
ORI GIN AL PA PER

The vulnerability of the European air traffic network
to spatial hazards

Sean M. Wilkinson • Sarah Dunn • Shu Ma

Received: 8 April 2011 / Accepted: 24 June 2011 / Published online: 19 August 2011
� The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract The 2010 eruption of the Eyjafjallajökull volcano had a devastating effect on the

European air traffic network, preventing air travel throughout most of Europe for 6 days

(Oroian in ProEnvironment 3:5–8, 2010). The severity of the disruption was surprising as

previous research suggests that this type of network should be tolerant to random hazard

(Albert et al. in Nature 406(6794):378–382, 2000; Strogatz in Nature 410(6825):268–276,

2001). The source of this hazard tolerance lies in the degree distribution of the network

which, for many real-world networks, has been shown to follow a power law (Albert et al. in

Nature 401(6749):130–131, 1999; Albert et al. in Nature 406(6794):378–382, 2000). In this

paper, we demonstrate that the ash cloud was unexpectedly disruptive because it was

spatially coherent rather than uniformly random. We analyse the spatial dependence in air

traffic networks and demonstrate how the combination of their geographical distribution and

their network architectures jeopardises their inherent hazard tolerance.

Keywords Network reliability � Scale-free networks � Spatial hazard �
Airline networks � Hazard tolerance � Exponential networks

1 Introduction

Complex networks can be found in all aspects of modern society. Many of these complex

networks, including the Internet and World Wide Web, have been shown to be scale-free

(Barabasi and Albert 1999; Albert et al. 2000). Scale-free networks are networks whose

degree distribution (defined as the cumulative probability distribution of the number of

connections that each node has to other nodes, see Fig. 1a, b for further explanation)

follows a power law and therefore comprises a small number of high-degree nodes and a

large number of smaller-degree nodes. They have been shown to be resilient to random

hazard and vulnerable to targeted attack as a random hazard has a small chance of

removing a high-degree node, whereas an informed and pernicious agent will target the
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highest-degree node resulting in a disproportionately severe impact to the network (Albert

et al. 2000). Those physical networks that have been shown to be scale-free (for example,

the Internet and the World Wide Web) require little physical space; the routers and servers,

which comprise the Internet, each require only a room, or even a small space within a

room. Even the largest hubs require little physical space and little or no planning per-

mission. The World Wide Web requires even less space. Web pages and the hyperlinks that

connect them are virtual entities whose physical size amounts to only a few nanometres on

a hard disc drive. Previous studies have not considered the effects of space and physical

size on these networks, as space has little effect on the network physical configuration.
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Fig. 1 The calculation of degree distribution is made by obtaining the degree of each node. The degree of a
node, k, is the number of links attached to this node from other nodes, for example, if a node has 3 links
attached to it, then it has a degree of 3. a shows a small sample from a scale-free network, created using
Network Workbench, and shows the degree of each node (the dashed lines indicate links to other nodes in
the network that have been removed from this figure for clarity). The degree distribution of the network,
P(k), gives the cumulative probability that a selected node has k or greater links. P(k) is calculated by
summing the number of nodes with k = 1, 2, … links divided by the total number of nodes. It is this
distribution that allows for the distinction between different classes of network and also defines the inherent
hazard tolerance of the network (Barabasi and Oltvai 2004). The degree distribution for the scale-free
network (partly shown in a) is shown in b. Preferential attachment based on degree and based on both
proximity and degree is indicated in c and d, respectively. In c, a new node (in red) is introduced into the
network, and using the algorithm of Barabasi and Albert (1999) would be most likely to attach itself to the
high-degree node; however, considering proximity as well as degree alters the probability because the
spatial domain of the low-degree node (in the centre of the red circle) includes the high-degree node and
therefore inflates its probability of attachment (desirability)
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Other infrastructure networks, on the other hand, such as electrical transmission networks

or transportation networks, require large amounts of space and are usually subject to strict

planning regulations. A few studies have considered the spatial configuration of real-world

networks, such as airline networks (for example, Guimera and Amaral 2004; Burghouwt

et al. 2003; Qian and Han 2009; Gastner and Newman 2006); however, these studies have

not considered hazard tolerance.

The 2010 eruption of the Eyjafjallajökull volcano, in Iceland, occurred on the 14th

March forcing almost 800 local residents to evacuate their homes (Petersen 2010). With

further eruptions, airspace in Europe became restricted, and no fly zones came into

operation on 14th April (Brooker 2010) (see Fig. 2a–c). The resulting airport closures and

disruption to air travel caused more than 10 million passengers to be delayed. The eco-

nomic impact to the airline industry, in terms of revenue loss for airlines from scheduled

services, during the period 15th–21st April, was estimated at 1.7 billion US dollars

(Mazzocchi et al. 2010). We show that this disruption was disproportionate by quantifying

the magnitude of the disturbance relative to the cause. We have achieved this using the data

contained in Openflights (2010) to produce a comprehensive set of 525 European airports,

3,886 air routes operated by 203 airlines as well as travel statistics for Europe for the 14th–

21st April 2010 (Eurocontrol 2010). We have used these data to form a European air traffic

network (EATN) and have then obtained its degree distribution, which gives us infor-

mation about its inherent tolerance to random hazard. We have also investigated the

tolerance of the EATN to two types of spatially coherent hazard, in both cases, taking note

of the number of airports closed, air routes cancelled, the proportion of closed airspace and

the maximum cluster size of the network. We have used these data to determine whether

the EATN is vulnerable to spatial hazards.

2 Initial assessment of the hazard tolerance of the European air traffic network

Our first investigation into the EATN is achieved by plotting the network’s degree dis-

tribution. As this is defined as the probability distribution of the number of connections that

each node has to other nodes, it is therefore a key indicator of its hazard tolerance.

Comparing the degree distribution of EATN (Fig. 3a) to other published research, we find

that the European data set is similar to the North American (Guimera and Amaral 2004;

Chi et al. 2003; Li et al. 2006) and Chinese (Li and Cai 2004) air traffic networks in that

they conform to a truncated power law (Guimera and Amaral 2004). This type of network

should therefore have relatively high hazard tolerance to random events.

To investigate whether the volcanic eruption had a disproportionate effect on the net-

work, we have identified airports that had no flights for 12 or more hours on a particular

day using the data of Eurocontrol (2010). We have taken these data and plotted Fig. 2a–c,

showing the open and closed flight information regions (FIR), for the worst affected day of

the hazard (18th April) and two other affected days. The figure shows that the ash cloud

mainly affected northern Europe, but also closed central Europe on the worst day of the

event. In Fig. 2d, we plot the proportion of air routes closed against the proportion of

closed airspace. If the effect is proportionate to the cause (i.e. the disruption is propor-

tionate to the area of closed airspace), then the points (representing different days of

disruption and therefore different airport closures) should sit on the 45� line in the graph.

From Fig. 2d, we can see that the relationship shows that the disruption was proportionally

greater than the closed airspace, demonstrating the EATN is vulnerable to spatial hazards.
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Fig. 2 Open (light green) and closed (grey) FIR in Europe (i.e. airspace) for a 15th April, b 18th April and
c 21st April 2010 (Eurocontrol 2010). Also, d showing proportion of travel disruption, relative to the
proportion of closed airspace, during the Eyjafjallajökull eruption of 14th–21st April 2010. The red triangle
is the Eyjafjallajökull volcano
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Fig. 3 a Cumulative degree distribution, b number of airports within a given radius and c spatial degree
distribution for the EATN (data were obtained from Openflights 2010), and one generated synthetic network
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To understand the influence of geography on the spatial vulnerability of the EATN, we

examine the spatial distribution of European airports as well their spatial degree distri-

bution (Fig. 3b, c). These distributions were obtained by first calculating the geographical

centre of the airports (weighted by their degree) and then plotting the number of airports

within a given radius (Fig. 3b) and the cumulative degree (Fig. 3c). For the EATN, the

geographical centre of the network is located in Germany (approximately 190 km east of

Frankfurt). Both exhibit a bilinear form, meaning that they are uniform with distance from

the geographical centre of the air traffic network up to radius of *1,500 km, after which

the distribution of both airports and their degrees becomes sparser but remains relatively

uniform. The change in grade shown in Fig. 3b, c occurs as the considered area extends

into the Atlantic Ocean in the west, and the border of the European Union in the east.

3 Synthetic network generation algorithm

To assess the vulnerability of this class of network (not just the EATN), we have developed

a synthetic network generation algorithm that not only reproduces the relational archi-

tecture of these networks but also incorporates a spatial element. In this algorithm, we

propose that poorly connected nodes can capitalise on their close proximity to a highly

connected hub by attracting links that were bound for the high degree hub. For example, an

airline may wish to establish a route to a major regional airport; however, the operating

costs at this airport are high. Flying to a nearby airport will still attract passengers as it is

only a short overland journey from this node to the highly connected hub, but for this

subordinate node, the fares can be reduced due to the lower operating costs. We therefore

argue that the decision of where to establish a new route is made based on both degree and

proximity. We use this proposition to extend the algorithm of Barabasi and Albert (1999)

(used to generate scale-free networks) by enclosing the network within a spatial domain

and preferentially attaching new nodes based on the degree of all nodes within a sub-

domain (neighbourhood) (Fig. 1c, d). Following Barabasi and Albert (1999), we initially

choose a given number of starting nodes, m0, but each starting node is now given a random

location. At each step, we add a new node to the network and assign it a random distance

bearing from the geographical centre so that the spatial distribution has the same form as

shown in Fig. 3b. We then generate, between 1 and m0, links and preferentially attach this

node to the existing network in the same manner as for a scale-free network; however,

preference is now based on the degree of all nodes within the neighbourhood of the node

we are attempting to attach to. The size of the neighbourhood is set by assigning a radius, r,

which represents the distance people are prepared to travel overland to reach an airport.

Setting the radius to zero removes the spatial dependence of the network resulting in a

scale-free network, while setting the radius to twice the size of the spatial domain results in

random attachment. To obtain the same spatial degree distribution as EATN, the radius of

an airport’s neighbourhood is made proportional to the distance the airport is from the

centre of the network. This last rule is intuitive because airports are more densely packed in

the centre of the network giving people a greater selection of routes for smaller overland

travel distances.

Our new algorithm also includes the modification of Guimera and Amaral (2004), which

allows a proportion of the new links, p, to connect to pre-existing nodes. This simulates the

establishment of new routes between existing airports and is necessary to reproduce re-

configurable networks, such as the EATN. We do not include the flight distance criteria for

preferential attachment of Guimera and Amaral (2004), as we are not considering
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intercontinental flights and deregulation of the EATN has led to flight path length

becoming uncorrelated from degree. We demonstrate this by plotting, in Fig. 4, flight

length of different air routes against various measures of degree, showing that there is no

correlation between the flight length and connectivity of an airport. In Fig. 4a, we compare

the maximum degree airport that an air route is connected to; in Fig. 4b, we compare the

arithmetic mean of the degree of the two airports that an air route connects; and in Fig. 4c,

we compare the geometric mean of the two airports that an air route connects. These

figures show that there is no correlation between degree and flight path length for the

EATN.

To generate the bilinear distribution in Fig. 3b, we define a distance from the geo-

graphical centre inside which a percentage of the total nodes in the network are randomly

placed, with the remainder of the nodes being randomly placed in the area between this

point and the outer edge of the network. This results in the number of airports within a

given radius being an approximation of the EATN.

We demonstrate this algorithm by generating a 525-node synthetic network with

m0 = 14, r = 0.15 (an average distance of approximately 250 km around 2–3 h driving

time on modern roads) and p = 0.8. The resultant degree and spatial degree distributions

are shown in Fig. 3 and fit our European data set extremely well.

To demonstrate that our algorithm best fits the data over the entire distribution, we vary

these parameters to gauge their influence on the degree distribution (Fig. 5). The best fit for

the EATN is the exponential network with p = 0.8 and r = 0.15. Generating networks

with p = 0 and r = 0.15 shows that the distribution is exponential (i.e. it is linear when
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Fig. 4 The air route distance between airports (in km) compared to a maximum degree of connected
airports, b arithmetic mean of the two connected airports and c geometric mean of the two connected
airports for the EATN. All of the graphs in the figure show that there is no correlation between the air route
distance (i.e. the distance between two airports connected via an air route) and various measures of degree of
the two connected airports
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plotted on log-linear axes). The difference between the exponential networks with values

of p = 0 and p = 0.8, for the same value of r, demonstrates that in generating airline

networks, new links will form between two existing nodes for a given time step (i.e. new

flight routes will be added by an airline between existing airports) and are not only

confined to attaching between the new node and existing nodes (see Guimera and Amaral

2004). If new routes are not permitted to form between existing airports (i.e. p = 0), the

resultant is fewer ‘hub’ airports forming (i.e. airports with large degrees). Both scale-free

networks follow the initial curve of the EATN data, but then do not follow the truncated

part of the network, meaning that our synthetic exponential network generation algorithm

produces the best fit for the EATN.

In reproducing the EATN, the r value used suggests that, on average, air passengers are

prepared to travel approximately 250 km overland to an airport. In a disaster scenario, this

value is unlikely to remain constant. Air passengers are likely to be prepared to take much

greater overland journeys to ensure that they reach their destinations, especially in the case

of returning journeys. In fact, during the Eyjafjallajökull event, accounts of people driving

across Europe were not uncommon. While air transport regulations do allow for a spon-

taneous change of destination in hazardous situations, air space regulations, as well as

airline-specific infrastructure problems, make it extremely difficult to quickly open alter-

native routes. In this sense, the network is more complex and rather inflexible in com-

parison with other networks, such as the Internet. For example, a flight en route from

Zurich to Manchester may get permission for an emergency landing, at say Heathrow. If

Manchester airport was closed for several days and Heathrow airport remained open,

passengers may take the option of travelling to and from Heathrow to Manchester. The

redirection of air traffic and the increased overland journeys that people may be prepared to

make have not been taken into account in this analysis due to their unpredictability.

4 Assessment of hazard tolerance of this generic class of network

To better assess the vulnerability of this class of network and the associated scatter

between different networks, we use our algorithm to generate three synthetic networks,

with the same spatial properties and the same network architecture as the EATN (but each
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Fig. 5 EATN and four synthetic networks, generated using different algorithms, showing a degree
distribution plotted on log–log scales and b degree distribution plotted on log-linear scales, where p is the
proportion of new links, introduced in each time step that are allowed to connect to pre-existing nodes (e.g.
if p = 0.8 then 80% of the new links will be between existing nodes), and r is the neighbourhood size,
representing the distance that people are prepared to travel overland to an airport (e.g. if r = 0.15, then the
equivalent distance is approximately 250 km)
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with different node positions and linkages), and expose them to different spatial hazards.

To simulate the Eyjafjallajökull event, we place a circular hazard at the edge of our domain

and gradually increase its size, removing links and nodes as they become enveloped by this

hazard. We also expose these networks to random but spatially coherent hazards, defined

by a circle of varying diameters and random locations. To enable equivalent comparisons,

the spatial hazards, for both the EATN and our synthetic networks, cover the same per-

centage airspace and are located at the same distance from their geographical centres. The

results of these simulations are displayed in Fig. 6a, b, together with the Eyjafjallajökull

event and the EATN exposed to our random, spatially coherent hazard. The scatter in the

hazard tolerance for these synthetic networks is surprisingly small and is in good agree-

ment with the EATN, demonstrating this class of network’s vulnerability to both hazards.

Although the individual hazard tolerance results of our synthetic networks compare very

favourably with the EATN, there are a few outliers, for example, there are two points in

Fig. 6a, relating to the EATN subjected to random hazard that occurs below the 45� line.

These two random hazards occur in northern Scandinavia, where both the density of

airports and the average degree of airports are lower than that for central Europe, due to

this region being in close proximity to the edge of the spatial boundary of the network. This

results in flights from northern Scandinavia only being permitted to travel to airports with a

more southerly location (i.e. stay within the boundaries of European airspace), resulting in

airports with disproportionately low degrees. This results in fewer cancelled air routes for

the same number of closed airports.

For our final investigation into hazard tolerance, we plot the maximum cluster size

(MCS) in Fig. 6c, d. This last measure is defined as the ratio of the largest connected

0%

20%

40%

60%

80%

100%

%
 C

an
ce

lle
d 

R
ou

te
s

% Closed Airports

European Air Traffic Network for Eyjafjallajökull Eruption

Synthetic Network for Simulated Eyjafjallajökull Eruption

European Air Traffic Network for Random Hazard

Synthetic Network for Random Hazard

Vulnerable

Robust

0%

20%

40%

60%

80%

100%

% Closed Airspace

Vulnerable

Robust

0%

20%

40%

60%

80%

100%

%
 M

C
S

% Closed Airports

Vulnerable

Robust

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

0% 20% 40% 60% 80% 100%0% 20% 40% 60% 80% 100%

0% 20% 40% 60% 80% 100%

% Closed Airspace

Vulnerable

Robust

a b 

c d 

Fig. 6 Comparison of network vulnerability for the EATN and our three synthetic networks, showing a the
impact of airport closure on air route operations; b the influence of airspace closure on air route operations;
c the reduction in MCS due to airport closures; and d the influence of airspace closure on MCS
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cluster in a fragmented network to the original size of network and therefore is a key

indicator of how degraded a network has become (see Albert et al. 2000 for further details).

In Fig. 6, we see that, as expected, the MCS versus proportion of closed airports for the

EATN and our three synthetic networks falls on the neutral line (Albert et al. 2000);

however, as our simulations and the real EATN show, it is vulnerable when measured as a

proportion of closed airspace. Both our algorithm and the data show that these networks

usually have neutral tolerance to spatial hazard up to about 10–15%, of the total network

area, but become increasingly vulnerable after this. In the case of random hazard, both our

algorithm and the EATN data set demonstrate that it is possible for a relatively small

spatially coherent hazard to have a devastating effect on this class of network. This is best

demonstrated in Fig. 6d, where two points on our synthetic network are centred over the

geographical centre of the network resulting in a devastating effect.

5 Conclusion

In summary, the eruption of Eyjafjallajökull in 2010 caused a massive disruption to the

European air traffic network. We have demonstrated that the effect on air traffic was

disproportionately severe due to the network possessing a truncated, scale-free distribution

and a spatial degree distribution that is uniform with distance from the centre of the

network, resulting in a network that is vulnerable to spatial hazards. We believe that these

distributions result from a combination of the desirability of a location, space limitations

and the distance users are prepared to travel overland to an airport. As many real-world

networks have been shown to be either scale free or exponential (Albert et al. 2004;

Crucitti et al. 2004), it is possible that the underlying growth rules for these types of

networks may result in them also being susceptible to spatial hazard. In the future, it may

be desirable to reduce this susceptibility to spatial hazard. One possible method is to move

some of the airports away from the geographical centre, located in Germany (specifically

the high-degree airports); however, this approach may render the network less effective for

normal operations. This approach also encounters the problem that each country in Europe

may desire a ‘hub’ airport, meaning that moving airports away from the geographical

centre may not be a possibility. Another method could be to enable reconfiguration of air

routes for cases such as the Eyjafjallajökull eruption.
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