excitation amplitude is increased, the

shear forces that are exerted by the superstructure on

the isolation system, are increased as well. Therefore,

the larger the excitation amplitude, the larger the fre-

quency regions with isolator stick-slip motion. In ad-

dition, the shear forces that are exerted on the isola-

tion system are the largest near the resonance frequen-

cies of the superstructure. This is the reason why in

Fig. 9, for example, for a value of Ahor = 2.0 m/s2,

isolator stick-slip motion is induced around the sec-

ond and third fixed-base eigenfrequency at 1.27 and

1.98 Hz, respectively (see also Fig. 2b). Finally, for

very low excitation amplitudes (e.g. Ahor = 0.1 m/s2),

the system acts as a fixed-base superstructure over al-

most the entire frequency range, except for a small fre-

quency band near the first fixed-base eigenfrequency at

0.46 Hz.

In Fig. 9, a harmonic resonance frequency can be

distinguished at approximately 0.06 Hz. This base iso-

lation resonance frequency fbis can be approximated

by the eigenfrequency of a single-degree of freedom

system, where the superstructure is considered to be

a rigid body with mass Ms , supported by an isolation

system without friction elements:

fbis = 1

2π

√
2Klam

Ms
. (28)

This is caused by the fact that, near the base isolation

resonance frequency, stiction is relatively insignificant

compared to slip. To decrease structural damage due

to earthquakes, the base isolation system is designed

such that this base isolation resonance frequency is be-

3 Note that actual stiction is only approximated by the smooth
arctangens formulation of the Coulomb friction model. However,
these results are all verified with the switch-model with stiction.
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Fig. 10 Frequency amplitude diagram of x̄iso, as a function of
fhor, compared to the results of a model with rigid-body super-
structure

low the most dominant excitation frequency range of

earthquakes (0.1 to 10 Hz). In addition, in the low fre-

quency range up to about 0.5 Hz, the superstructure

can be regarded as a rigid body. This is demonstrated

in Fig. 10, where the results of the original model are

compared to the results of a single-dof model with rigid

body superstructure, supported by the isolation system

with friction elements. This resemblance increases with

increasing excitation amplitude.

The excitation is chosen such that the acceleration

amplitude (Ahor) is the same for all frequencies. For

very low frequencies, this implies that large excitation

displacements result. These large displacements (and

the resulting isolator displacements) are physically un-

realistic. A more realistic excitation signal is typically

based on a constant excitation displacement amplitude

in the low frequency range, a constant excitation ve-
locity amplitude in the middle frequency range, and a

constant excitation acceleration amplitude in the high

frequency range [10]. However, the objective of this

paper is merely to show that steady-state analyses may

give valuable additional insight in the nonlinear dy-

namic behaviour of a friction-based base-isolated su-

perstructure, next to the standard transient analyses.

Here, several acceleration amplitude levels are em-

ployed to study the effect of the excitation amplitude

on the dynamic behaviour of the system.

With the aid of the frequency amplitude diagrams,

also a comparison can be made between the steady-state

periodic behaviour of the superstructure in the fixed-

base and isolated-base situation. This is demonstrated
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Fig. 11 Frequency amplitude diagram of I DR and a in the
fixed-base and isolated-base situation, as a function of fhor, for
an excitation amplitude of 0.5 m/s2

in Fig. 11 for an acceleration excitation amplitude of

0.5 m/s2. In the fixed-base situation, the system is lin-

ear and, therefore, the frequency amplitude diagrams

can be regarded as (linear) frequency response func-

tions (FRF’s). From Fig. 11, it can be seen that the

seismic resistance is improved in the frequency range

of 0.1 to 1 Hz. Levels of IDR and a are largely de-

creased near the first fixed-base eigenfrequency at 0.46

Hz. For higher frequencies, the system’s dynamic be-

haviour is not affected by base-isolation, because the

isolation system is in stick during the entire period.

The improvement between 0.1 and 1 Hz, however, is at

the expense of a deteriorated performance around the

base isolation resonance frequency (in this case approx-

imately 0.06 Hz). In general, though, the acceleration

excitation amplitudes in the frequency range up to 0.1

Hz are small (earthquakes are most dominant between

0.1 and 10 Hz [10, 16]). Indeed, recall that this is the

reason for designing the base isolation system such that

the base isolation resonance frequency (28) is below

0.1 Hz. Hence, a base isolation system generally ben-

efits the transient response of structures to earthquake

excitation.

In addition, these nonlinear frequency amplitude

diagrams have been used to study the effect of all

three isolator design variables (Klam, c and μ) on the

seismic isolation characteristics. From these param-

eter studies, it is concluded that for increasing fric-

tion coefficient μ, the frequency ranges where the

isolator remains in stick during the entire period,

are increased as well. Obviously, in the frequency

ranges where the isolator remains in stick, the iso-

lator stiffness and damping constant have no influ-

ence. These two design variables do influence the base

isolation resonance frequency, which can be approxi-

mated by (28), and the corresponding amplitude of this

resonance.

Finally, the steady-state analyses are qualitatively

correlated with the transient analyses of Section 5.

From the frequency amplitude diagrams in Fig. 9, it

can be stated that isolator slip mainly occurs in the

low frequency excitation range (up to 1 Hz). There-

fore, earthquake input spectra with a relatively large

energy content in this frequency range, will result in a

larger isolator displacement. This also provides some

indication about the level of uncoupling of the super-

structure from the ground motion. In general, the larger

the isolator displacement, the larger the degree of un-

coupling and the smaller the amount of seismic energy

that is transferred to the superstructure. This clarifies

why, as mentioned in Section 5, the extent of benefit of

base isolation depends on the input excitation spectrum.

The power spectral density (PSD) of the four different

excitation records of Section 5 can be used to elucidate

why the largest benefit of base isolation is obtained for

the Shin–Osaka record. This record is namely relatively

dominant in the low frequency range between 0.2 and

0.8 Hz, compared to the KJMA record and the two other

records.

Summarizing, the steady-state analyses seem to pro-

vide a link between the PSD of the earthquake excita-

tion signals and the extent of the benefit of isolation.

Still, the nonstationarity of these excitation signals and

the fact that modal superposition can not be applied to

nonlinear systems, make a clear interpretation of this

link very difficult.
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7 Conclusions

In this paper, the modelling and analysis of a non-

smooth base-isolated structure has been discussed. This

study forms an example of an emerging application

of the modelling and analysis of non-smooth dynam-

ics in the field of civil engineering. The base isolation

system, consisting of a combination of laminated rub-

ber bearings, viscous dampers and friction elements,

has been chosen to seismically isolate a building of 11

construction levels. A dynamic model of this building

has been derived with finite element techniques, after

which dynamic model reduction has been performed

to reduce the number of degrees of freedom. A smooth

approximation of the discontinuous behaviour of fric-

tion has been used in the derivation of the equations of

motion of the base-isolated structure, with the aid of

Lagrange’s method for systems with constraints. The

results based on this modelling approach of the friction

elements, have been verified with the results based on

a non-smooth switch-band model.

In transient time simulations, the benefit of base iso-

lation has been demonstrated for recordings of the Kobe

earthquake. The extent of benefit of base isolation de-

pends on the input excitation spectrum. In addition, the

influence of various modelling approaches has been

studied. It can be concluded that the dynamics of the

superstructure (superstructure flexibility) largely influ-

ence the total system’s dynamic response. Other effects,

such as the vertical ground acceleration and the varying

normal force on the friction elements, have relatively

little influence on the isolator displacement and the su-

perstructure response.

Steady-state analysis with the aid of periodic so-

lution solvers provides valuable insight in the nonlin-

ear dynamic behaviour of the base-isolated structure.

A base isolation resonance frequency has been distin-

guished in the results, which can be approximated by

the eigenfrequency of a single-degree of freedom sys-

tem, where the superstructure is regarded as a rigid

body, supported by the isolation system without friction

elements. The obtained frequency amplitude diagrams

have revealed that, for the acceleration excitation levels

considered, the friction-based base isolation system is

only activated in the low frequency excitation range up

to 1 Hz. For higher frequencies, the isolation system

remains in stick during the entire period of the periodic

solution and the system acts as a fixed-base structure.

In conclusion, it is stated that the steady-state analy-

ses of this non-smooth dynamical system can be used

to (qualitatively) clarify the dependency of the bene-

fit of base isolation on the input excitation spectrum.

Therefore, it may be expected that, in the future, theory

and numerical tools for non-smooth dynamical systems

may prove to be very useful in the design of earthquake

resistant structures.
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