
ORIGINAL PAPER

Synoptic conditions associated with cool season post-fire
debris flows in the Transverse Ranges of southern
California

Nina S. Oakley1,2,4 • Jeremy T. Lancaster3 • Michael L. Kaplan2 •

F. Martin Ralph4

Received: 16 September 2016 / Accepted: 8 April 2017 / Published online: 22 April 2017
� The Author(s) 2017. This article is an open access publication

Abstract The Transverse Ranges of southern California often experience fire followed by

flood. This sequence sometimes causes post-fire debris flows (PFDFs) that threaten life and

property situated on alluvial fans. The combination of steep topography, highly erodible

rock and soil, and wildfire, coupled with intense rainfall, can initiate PFDFs even in cases

of relatively small storm rainfall totals. This study identifies common atmospheric con-

ditions during which damaging PFDFs occur in the Transverse Ranges during the cool

season, defined here as November–March. A compilation of 93 PFDF events during

1980–2014 triggered by 19 precipitation events is compared against previous studies of the

events, reanalysis, precipitation, and radar data to estimate PFDF trigger times. Each event

was analyzed to determine common atmospheric features and their range of values present

at and preceding the trigger time. Results show atmospheric rivers are a dominant feature,

observed in 13 of the 19 events. Other common features include low-level winds

orthogonal to the Transverse Ranges and other conditions favorable for orographic forcing,

a strong upper level jet south of the region, and moist-neutral static stability. Several events

included closed low-pressure systems or narrow cold frontal rain bands. These findings can

help forecasters identify more precisely the synoptic-scale atmospheric conditions required

to produce PFDF-triggering rainfall and thus reduce uncertainty when issuing warnings.
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Abbreviations
LST Local standard time

UTC Coordinated universal time

PFDF Post-fire debris flow

I–D Intensity–duration

AR Atmospheric river

CL Closed low

ARCL Both AR and CL

OTH Other atmospheric feature

IWV Integrated water vapor

IVT Integrated water vapor transport

NCFR Narrow cold frontal rain band

NARR North American Regional Reanalysis

LLJ Low-level jet

CAPE Convective available potential energy

VBG Vandenberg, California

CW3E Center for Western Weather and Water Extremes

1 Introduction

1.1 Post-fire debris flows

The Transverse Ranges of southern California feature a combination of steep and complex

terrain, combustible fuels, a prolonged dry season, and strong wind events such as Santa

Anas. These factors combined produce the most intense fire climate in the USA (Fig. 1;

Wells 1981, 1987; Raphael 2003; Keeley et al. 2004). The Transverse Ranges are also

prone to multi-year drought interspersed with wet weather, a combination conducive to

growth and then desiccation of the region’s fire-prone chaparral vegetation.

Wildfire has profound effects on storm runoff, erosion, and sedimentation in the

Transverse Ranges. For several years following a fire, runoff rates can more than double

due to alteration or removal of the vegetation and litter cover, soil-sealing translocation of
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Fig. 1 a Fires in the transverse ranges under Santa Ana wind conditions from NASA MODIS visible
imagery during October 2003 (NASA Earth Observatory 2003). b House buried by post-fire debris flow
from the Old Fire burn area in December 2003 (Photo: J. Gartner, USGS). c SSM/I imagery showing an
atmospheric river impacting southern California on 24 December 2003, triggering the PFDF event shown in
b as it moved south along the coast on the 25th
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minerals and ash, fire-induced degradation of soil and rock, and the development of water

repellant soil conditions (DeBano 1981, 2000; Neary et al. 1999; Parise and Cannon 2012).

Post-fire debris flows (PFDFs), the most severe runoff response to precipitation on burned

watersheds, tend to occur in steep watershed areas burned at moderate to high severity,

with the largest events often triggered by the first significant rainstorm (Cannon et al. 2008;

Parise and Cannon 2012). PFDFs are a common threat to southern California communities

(Eaton 1936; USGS 2005); since the early 1900s urbanization on alluvial fans and

floodplains within and adjacent to the Transverse Ranges has resulted in loss of life and

property associated with PFDFs (e.g., Chawner 1935; Eaton 1936; Troxell and Petersen

1937; Shuirman and Slosson 1992; Cannon et al. 2010).

Previous work has cited ‘‘intense convection’’ as the main cause of rainfall intensities

sufficient for PFDFs (Slosson et al. 1991; Cannon et al. 2008, 2010; Moody et al. 2013),

but provides few details as to broader scale conditions present when this intense convection

occurs. One recent study provides an in-depth meteorological case study of an individual

PFDF event in the western Santa Monica Mountains (Sukup et al. 2016). Absent, however,

is a comprehensive examination of atmospheric conditions across multiple PFDF events.

Our study presents an overview of the meso-beta (20–200 km) to synoptic ([2000 km)

scale atmospheric conditions associated with PFDFs in the Transverse Ranges during 19

precipitation events between 1980 and 2014 (Table 1). This study extends earlier work by

taking advantage of the recently developed understanding and documentation of atmo-

spheric rivers, as summarized by Ralph et al. (2016), and of closed and cut-off lows, as

documented by Oakley and Redmond (2014). This paper presents the first quantitative

cross-disciplinary assessment of how prevalent these phenomena are to the occurrence of

PFDFs in this region.

Meteorological case studies were generated for each PFDF event date, and common

features observed among events serve as an ‘‘ingredient list’’ for conditions conducive to

PFDFs in the Transverse Ranges. While many of these ingredients may already be familiar

to weather forecasters, they can utilize the analysis of conditions across a broad range of

events to put forecast events in context and examine variability across events. This work

facilitates non-meteorologist understanding of weather forecasts presented by NWS related

to PFDFs, builds on past collaborative multidisciplinary work (NOAA-USGS Debris Flow

Task Force 2005; Jorgensen et al. 2011), and provides a foundation for new research

directions that cross the boundaries between meteorology, geology, and hydrology.

1.2 Meteorological conditions associated with intense precipitation
in southern California

Southern California and the Transverse Ranges experience some of the highest storm

precipitation totals in the nation, on par with totals seen in hurricanes in the southeastern

United States and thunderstorms in the Midwest (Dettinger et al. 2011; Ralph and Det-

tinger 2012). The highest probable 1-h precipitation intensities in this region are on par

with those seen in association with Midwest thunderstorms (NOAA HDSC 2017). At the

synoptic (coarse) scale, mid-latitude cyclones are generally responsible for bringing cool

season precipitation to California (Weaver 1962; Monteverdi 1995). These cyclones may

vary in size, shape, intensity, and moisture transport; some may have associated atmo-

spheric rivers or become closed lows, as described below. Additionally, many finer scale

features and processes that go beyond the resolution of this synoptic-scale study are also at

work to create convection ‘‘hotspots’’ that produce the short duration, high intensity pre-

cipitation conducive to PFDFs (Jorgensen et al. 2011; Moody et al. 2013). Some of the
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features considered in this study are atmospheric rivers, closed lows, orographic lift, and

other types of lift.

Atmospheric rivers (ARs; Figs. 1c, 3d) are narrow corridors of high water vapor transport

typically found in the lowest 2.5 km of the atmosphere (Zhu and Newell 1998; Ralph et al.

2004, 2005). ARs are found ahead of the cold front in mid-latitude cyclones and source their

moisture from the tropics and extratropics (Browning and Pardoe 1973; Ralph et al. 2004).

They are typically\1000 km in width,[2000 km in length, and have integrated water vapor

(IWV; specific humidity integrated over a vertical column) values exceeding 20 mm (Ralph

et al. 2004; Neiman et al. 2008). Additionally, integrated water vapor transport (IVT; the

product of specific humidity and wind integrated over a vertical column) exceeding

250 kg m-1 s-1 is a criteria ofARs that accounts for the importance ofwind velocity in vapor

transport, upslope vapor flux, and precipitation when the AR encounters terrain (Moore et al.

2012; Rutz et al. 2014). In southern California, ARs are most abundant in the cool season

(November–April; Neiman et al. 2008; Dettinger et al. 2011) and account for roughly

40–50% of cool season precipitation (Dettinger et al. 2011; Ralph et al. 2013; Rutz et al.

2014). ARs are associated with most of the area’s extreme precipitation events (Dettinger

et al. 2011; Ralph and Dettinger 2012) and have been found to produce, on average, twice the

precipitation of winter storms without ARs (Neiman et al. 2008). ARs feature low-level jets

(LLJs), strong winds in the lowest 2 km of the atmosphere (Browning and Pardoe 1973;

Ralph et al. 2005). LLJs impacting coastal California vary in strength, from[12.5 m s-1 in

Ralph andDettinger (2012) to[20 m s-1 in Ralph et al. (2005). The presence and strength of

a LLJ can help dictate precipitation intensity in complex terrain, with stronger LLJs pro-

ducing grater upslope flux and enhanced precipitation (Ralph et al. 2006).

Closed lows (CLs) are a subset of mid-latitude cyclones that are frequently observed

over California in the cool season months. They have closed height contours and complete

cyclonic (counterclockwise) flow around their centers at mid- to upper levels of the

atmosphere. These properties help to impede a closed low’s downstream motion such that

CLs, often in concert with other features like ARs, can produce sustained precipitation

(Oakley and Redmond 2014).

Tarleton and Kluck (1994) cite strong orographic forcing as one of the reasons a large

concentration of major California precipitation events occur in the Transverse Ranges.

Orographic precipitation occurs when moist air is forced to ascend a terrain barrier. As the

moist air rises and cools, condensation and ultimately precipitation occur. Lin et al. (2001)

define five common ingredients for intense orographic precipitation: (1) a conditionally or

potentially unstable air mass—an air mass that, if forced to ascend, will continue to do so,

(2) presence of a low-level wind speed maximum containing moist air oriented orthogonal

to the mountain barrier, (3) presence of a steep mountain, (4) a slow-moving weather

system, and (5) high precipitation efficiency, a quantity related to the vertical flux of

moisture, horizontal length of storm, and propagation speed of storm. During an AR

impinging on the Transverse Ranges and its associated LLJ, these conditions are often met,

resulting in heavy precipitation (Neiman et al. 2002, 2004; Ralph et al. 2006).

Other types of forced ascent beyond orographic lift contribute to convective cells that

trigger PFDFs in the Transverse Ranges as well. Along a cold front, air may be forced to

ascend as an incoming cold, dense air mass forces it upward. This can result in the

formation of a narrow cold frontal rain band, a line of intense convective cells parallel to

the cold front (Hobbs 1978; Hobbs and Persson 1982). Upper level (above 300 hPa) jet

structure may also contribute to the development of convective cells. There are locations in

the jet structure that produce divergence at upper levels, favoring lift (Carlson 1998).

Isolated thunderstorms in this region, while uncommon in the cool season, are occasionally
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observed during the boundary months of the season. These storms occur on a spatial scale

of tens of kilometers, thus producing precipitation over a much smaller area than that

affected by a mid-latitude cyclone.

2 Methods

2.1 Compilation of PFDF catalog

A catalog of post-fire debris flow events in the Transverse Ranges and relevant details was

compiled for the period 1980–2014. This range is based on the availability and qualities of

PFDF events as well as availability of moderate resolution meteorological information

from the North American Regional Reanalysis (NARR; Mesinger et al. 2006) used in

generating case studies. The catalog was compiled using a variety of publications, U.S.

Geological Survey reports, and newspaper articles as noted in Table 1. The requirements

for a PFDF event to be included in the database are:

• Occurred within two years of a fire

• Identified as a PFDF in scientific literature

• Time of event triggering rainfall was either known, or could be determined

• Occurred in cool season (November–April)

• Event is generally of note and familiar to the PFDF community

Based on these criteria, an original compilation of several hundred PFDF events was

refined, with the resulting catalog containing 93 individual PFDFs occurring as part of 21

‘‘events’’ (multiple PFDFs in a burned area) on 19 distinct dates. The events occurred in 12

burn areas in the Transverse Ranges, as shown in Fig. 2.

Fig. 2 Map of the study area showing selected fire perimeters (colored polygons; CALFIRE 2014),
locations of individual debris flows (filled triangles), and location of precipitation gauges used to determine
trigger time of debris flows. Year given for each burn area is the year fire occurred
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2.2 Timing of PFDF events

To assess meteorological conditions associated with the occurrence of a PFDF, it was

necessary to assign a trigger time to each event. This posed a challenge as time of

occurrence is rarely provided in the PFDF literature due to lack of observations. Indeed,

Guzzetti et al. (2008) found that globally, only 5.1% of the 2626 published landslide and

debris flow events had timing data accurate to ±12 h (Staley et al. 2013).

Precipitation intensity–duration (I–D) thresholds are developed through identification of

runoff response in burned watersheds (Cannon et al. 2008; Staley et al. 2013) and are a

common way of representing potential risk in a recently burned area. In this study, we have

chosen to use I–D thresholds proposed by Staley et al. (2013). This approach improves

upon the earlier threshold delineation approach of Cannon et al. (2008) by utilizing

instrumented watersheds and analyzing rainfall prior to the debris flow event instead of

approximating the PFDF trigger timing with peak rainfall intensity. This improved tem-

poral correlation between PFDF event and threshold exceedance as well as assisted in

developing thresholds that balance predictive success with false (debris flow does not occur

when precipitation threshold is exceeded) and failed alarms (debris flow occurs when

precipitation is below threshold). Recent work based on objective measurements of PFDFs

in the Transverse Ranges has suggested that I–D thresholds for periods \30 min are

considered the best predictor of PFDF events (Kean et al. 2011; Staley et al. 2013). In this

study, we recognize the importance of sub-hourly I–D thresholds and, where available, use

these thresholds in our analysis. For the events where precipitation data were needed to

help determine timing, we utilized hourly to sub-hourly precipitation data from the Remote

Automated Weather Station (RAWS) network provided by the Western Regional Climate

Center (WRCC; http://raws.dri.edu/), National Oceanographic and Atmospheric Admin-

istration (NOAA) Hourly Precipitation Data (HPD) network provided by the WRCC

(http://wrcc.dri.edu/hpd/), as well as data from the Ventura County Watershed Protection

District network (http://www.vcwatershed.net/hydrodata/); Fig. 2 depicts station locations.

The procedure used to estimate timing of events is as follows:

1. Documented trigger times established through instrumentation of a watershed were

given priority as the trigger time of the event.

2. When a documented trigger time is available in the literature (regardless of

instrumentation of the watershed), that time is used. If an event has several PFDFs

over the course of a day, a time representative of the majority of PFDF occurrences is

selected.

3. When precise timing is not available, the hour during which precipitation crosses the

1-h minimum I–D threshold (12.4 mm; Staley et al. 2013) at the closest station(s) to

the burn area is used as the trigger time. In cases where stations were not particularly

representative of the burn area or rainfall did not exceed the threshold, additional

references were reviewed (4–6 below).

4. Information found in resources such as newspapers and blogs was used in conjunction

with precipitation data to help estimate event timing.

5. For post-1995 events, National Reflectivity Mosaic imagery from National Centers for

Environmental Information’s Radar Data Map (NCEI 2016) was used to help

determine when intense precipitation was present over a burn area.

6. In cases where precipitation did not exceed the 12.4 mm h-1 threshold in available

precipitation data and no radar imagery was available, the intense precipitation was

334 Nat Hazards (2017) 88:327–354

123

http://raws.dri.edu/
http://wrcc.dri.edu/hpd/
http://www.vcwatershed.net/hydrodata/


assumed to be very localized and the event time assigned corresponded to the greatest

precipitation intensity on the PFDF date.

NARR data utilized span 1979-present and are available at 3-h time steps beginning at 00

UTC each day. The NARR time step closest to the PFDF estimated trigger time is used for

the meteorological case studies and hereafter referred to as the ‘‘NARR time’’. In the case

of the 2009-02-13 and 1998-02-02 events, it was more desirable to use the closest pre-

ceding NARR time rather than the closest NARR time based on limited and variable

precipitation observations and radar imagery, as this would more accurately capture the

onset of the event.

2.3 Connecting PFDF events to meteorology

2.3.1 Comparison with established atmospheric river and closed low catalogs

For the list of PFDF dates and associated NARR times, a comparison was made with

established AR and CL catalogs. The catalog of CLs, based off the methods in Oakley and

Redmond (2014), covers the domain 20�–50�N, 110�–140�W at a 6-h time step. The

catalog of ARs, which utilizes the methods of Rutz et al. (2014), determines whether AR

conditions are present at individual grid points at a 6-h time step. Both catalogs utilize the

2.5� resolution NCEP/NCAR Reanalysis product (Kalnay et al. 1996). If the NARR time of

a PFDF occurred within ±12 h of the presence of a CL in the catalog and NARR imagery

revealed the feature to be pertinent to the precipitation event, the PFDF was associated

with a CL. If the NARR time of a PFDF occurred within ±12 h of AR conditions at 35�N,
122.5�W (closest grid point to study area), the PFDF was associated with an AR.

2.3.2 Development of meteorological case studies

Imagery of meteorological variables was generated for a 3-day period surrounding each

PFDF event using the 32-km grid spacing, 3-h temporal resolution NARR data for a region

spanning 20�–50�N, 105�–150�W. NARR data are generated by ingesting surface and

upper air observations from the continental US into a meteorological simulation model to

produce a spatially and temporally consistent meteorological record (Mesinger et al. 2006).

The case studies were examined to determine common meso-beta to synoptic features

present during PFDF events by generating the following imagery:

1. 300 hPa vector wind, heights, isotachs This allows observation of the position of both

the polar and subtropical jets, which can drive convection through patterns of

convergence and divergence (Fig. 3a).

2. 500 hPa height, IWV, and IVT 500 hPa heights reveal the ridge/trough pattern over the

region. IWV and IVT help diagnose if an AR is present and moisture available for

precipitation (Fig. 3b).

3. 925 hPa height, vector wind, isotachs Winds slightly above the surface at 925 hPa

(*750 m) provide insight into the potential for orographic forcing and this level is

close to the core altitude of water vapor transport in ARs (Fig. 3c).

4. Vertical profiles of stability, moisture flux, and wind These variables are used to

examine stability of the atmosphere and moisture flux. Profiles were taken at a grid

point upstream (south) of each burn area and offshore in an attempt to reduce the

effects of terrain-related issues in NARR and provide a full profile of the atmosphere

(e.g., Fig. 6).
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Composites of these variables were also generated to identify atmospheric features that

have a strong signal across events. Additional data used to support case studies include

radar imagery (NCEI 2016), wind profiler data (NOAA ESRL 2016) and Special Sensor

Microwave Imager (SSM/I) satellite-derived IWV (CIMSS 2016).

2.3.3 Analysis of meteorological variables

For a variety of meteorological variables, NARR values were extracted for each event’s

NARR time, time-3 h, and time-6 h. Variables assessed include: winds at various levels,

IWV, IVT, and convective available potential energy (CAPE, a measure of buoyant energy
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and an indicator of potential for severe weather). Value ranges were generated based on a

set of 12 NARR grid points overlying each burn area, shifted for events in different parts of

the region. The values of the 12 grid points for each of the 21 events (a total of 252 values)

are then aggregated, providing a range of values across all analyzed PFDF events in the

Transverse Ranges.

For scalar variables such as IWV, magnitude of IVT, and CAPE, boxplots showing the

median, quartiles, and outliers among values were generated for the aggregated event data.

To provide additional information based on direct observation, CAPE was also composited

for events using rawinsonde data from Vandenberg Air Force Base (VBG), the closest

rawinsonde launch location, approximately 200 km northwest of the study area. VBG

rawinsonde data are available at 00 UTC and 12 UTC and were acquired from Plymouth

State (2016) upper air data archives. Data were obtained for the rawinsonde time closest to

the PFDF event NARR time when possible. If rawinsonde observations were missing, then

the next closest time available was used. If the NARR time for an event was 06 UTC or 18

UTC, exactly between VBG rawinsonde observations, the sounding with a higher CAPE

value was used. For the vector variables wind speed and direction, wind roses were made

from the aggregate event data at several different atmospheric levels.

To provide a climatological context for each event, climatologies were constructed from

NARR for IVT, IWV, and CAPE. For each of the event dates, a period of ±5 days was

considered, for a total period of 11 days. This was done such that each event is put in

context of its particular time of year, as there may be considerable variability in the

climatology of atmospheric variables within the cool season (e.g., Rutz et al. 2014). Each

of the variables was then extracted from NARR for each 3-h time step in this 11-day period

(88 time steps) from each year of the NARR period of record. Values were extracted at

each time step for an 8 9 5 grid cell area (256 km by 160 km) overlaying the study area,

and the maximum value in the grid pulled at each time step. This generated a sample size

of 3256 values. Percentiles were computed from these values for each of the variables. The

maximum value at the time of each PFDF event was then evaluated against the climatology

to determine its percentile ranking, and the rankings are provided in ‘‘Appendix’’.

3 Results and discussion

3.1 Synoptic scale features

Atmospheric rivers and their associated features as well as the common ingredients for

heavy orographic precipitation were found in a majority of PFDF events. AR conditions

were present during 68% of case studies and CLs occurred in 26% of events. Five events

featured neither an AR nor CL (Table 2; ‘‘Appendix’’).

Consistent with the dominance of AR events, compositing of IWV shows the upper

three quartiles of grid points at the time of event exceed the 20 mm AR threshold (Fig. 4).

Averaged across events, IWV values were in the 92nd percentile with respect to clima-

tology (‘‘Appendix’’). For the IVT variable, the 250 kg m-1 s-1 AR threshold fell in the

lower third of the lower middle quartile of the distribution at the time of event (Fig. 4). All

six non-AR events had a majority of their 12 grid points at the time of event below IWV

and IVT thresholds for ARs. Averaged across events, IVT values were in the 95th per-

centile with respect to climatology (‘‘Appendix’’). In some cases, IVT or IWV at event-3 h

or event-6 h were higher than at event time (Fig. 4). An AR is typically located in the
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warm sector of a storm, preceding the cold front. Since many of the events exhibit lift

associated with the cold front, it is possible to see convection capable of initiating a PFDF

occur following the maximum values of IVT or IWV in a storm. Averaged across events,

75% of the moisture flux (product of specific humidity and wind speed) was located below

Table 2 Summary of atmospheric features in 19 PFDF events

Features in PFDF events

1. Atmospheric river (AR) or closed low (CL) presence (n = 19 events)

AR only: 9 events CL only: 1 event AR and CL: 4 events None: 5 events
Total events with AR: 13 events
Total events with CL: 5 events

2. Upper level trough orientation (n = 19 events)

Positive tilt: 4 events
Negative tilt: 7 events
Neutral: 8 events

3. Jet position in relation to Transverse Range study area (n = 19 events)

Jet to south: 13 events
Jet overhead/splitting: 5 events
Jet to north: 1 event

4. Stability profile (surface to 700 hPa; n = 19 events)

Weakly unstable, ohe�
oz \0, slightly: 3 events

Moist neutral, ohe�
oz ffi 0: 9 events

Vertical transition from unstable to moist neutral: 7 events

5. Features in radar imagery (n = 14, only post-1995 available)

NCFR: 5 events
Isolated cell: 1 event
Other: 8 events

Attributions for individual PFDF events can be found in ‘‘Appendix’’
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600 hPa (*4 km; Fig. 6b). This is higher in the atmosphere than in previous studies of

ARs off the California coast, where 75% of moisture flux was observed below 2.25 km

(Ralph et al. 2005).

Most events featured a neutral or negatively tilted trough (as seen in Fig. 3a, b; ‘‘Ap-

pendix’’). In the case of a negatively tilted trough, instability and convection are favorable, as

cold air advection occurs at upper levels above relatively warm air at low levels (MacDonald

1976). Instability can still occur within a neutral and positively tilted trough as well.

3.2 Jet position, structure, and winds

At the NARR event time, the dominant direction of the 300 hPa upper level flow over the

composited study areas was southwest to west-southwest (Fig. 5, top; ‘‘Appendix’’). All

observations fell between 185� and 285�, with 90% of observations falling between 215�
and 275�. In a majority of observations (67%), the average speed of the 300 hPa flow over

the area of interest was C40 m s-1, indicative of a weak of a weak to moderate flow aloft.

Several of the events examined see 300 hPa wind speeds in excess of 50 m s-1, indicating

moderate to strong flow. The velocity of the upper level winds indicates the strength of the

upper level divergence, which promotes upward vertical motions and potential for pre-

cipitation (Clark et al. 2009; O’Hara et al. 2009).
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The position of the upper level jet was to the south of the region of interest in a majority

of events (68%; Table 2), typically placing the Transverse Ranges in the curved jet exit

and/or the left exit of a jet streak, an area associated with strong upper level divergence and

lift, as shown in Fig. 3a. This is consistent with the ‘‘southerly displaced jet stream’’ cited

by Tarleton and Kluck (1994) as a typical feature in extreme precipitation events in

California. In several cases (26%), the upper level jet was directly over the study area, and

finer scale splitting within the jet developed entrance or exit regions over the study area

favorable for upper level divergence. In only one case, the upper level jet was located to

the north of the region, though was positioned such that the right entrance of the jet was

over the Transverse Ranges.

At mid-levels (700 hPa), winds were predominantly from the southwest at the time of

the event, with 69% of observations falling between 205� and 245� (Fig. 5, middle row).

The predominant speed was 15–20 m s-1 (38%); and 37% of observations were greater

than 20 m s-1. From NARR time-6 h through NARR time of event, wind speeds increased

and direction became more uniformly from the southwest.

At low levels (925 hPa), wind direction was predominantly from 155� to 215� (60% of

observations; Fig. 5 bottom row and ‘‘Appendix’’). The dominant speed was 5–10 m s-1

(49%), with 8% of observations exceeding 15 m s-1. This is significant in that the low-

level moderate intensity southerly winds are orthogonal to the east-to-west oriented

Transverse Ranges, providing one of the necessary conditions for heavy orographic pre-

cipitation (Lin et al. 2001).

Wind profiler data (NOAA ESRL 2016; as in Fig. 3e) were used to diagnose the

presence of LLJs for events when data were available. Profiler data were available for the

ten post-2005 events, though available locations were inconsistent. Profiler data confirmed

the presence of LLJs in the seven of these events; six of which were AR events. No LLJ

was detected in three of the four non-AR events in this period (‘‘Appendix’’).

3.3 Atmospheric stability

Stability profiles below *3 km (700 hPa) as observed in vertical profiles could be broadly

divided into weakly unstable, moist neutral, or unstable near surface becoming moist

neutral with height (Table 2; ‘‘Appendix’’). A large majority of the events showed moist-

neutral stability either in all levels below 3 km or in the 1–2? km layer (Fig. 6a). Moist-

neutral stability is recognized as little or no change in he* with height ohe�=oz ¼ 0ð Þ. The
significance of moist neutrality is that if the parcel is displaced upward, it will maintain its

new position. Air parcels in a neutral setting can be forced to ascend relatively easily in the

presence of a lifting mechanism such as a cold front or mountain barrier, resulting in

convection. Moist-neutral stability is a common feature of ARs (Ralph et al. 2005). Several

events saw instability at low levels (ohe�=oz\ 0; Fig. 6a) transitioning to moist neutral

near 1 km, distinct from the moist-neutral layer observed from the surface to 2.8 km in a

composite of AR events presented by Ralph et al. (2005).

The scale for CAPE begins at 0, and higher values of CAPE indicate greater instability

and severe weather. In the CAPE climatologies created for periods relative to the PFDF

events studied here, a CAPE value of 100 J kg-1 was on average the 85th percentile for the

maximum values in the study area (‘‘Appendix’’). At the NARR event time, median NARR

CAPE was 20 J kg-1 and ranged from 0 to 1330 J kg-1, with the values exceeding

500 J kg-1 all coming from grid points associated with the two Springs Fire cases in the

Santa Monica Mountains. At the time closest to the event, median CAPE from the VBG

soundings was 40 J kg-1 and ranged from 0 to 463 J kg-1 (Fig. 7; ‘‘Appendix’’). A
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general trend of increasing CAPE was observed in NARR in the 3-h and 6-h time steps

leading up to the event (Fig. 7).

3.4 Analysis of radar imagery

Radar imagery was available for 14 unique PFDF event dates through NCEI’s Radar Data

Map (https://gis.ncdc.noaa.gov/maps/ncei/radar). All events had radar returns of at a

minimum 50 dBZ (approximately [48 mm h-1; as in Fig. 3f),1 indicative of heavy
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Fig. 6 aMoist stability profile for 19 PFDF events and b moisture flux profile for 19 PFDF events based on
NARR data at NARR event time. In plot a, values close to 0 correspond to moist-neutral conditions

Fig. 7 Box-and-whisker plots for composite CAPE from NARR data for 12 grid points pertaining to each
of 21 PFDF events at NARR time of event, NARR time-3 h, and NARR time-6 h prior (n = 252 points in
each box-and-whisker diagram at each time). Blue boxes indicate the two middle quartiles, red line specifies
the median, and whiskers indicate the upper and lower quartiles. Red ?’s specify outlier data. The second
from left box and whisker in each plot represents the values acquired for rawinsonde soundings at
Vandenberg AFB at closest time available to each event; as the sounding produces a single value, there is
one value for each event date and n = 19

1 Rain rates based on Marshall and Palmer (1948). Note values given for rain rate are instantaneous
corresponding to the imagery and do not represent the actual value observed over the course of an hour.
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precipitation. Six of the 14 events had very strong returns over 60 dBZ ([200 mm h-1),

indicative of very intense precipitation. Narrow cold frontal rain bands (NCFRs) were

identified in five of the 14 events (Table 2; ‘‘Appendix’’; example in Fig. 8). NCFRs show

up in radar imagery as a narrow band of high radar reflectivity on the order of 200 km long

with breaks and gaps along their length (Fig. 8; Jorgensen et al. 2003). The five NCFRs in

this study all followed a similar west-to-east path across the southern California Bight with

the northern half of the NCFR situated over land, while the southern half was over water

and the feature’s long axis perpendicular to the coast. This preferential orientation likely

occurs due to blocking and modification of the low-level front by coastal terrain (Neiman

et al. 2004; Hughes et al. 2009).

Radar imagery associated with one PFDF event on 12 November 2009 resulted from the

development of a very isolated convective cell in the San Gabriel Mountains, reminiscent

of a warm season thunderstorm event. The remaining eight of the 14 PFDF events for

which radar data were available featured other types of convective activity such as oro-

graphic forcing and mesoscale rain bands (as in Fig. 3f) that are not discussed in detail

within this paper.

3.5 Tools and applications

The prominence of ARs and their related features in the occurrence of PFDFs in the

Transverse Ranges suggests that those concerned with PFDFs will benefit from incorpo-

rating the use of online AR forecast and diagnostic tools into their decision-making. One

such tool is the US West Coast AR Landfall Tool available through the Center for Western

Weather and Water Extremes (CW3E) at http://cw3e.ucsd.edu/?page_id=491. This tool

provides a 16-day forecast where the user can see the probability, magnitude, location, and

timing of AR conditions arriving along the West Coast as well as how AR conditions vary

National Reflectivity Mosaic

-20 20 40 60 80 dBZ0

Fig. 8 Radar image of a narrow cold frontal rain band (NCFR) passing over the Transverse Range study
area during the 06 February 1998 PFDF event in the Grand/Hopper burn areas in the Topatopa Mountains
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in a forecast model through time. Proper use of this tool among others can generate

awareness of the potential for a PFDF and support planning and decision-making in both

research and emergency response. Additionally, the IVT variable assessed in the afore-

mentioned AR forecasting tool has been shown to be more successful in long-range

forecasts than precipitation (Lavers et al. 2016). Thus, forecasts of IVT can be used to

provide forecasts of likelihood for heavy rainfall with greater certainty further ahead than

the traditional precipitation forecasts.

3.6 Limitations and future work

Limitations of this study lie in NARR’s 32 km resolution and thus its inability to resolve

fine-scale processes important to the development of convective cells such as blocking,

barrier jet features, and low-level convergence along terrain barriers that are common in

the region (Small 1999; Neiman et al. 2004; Hughes et al. 2009). Additionally, Hughes

et al. (2012) have noted challenges in how NARR represents low-level winds and winds at

the land-sea boundary, which may impact results for winds at these levels. The coarseness

of the NARR data may also impact the accuracy of estimates of stability. CAPE, for

example, can vary greatly in the course of a storm event. Sukup et al. (2016) show a

significant increase in CAPE following a frontal passage after the PFDF had already

occurred during the 12 December 2014 PFDF event. Thus, it is possible that with the

spatial and temporal coarseness of both NARR and radiosonde data stability variables

assessed are not representative of the true event time and may be biased high or low based

on times available.

While AR conditions make up a majority of cool season PFDF events in this study,

there are, on occasion, isolated thunderstorm events such as the 12 November 2009 PFDF

event included herein. Thus, we advise that all storm types should be considered in

emergency preparedness; however, advantage should be taken of recent advancements in

AR detection and prediction given the dominance of ARs among the PFDF cases explored

in this study.

This work is, in essence, an analysis of cases of intense precipitation in the Transverse

Ranges, subset by PFDF occurrence. A broader approach would be to look at all precip-

itation events over a particular threshold in the region. However, PFDF thresholds have

been noted to vary in space (Staley et al. 2016) thus choosing one representative threshold

may not suffice. Focusing on events known to produce impactful PFDFs ensures precip-

itation was indeed sufficient. Additionally, applying meteorological analyses to verified

impactful PFDF events allows us to make a direct connection with the experiences and

concerns of our target audience in a way that a more abstract approach of exploring

precipitation over a particular intensity may not.

The lack of observations of both post-fire debris flow activity and precipitation limits

the assessment of null events. Without a high-resolution network of gauges and instru-

ments that can record debris flow response and triggering rainfall within the burn area, it is

difficult to determine whether precipitation of sufficient intensity and duration for PFDF

activity did or did not fall on a burn area. In cases outside of research efforts that utilize

instrumentation, PFDFs are often only noted if they impact human infrastructure. Thus, if a

PFDF occurred in an inaccessible remote area of a watershed, it may not be documented. In

the null case most relevant to this work (all favorable synoptic-scale conditions present, but

intense precipitation does not occur, field observations made, and no PFDFs present),

analysis using mesoscale modeling would be needed to assess why intense cells did not

develop, which is beyond the scope of this work. Thus, this work focuses on well-
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documented damaging debris flows that affected structures or infrastructure downstream of

the burned watershed.

A major challenge that remains in this research topic is identifying the exact timing and

location where intense convective cells might develop (isolated or within a larger storm

system). Similar to the suggestions of Moody et al. (2013) and Shakesby et al. (2016), we

propose future work should focus on high-resolution (B1 km) modeling of the region to

identify favored areas for intense convection under a variety of flow regimes. For modeling

efforts to be successful, precise timing of a greater number of PFDF events is necessary.

There are many challenges to overcome in instrumenting basins, as described in Kean et al.

(2011) and Staley et al. (2013), but, where present, we have found this timing data essential

to assessment of the meteorological component of PFDF events.

4 Conclusions

A catalog of 93 individual post-fire debris flow (PFDF) events associated with 19 pre-

cipitation events was compiled for the Transverse Ranges using a variety of resources.

Meteorological case studies were created for each event using hourly precipitation data

from various weather stations, the North American Regional Reanalysis (NARR) dataset,

radar imagery, wind profiler data, and rawinsonde observations.

The majority of the precipitation events producing PFDFs are moderate to strong in

terms of moisture transport; 11 of 19 events have IVT C 95th percentile for the location

and time of year. A few of the events examined have weaker moisture transport (\90th

percentile), though these events feature instability that is characteristic of only a few of the

high IVT events. Thus, there is some variability in the synoptic-scale characteristics of

precipitation events that produce PFDFs. However, we do find a set of characteristics that

are common across a majority of PFDF events. These common atmospheric conditions

associated with cool season PFDFs can be summarized as:

• Atmospheric rivers (ARs) were present in 13 of 19 PFDF events (9 had AR only, 4 had

AR and a closed low)

• All 13 AR events featured IVT C 90th percentile and 8 had IVT in the 99th percentile

(strong events for the location and time of year)

• On average, 75% of moisture flux in PFDF events below 4 km

• Closed lows (CL) were present in 5 of 19 PFDF events (1 had CL only, 4 had AR and

CL)

• Neither AR nor CL conditions were present in 5 events

• Moderate to strong flow aloft: Upper level (300 hPa) west-southwest flow typically

[40 m s-1

bFig. 9 Conceptual model of common features associated with PFDF in the Transverse Ranges at various
scales. This represents the majority of events, which feature atmospheric rivers and their associated
characteristics, but does not capture all variability seen among events. a Depicts the synoptic scale features
and typical positions. b Provides a mesoscale perspective of the events in association with the burn areas and
depicts a cold front moving into the region, which acts as a lifting mechanism for the NCFR events, and
potentially others. c Depicts a conceptual cross-section of a storm event impacting the study area. Vertical
profiles on the lefthand side of the figure show moisture flux is present primarily in low levels, and a
generally moist-neutral stability profile indicates little resistance to orographic lift. Other lifting mechanisms
may be at work as well; see Sect. 1.2. Moisture flux and stability profiles as well as wind profile are
composites of NARR data for all 19 post-fire debris flow events. Schematic in c designed after Ralph et al.
(2005)
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• Upper level jet position in majority of events (13 of 19) is displaced to south such that

the Transverse Ranges lie in divergent jet exit, an area favorable for upward vertical

motions

• Presence of moderate speed (5–10? ms-1) southerly winds below 1 km

• Predominantly moist-neutral stability (AR feature), especially in the 1–2? km layer; in

some cases weakly unstable at low levels

• Median CAPE of 20–40 J kg-1 at time of event with a range from 0 to 1300 J kg-1

among events

• High radar returns ([50 dBz); in several cases narrow cold frontal rainbands

Together, these common conditions provide a general picture of the synoptic-scale

atmospheric phenomena present in storms that trigger PFDFs and provide the framework

for a conceptual cool season model, illustrated in Fig. 9.

The results presented here reinforce NWS forecaster experience pertaining to PFDF

events (Cannon et al. 2010; Sukup et al. 2016) as well as illustrate and quantify these

relationships. They also provide information on the variability of conditions observed

among PFDF events that may be helpful in forecasting. The results of this study assist

those evaluating runoff hazards in burned areas, as well as emergency managers, research

geologists and hydrologists by going beyond the common descriptor of ‘‘intense convec-

tion’’ cited as the cause of PFDF events and identifying broad scale features that can be

recognized in forecast models with more advanced notice than convective cells. Improved

understanding by these groups can help build awareness of the likelihood of PFDF events

with more lead time and may improve interpretation and decision-making related to NWS

forecasts, watches, and warnings.
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