Skip to main content
Log in

Hazard assessment of underwater landslide-generated tsunamis: a case study in the Padang region, Indonesia

  • ORIGINAL PAPER
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Submarine landslides can generate local tsunamis with high run-ups, posing a hazard to human lives and coastal facilities. Both ancient (giant Storegga slide off Norwegian coast, 8200 B. P.) and recent (Papua New Guinea, 1998) events show high potential danger of tsunamigenic landslides and the importance of mitigation efforts. This contribution presents newly discovered landslides 70 km off Padang (Western Sumatra, Indonesia) based on recent bathymetry measurements. This highly populated city with over 750,000 inhabitants exhibits high tsunami vulnerability due to its very low elevation. We model tsunamis that might have been induced by the detected landslide events. Estimations of run-up heights extrapolated from offshore tsunami amplitudes for Padang and other locations in the northern Mentawai fore-arc basin yield maximum values of about 3 m. We also provide a systematic parametric study of landslide-induced tsunamis, which allows us to distinguish potentially dangerous scenarios for Padang. Inside the fore-arc basin, scenarios involving volumes of 0.5–25 km³ could endanger Padang. Apart from slide volume, the hazard distribution mainly depends on three landslide parameters: distance to Padang, water depth in the generation region, and slide direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Borrero JC, Hidayat R, Suranto, Bosserelle C, Okal EA (2007) Field survey and preliminary modeling of the near-field tsunami from the Bengkulu earthquake of 12 September 2007. EOS Trans AGU 88(52), Fall Meet. Suppl., Abstract U54A-04

  • Chlieh M, Avouac JP, Sieh K, Natawidjaja DH, Galetzka J (2008) Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. J Geophys Res. doi: 10.1029/2007JB004981

  • Fritz HM, Hager WH, Minor HE (2004) Near field characteristics of landslide generated impulse waves. J Waterway Port Coast Ocean Eng. doi: 10.1061/(ASCE)0733-950X(2004)130:6(287)

  • Fritz HM, Kongko W, Moore A, McAdoo B, Goff J, Harbitz C, Uslu B, Kaligeris N, Titov V, Synolakis CE (2007) Extreme run-up from the 17 July 2006 Java tsunami. Geophys Res Abstr 9:10765

    Google Scholar 

  • Geist EL, Parsons T (2006) Probabilistic analysis of tsunami hazards. Nat Hazards 37:277–314

    Article  Google Scholar 

  • Grilli ST, Watts P (1999) Modeling of waves generated by a moving submerged body. Applications to underwater landslides. Eng Anal Bound Elem 23:645–656

    Article  Google Scholar 

  • Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses. J Waterway Port Coast Ocean Eng 131(6):283–297

    Article  Google Scholar 

  • Grilli ST, Vogelmann S, Watts P (2002) Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Eng Anal Bound Elem 26:301–313

    Article  Google Scholar 

  • Hamilton EL (1985) Sound velocity as a function of depth in marine sediments. J Acoust Soc Am 78(4):1348–1355

    Article  Google Scholar 

  • Hamzah L, Puspito NT, Imamura F (2000) Tsunami catalog and zones in Indonesia. J Nat Disaster Sci 22(1):25–43

    Article  Google Scholar 

  • Harbitz CB (1992) Model simulations of tsunamis generated by the Storegga slides. Mar Geol 105:1–21

    Article  Google Scholar 

  • Imamura F, Imteaz MMA (1995) Long waves in two-layers: governing equations and numerical model. J Sci Tsunami Hazards 13:3–24

    Google Scholar 

  • Imamura F, Shuto N, Goto C, Ogawa Y (1997) IUGG/IOC time project IOC manuals and guides No.35. UNESCO

  • IOC, IHO, BODC (2003) Centenary edition of the GEBCO Digital Atlas, British Oceanographic Data Centre, Liverpool

  • Kajiura K (1963) The leading wave of a tsunami. Bull Earthq Res Inst 41:535–571

    Google Scholar 

  • Lavigne F, Gomez C, Giffo M, Wassmer P, Hoebreck C, Mardiatno D, Prioyono J, Paris R (2007) Field observations of the 17 July 2006 tsunami in Java. Nat Hazards Earth Syst Sci 7:177–183

    Article  Google Scholar 

  • Lorito S, Romano F, Piatanesi A, Boschi E (2008) Source process of the September 12, 2007, MW 8.4 southern Sumatra earthquake from tsunami tide gauge record inversion. Geophys Res Lett. doi: 10.1029/2007GL032661

  • Lückge A, Mohtadi M, Rühlemann C, Scheeder G, Vink A, Reinhardt L, Wiedicke M (2009) Monsoon versus ocean circulation controls on paleoenvironmental conditions off southern Sumatra during the past 300,000 years. Paleoceanography. doi: 10.1029/2008PA001627

  • Lynett P, Liu PLF (2002) A numerical study of submarine-landslide-generated waves and run-up. Proc R Soc Lond A 458:2885

    Article  Google Scholar 

  • Lynett P, Liu PLF (2005) A numerical study of the run-up generated by three-dimensional landslides. J Geophys Res. doi: 10.1029/2004JC002443

  • Masson DG, Harbitz CB, Wynn RB, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Phil Trans R Soc A 364:2009–2039

    Article  Google Scholar 

  • Matsumoto T (2007) An underwater landslide or slump on an active submarine fault—a possible source of a devastating tsunami?. EOS Trans AGU. 88(52), Fall Meet. Suppl., Abstract S53A-1018

  • McCloskey J, Antonioli A, Piatanesi A, Sieh K, Steacy S, Nalbant S, Cocco M, Giunchi C, Huang JD, Dunlop P (2008) Tsunami threat in the Indian Ocean from a future megathrust earthquake west of Sumatra. Earth Planet Sci Lett 265:61–81

    Article  Google Scholar 

  • Moran K, Tappin D (2006) SEATOS 2005 Cruise report: Sumatra earthquake and tsunami off shore survey (SEATOS). pp 92 (Online) available at http://ocean.oce.uri.edu/seatos

  • Natawidjaja DH, Sieh K, Chlieh M, Galetzka J, Suwargadi BW, Cheng H, Edwards RL, Avouac JP, Ward SN (2006) Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls. J Geophys Res Solid Earth. doi: 10.1029/2005JB004025

  • Neben S, Gaedicke C (2006) Cruise report, BGR Cruise SO189 Leg 1, Project SUMATRA, The hydrocarbon system of the Sumatra Forearc, Bundesanstalt für Geowissenschaften und Rohstoffe, pp 126

  • Okal EA, Synolakis CE (2003) A theoretical comparison of tsunamis from dislocations and landslides. Pure Appl Geophys 160:2177–2188

    Article  Google Scholar 

  • Papadopoulos GA, Imamura F (2001) A proposal for a new tsunami intensity scale, ITS 2001 Proceedings, Session 5, Number 5-1

  • Pelinovsky E (2001) Analytical models of tsunami generation by submarine landslides. In: Yalçiner AC, Pelinovsky E, Okal E, Synolakis CE (eds) Submarine landslides and tsunamis, 2003. Kluwer, Dordrecht, pp 111–128

    Google Scholar 

  • Rynn J (2002) A preliminary assessment of tsunami hazard and risk in the Indonesian region. Sci Tsunami Hazard 20(4):193

    Google Scholar 

  • Satake K (1988) Effects of bathymetry on tsunami propagation: application of ray tracing to tsunamis. Pure Appl Geophys 126(1):27–36

    Article  Google Scholar 

  • Susilohadi S, Gaedicke C, Ehrhardt A (2005) Neogene structure and sedimentation history along the Sunda forearc basins off southwest Sumatra and southwest Java Marine Geology. Mar Geo. doi: 10.1016/j.margeo.2005.05.001

  • Sweet S, Silver EA (2003) Tectonics and slumping in the source region of the 1998 Papua New Guinea tsunami from seismic reflection images. Pure Appl Geophys 160:1945–1968

    Article  Google Scholar 

  • Synolakis CE, Kong L (2006) Runup measurements of the December 2004 Indian Ocean tsunami. Earthq Spectr 22(S3):S67–S91

    Article  Google Scholar 

  • Synolakis CE, Bardet JP, Borrero JC, Davies HL, Okal EA, Silver EA, Sweet S, Tappin DR (2002) The slump origin of the 1998 Papua New Guinea tsunami. Proc R Soc Lond A 458:763–789

    Article  Google Scholar 

  • Tappin DR, Watts P, McMurtry GM, Lafoy Y, Matsumoto T (2001) The Sissano, Papua New Guinea tsunami of July 1998-offshore evidence on the source mechanism. Mar Geol 175:1–23

    Article  Google Scholar 

  • Tinti S, Bortolucci E, Vannini C (1997) A block-based theoretical model suited to gravitational sliding. Nat Hazards 16:1–28

    Article  Google Scholar 

  • Tinti S, Bortolucci E, Armigliato A (1999) Numerical simulation of the landslide-induced tsunami of 1988 on Vulcano Island, Italy. Bull Volcanol 61:121–137

    Article  Google Scholar 

  • Tinti S, Bortolucci E, Chiavettieri C (2001) Tsunami excitation by submarine slides in shallow-water approximation. Pure Appl Geophys 158:759–797

    Article  Google Scholar 

  • Titov VV, Synolakis CE (1997) Extreme inundation flows during the Hokkaido-Nansei-Oki tsunami Geophys. Res Lett 24(11):1315–1318

    Article  Google Scholar 

  • Tsuji Y, Imamura F, Matsutomi H, Synolakis CE (1995a) Field survey of the east Java earthquake and tsunami of June 3, 1994. Pure Appl Geophys 144(3/4):839

    Article  Google Scholar 

  • Tsuji Y, Matsutomi H, Imamura F, Takeo M (1995b) Damage to coastal villages due to the 1992 Flores island earthquake tsunami. Pure Appl Geophys 144(3/4):481

    Article  Google Scholar 

  • UHSLC (University of Hawai, Sea Level Center) 2008. http://ilikai.soest.hawaii.edu/

  • Ward SN, Asphaug E (2003) Asteroid impact tsunami of 2880 March 16. Geophys J Int 153:F6–F10

    Article  Google Scholar 

  • Watts P, Grilli ST, Tappin D, Fryer GJ (2005) Tsunami generation by submarine mass failure. II: Predictive equations and case studies. J Waterway Port Coast Ocean Eng 131(6):298–310

    Article  Google Scholar 

  • Yuk D, Yim SC, Liu PLF (2006) Numerical modeling of submarine mass-movement generated waves using RANS model. Comput Geosci 32:927–935

    Article  Google Scholar 

Download references

Acknowledgments

Data collection was conducted with grant 03G0189 (SUMATRA) of the Federal Ministry of Education and Research (BMBF), Germany. This is publication 24 of the GITEWS project (German Indonesian Tsunami Early Warning System). The project is carried out through a large group of scientists and engineers from GeoForschungsZentrum Potsdam (GFZ) and its partners from DLR, AWI GKSS, IFM-GEOMAR, UNU, BGR, GTZ, as well as from Indonesian and other international partners. Funding is provided by the German Federal Ministry for Education and Research (BMBF), grant 03TSU01. We thank two anonymous reviewers for their detailed and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Brune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brune, S., Babeyko, A.Y., Gaedicke, C. et al. Hazard assessment of underwater landslide-generated tsunamis: a case study in the Padang region, Indonesia. Nat Hazards 53, 205–218 (2010). https://doi.org/10.1007/s11069-009-9424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-009-9424-x

Keywords

Navigation